[1] 中国信息通信研究院. 物联网白皮书[M]. 2020.
[2] CHIANG M, ZHANG T. Fog and IoT: An overview of research opportunities[J]. IEEE InternetThings J., 2016, 3(6): 854-864.
[3] MA H, ZHAO D, YUAN P. Opportunities in mobile crowd sensing[J]. IEEE Commun. Mag.,2014, 52(8): 29-35.
[4] NGUYEN T N, ZEADALLY S. Mobile crowd-sensing applications: Data redundancies, challenges, and solutions[J]. ACM Trans. Internet Tech., 2021, 22(2): 1-15.
[5] CAPPONI A, FIANDRINO C, KANTARCI B, et al. A survey on mobile crowdsensing systems:Challenges, solutions, and opportunities[J]. IEEE Commun. Surveys Tuts., 2019, 21(3): 2419-2465.
[6] GANTI R K, YE F, LEI H. Mobile crowdsensing: Current state and future challenges[J]. IEEECommun. Mag., 2011, 49(11): 32-39.
[7] CARPENTER B E, NICHOLS K. Differentiated services in the Internet[J]. Proc. IEEE, 2002,90(9): 1479-1494.
[8] ZHANG C, FAN P, XIONG K, et al. Providing differentiated services in multiaccess systemswith and without queue state information[J]. IEEE Trans. Commun., 2014, 62(12): 4387-4400.
[9] KHAN W Z, XIANG Y, AALSALEM M Y, et al. Mobile phone sensing systems: A survey[J].IEEE Commun. Surveys Tuts., 2012, 15(1): 402-427.
[10] LANE N D, MILUZZO E, LU H, et al. A survey of mobile phone sensing[J]. IEEE Commun.Mag., 2010, 48(9): 140-150.
[11] ZHANG X, YANG Z, SUN W, et al. Incentives for mobile crowd sensing: A survey[J]. IEEECommun. Surveys Tuts., 2016, 18(1): 54-67.
[12] DASARI V S, KANTARCI B, POURYAZDAN M, et al. Game theory in mobile crowdsensing:A comprehensive survey[J]. Sensors, 2020, 20(7): 2055.
[13] TAO M, LIANG Y C, ZHANG F. Resource allocation for delay differentiated traffic in multiuserOFDM systems[J]. IEEE Trans. Wireless Commun., 2008, 7(6): 2190-2201.
[14] POPOVSKI P, TRILLINGSGAARD K F, SIMEONE O, et al. 5G wireless network slicingfor eMBB, URLLC, and mMTC: A communication-theoretic view[J]. IEEE Access, 2018, 6:55765-55779.
[15] ALSENWI M, TRAN N H, BENNIS M, et al. eMBB-URLLC resource slicing: A risk-sensitiveapproach[J]. IEEE Commun. Lett., 2019, 23(4): 740-743.
[16] PRABHAKAR B, BIYIKOGLU E U, EL GAMAL A. Energy-efficient transmission over awireless link via lazy packet scheduling[C]//Proc. IEEE Infocom. Anchorage, AK, USA, 2001.
[17] ZAFER M A, MODIANO E. A calculus approach to minimum energy transmission policieswith quality of service guarantees[C]//Proc. IEEE Infocom. Miami, FL, USA, 2005.
[18] ZAFER M A, MODIANO E. Optimal rate control for delay-constrained data transmission overa wireless channel[J]. IEEE Trans. Inf. Theory, 2008, 54(9): 4020-4039.
[19] ZAFER M A, MODIANO E. A calculus approach to energy-efficient data transmission withquality-of-service constraints[J]. IEEE/ACM Trans. Netw., 2009, 17(3): 898-911.
[20] WANG X, LI Z. Energy-efficient transmissions of bursty data packets with strict deadlines overtime-varying wireless channels[J]. IEEE Trans. Wireless Commun., 2013, 12(5): 2533-2543.
[21] YANG J, ULUKUS S. Optimal packet scheduling in an energy harvesting communication system[J]. IEEE Trans. Commun., 2011, 60(1): 220-230.
[22] TUTUNCUOGLU K, YENER A. Optimum transmission policies for battery limited energyharvesting nodes[J]. IEEE Trans. Wireless Commun., 2012, 11(3): 1180-1189.
[23] DEVILLERS B, GÜNDÜZ D. A general framework for the optimization of energy harvestingcommunication systems with battery imperfections[J]. J. Commun. Netw., 2012, 14(2): 130-139.
[24] GURAKAN B, OZEL O, YANG J, et al. Energy cooperation in energy harvesting communications[J]. IEEE Trans. Commun., 2013, 61(12): 4884-4898.
[25] OZEL O, YANG J, ULUKUS S. Optimal transmission schemes for parallel and fading Gaussianbroadcast channels with an energy harvesting rechargeable transmitter[J]. Computer commun.,2013, 36(12): 1360-1372.
