中文版 | English
题名

基于毫米波雷达的目标检测与跟踪的设计与实现

其他题名
DESIGN AND IMPLEMENTATION OF TARGET DETECTION AND TRACKING BASED ON MILLIMETER WAVE RADAR
姓名
姓名拼音
LI Ke
学号
12132125
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
刘凡
导师单位
电子与电气工程系
论文答辩日期
2023-05-10
论文提交日期
2023-06-15
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

毫米波雷达作为一种重要的无线传感器,可以对周围环境中的物体实现快速、精确的探测和跟踪,由于其成本低廉、抗干扰能力强的特点,毫米波雷达在人类活动识别和自动驾驶等领域有着极其广泛的应用前景。本课题对线性调频连续波雷达信号模型下的目标检测和目标跟踪问题展开了研究,从理论优化和硬件实现两个角度进行展开,在理论角度基于新型电磁材料智能反射面的电磁特性,实现了对感知信道增益的提高,在硬件实现上,达到了对检测目标的高分辨率检测和准确目标跟踪的目的,以期为垂直行业领域的毫米波雷达应用提供技术支撑和理论借鉴。

在理论优化角度,本课题基于新型电磁材料智能反射面能对信号相位信息进行调节的特性,介绍了通过子空间旋转的方法来提高目标跟踪效果的新型方法。与传统提升信道增益方式相比,该方案实现复杂度更低,最后通过仿真实验验证了方案的可行性。