[26] WANG X, ZHANG R. Optimal transmission policies for energy harvesting node with non-idealcircuit power[C]//Proc. IEEE SECON. Singapore, 2014.
[27] ULUKUS S, YENER A, ERKIP E, et al. Energy harvesting wireless communications: A reviewof recent advances[J]. IEEE J. Sel. Areas Commun., 2015, 33(3): 360-381.
[28] LUO Y, ZHANG J, LETAIEF K B. Training optimization for energy harvesting communicationsystems[C]//Proc. IEEE GLOBECOM. Anaheim, USA, 2012.
[29] HUANG C, ZHANG R, CUI S. Throughput maximization for the Gaussian relay channel withenergy harvesting constraints[J]. IEEE J. Sel. Areas Commun., 2012, 31(8): 1469-1479.
[30] GREGORI M, GÓMEZ-VILARDEBÓ J, MATAMOROS J, et al. Wireless content caching forsmall cell and D2D networks[J]. IEEE J. Sel. Areas Commun., 2016, 34(5): 1222-1234.
[31] YOU C, HUANG K. Exploiting non-causal CPU-state information for energy-efficient mobilecooperative computing[J]. IEEE Trans. Wireless Commun., 2018, 17(6): 4104-4117.
[32] LI X, WANG S, ZHU G, et al. Data Partition and Rate Control for Learning and Energy EfficientEdge Intelligence[J]. IEEE Trans. Wireless Commun., 2021.
[33] JALALI A, PADOVANI R, PANKAJ R. Data throughput of CDMA-HDR a high efficiencyhigh data rate personal communication wireless system[C]//VTC2000-Spring. 2000 IEEE 51stVehicular Technology Conference Proceedings (Cat. No. 00CH37026): volume 3. IEEE, 2000:1854-1858.
[34] CRUZ R L. A calculus for network delay. I. Network elements in isolation[J]. IEEE Transactionson information theory, 1991, 37(1): 114-131.
[35] LE BOUDEC J Y, THIRAN P. Network calculus: a theory of deterministic queuing systems forthe internet[M]. Springer, 2001.
[36] BOUDEC J Y L, THIRAN P. Network Calculus, LNCS, vol. 2050[M]. Springer-Verlag, NewYork, 2001.
[37] BERRY R A, GALLAGER R G. Communication over fading channels with delay constraints[J]. IEEE Transactions on Information theory, 2002, 48(5): 1135-1149.
[38] KHOJASTEPOUR M A, SABHARWAL A. Delay-constrained scheduling: Power efficiency,filter design, and bounds[C]//IEEE INFOCOM 2004: volume 3. IEEE, 2004: 1938-1949.
[39] FU A, MODIANO E, TSITSIKLIS J. Optimal energy allocation for delay-constrained datatransmission over a time-varying channel[C]//IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03Ch37428): volume 2. IEEE, 2003: 1095-1105.
[40] OZEL O, TUTUNCUOGLU K, YANG J, et al. Transmission with energy harvesting nodesin fading wireless channels: Optimal policies[J]. IEEE J. Sel. Areas Commun., 2011, 29(8):1732-1743.
[41] AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wireless sensor networks: Asurvey[J]. Comput. netw., 2002, 38(4): 393-422.
[42] WANG S, WU Y C, XIA M, et al. Machine intelligence at the edge with learning centric powerallocation[J]. IEEE Trans. Wireless Commun., 2020, 19(11): 7293-7308.
[43] YOU C, HUANG K, CHAE H. Energy efficient mobile cloud computing powered by wirelessenergy transfer[J]. IEEE J. Sel. Areas Commun., 2016, 34(5): 1757-1771.
[44] YOU C, HUANG K, CHAE H, et al. Energy-efficient resource allocation for mobile-edge computation offloading[J]. IEEE Trans. Wireless Commun., 2016, 16(3): 1397-1411.
[45] CHANDRAKASAN A P, SHENG S, BRODERSEN R W. Low-power CMOS digital design[J].IEICE Trans. Electron., 1992, 75(4): 371-382.
[46] MADAN R, CUI S, LALL S, et al. Modeling and optimization of transmission schemes inenergy-constrained wireless sensor networks[J]. IEEE/ACM Trans. Netw., 2007, 15(6): 1359-1372.
[47] GOLDSMITH A. Wireless communications[M]. Cambridge university press, 2005.
[48] YANG J, ULUKUS S. Optimal packet scheduling in a multiple access channel with energyharvesting transmitters[J]. J. Commun. Netw., 2012, 14(2): 140-150.
[49] SCHWARZ O W, MINIHOLD R. LTE System Specifications and their Impact on RF & BaseBand Circuits[J]. Rohde & Schwarz App Note, 2013: 1 - 37.
修改评论