在硬件实现上,与传统单芯片方案不同,本课题采用了四片单芯片毫米波雷达级联的设计方案,并利用此雷达评估板对人体目标进行了目标检测和目标跟踪实验。与传统的单芯片雷达所得到的目标检测和目标跟踪结果相比,该方案得到的目标信息更丰富,能显示出检测目标大致轮廓,目标跟踪轨迹点更多,能在更长时间内显示目标轨迹状态。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 叶刚.城市环境基于三维激光雷达的自动驾驶车辆多目标检测及跟踪算法研究[D].北京理工大学,2016.
[2] ZHANG H B, ZHANG Y X, ZHONG B, et al. A comprehensive survey of vision-based human action recognition methods[J]. Sensors, 2019, 19(5): 1005.
[3] WU D, SHARMA N, BLUMENSTEIN M. Recent advances in video-based human action recognition using deep learning: A review[C]//2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017: 2865-2872.
[4] MUKHOPADHYAY S C. Wearable sensors for human activity monitoring: A review[J]. IEEE sensors journal, 2014, 15(3): 1321-1330.
[5] WU F, ZHAO H, ZHAO Y, et al. Development of a wearable-sensor-based fall detection system[J]. International journal of telemedicine and applications, 2015: 2-2.
[6] 贾成强,戴琳琳,徐海涛等.基于人脸识别技术的铁路实名制进站核验系统研究及设计[J].铁路计算机应用,2018,27(07):49-53+63.
[7] 周治国,曹江微,邸顺帆.3D激光雷达SLAM算法综述[J].仪器仪表学报,2021,42(09):13-27.
[8] UPADHYAY B R, BARAL A B, TORLAK M. Vital Sign Detection via Angular and Range Measurements With mmWave MIMO Radars: Algorithms and Trials [J]. IEEE Access, 2022, 10: 106017–106032.
[9] SHEIKH M U, HAMALAINEN J, DAVID GONZALEZ G, et al. Usability Benefits and Challenges in mmWave V2V Communications: A Case Study [C]. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 2019.
[10] LIU F, MASOUROS C, PETROPULU A P, et al. Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead [J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862.
[11] LIU F, CUI Y, MASOUROS C, et al. Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond [J]. IEEE Journal on Selected Areas in Communications, 2022: 1–1.
[12] JACO DU PREEZ, SAURABH SINHA. Millimeter-Wave antennas: configurations and applications[M]. Springer, Cham:2016-01-01
[13] 诸沛曦.毫米波MIMO雷达超分辨DOA估计与硬件实现[D].电子科技大学,2022.
[14] BLÁZQUEZ-GARCÍA R, ALMOROX-GONZÁLEZ P, BURGOS-GARCÍA M, et al. Perimeter surveillance radar in W-band based on vehicle collision avoidance technology[C]//2015 European Radar Conference (EuRAD). IEEE, 2015: 273-276.
[15] ALIZADEH M, SHAKER G, ALMEIDA J C M D, et al. Remote Monitoring of Human Vital Signs Using Mm-Wave FMCW Radar [J]. IEEE Access, 2019, 7: 54958–54968.
[16] BAI X, HUI Y, WANG L, et al. Radar-based human gait recognition using dual-channel deep convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9767-9778.
[17] ZHANG R, CAO S. Real-time human motion behavior detection via CNN using mmWave radar[J]. IEEE Sensors Letters, 2018, 3(2): 1-4.
[18] LIU Y, WANG Y, LIU H, et al. Long-range gesture recognition using millimeter wave radar[C]//Green, Pervasive, and Cloud Computing: 15th International Conference, GPC 2020, Xi'an, China, November 13–15, 2020, Proceedings. Cham: Springer International Publishing, 2020: 30-44.
[19] ZHANG R, CAO S. Extending reliability of mmwave radar tracking and detection via fusion with camera[J]. IEEE Access, 2019, 7: 137065-137079.
[20] JIN F, ZHANG R, SENGUPTA A, et al. Multiple patients behavior detection in real-time using mmWave radar and deep CNNs[C]//2019 IEEE Radar Conference (RadarConf). IEEE, 2019: 1-6.
[21] 韩宝石,王峥.车载毫米波雷达国内外发展现状综述 [J]. 数字通信世界, 2019(09): 15–16.
[22] MURAD M, BILIK I, FRIESEN M, et al. Requirements for next generation automotive radars[C]//2013 IEEE Radar Conference (RadarCon13). IEEE, 2013: 1-6.
[23] SKOLNIK M I. Radar handbook[M]. McGraw-Hill Education, 2008.
[24] INSTRUMENTS T. The fundamentals of millimeter wave radar sensors[J]. 2020.
[25] RAMASUBRAMANIAN K. mmWave radar for automotive and industrial applications[J]. Texas Instruments, 2017.
[26] ARSALAN M, SANTRA A, WILL C. Improved contactless heartbeat estimation in FMCW radar via Kalman filter tracking[J]. IEEE Sensors Letters, 2020, 4(5): 1-4.
[27] WILL C, VAISHNAV P, CHAKRABORTY A, et al. Human target detection, tracking, and classification using 24-GHz FMCW radar[J]. IEEE Sensors Journal, 2019, 19(17): 7283-7299.
[28] JIAN M, LU Z, CHEN V C. Experimental study on radar micro-Doppler signatures of unmanned aerial vehicles[C]//2017 IEEE Radar Conference (RadarConf). IEEE, 2017: 0854-0857.
[29] MAFUKIDZE H D, MISHRA A K, PIDANIC J, et al. Scattering Centers to Point Clouds: A Review of mmWave Radars for Non-Radar-Engineers [J]. IEEE Access, 2022, 10: 110992–111021.
[30] 肖雨晴,杨慧敏.目标检测算法在交通场景中应用综述[J].计算机工程与应用,2021,57(06):30-41.
[31] 王瑞昕.基于毫米波雷达的多目标检测与跟踪技术研究[D].西安电子科技大学,2019.DOI:10.27389/d.cnki.gxadu.2019.000499.
[32] YU X, CHEN X, HUANG Y, et al. Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(6): 978-982.
[33] 牟效乾,陈小龙,关键等.基于INet的雷达图像杂波抑制和目标检测方法[J].雷达学报,2020,9(04):640-653.
[34] LIAO H E, LIN G Y, SHEU M H, et al. A computation efficiency and-cfar for fmcw radar receiver[C]//2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2013: 108-112.
[35] LIU Y, ZHANG S, SUO J, et al. Research on a new comprehensive CFAR (Comp-CFAR) processing method[J]. IEEE Access, 2019, 7: 19401-19413.
[36] 孙元,孙梧雨,韦家军等.基于恒虚警检测的汽车主动防撞毫米波雷达信号处理算法[J].兵工自动化,2017,36(09):45-49.
[37] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[38] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 779-788.
[39] REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[40] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[41] 梁翼. 基于毫米波雷达及深度学习视觉信息融合的前方车辆检测方法研究[D].华南理工大学,2019.DOI:10.27151/d.cnki.ghnlu.2019.003388.
[42] BHALLA R, LING H. Three-dimensional scattering center extraction using the shooting and bouncing ray technique[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(11): 1445-1453.
[43] POTTER L C, MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on image processing, 1997, 6(1): 79-91.
[44] KAILATH T, KAILATH T. Lectures on Wiener and Kalman filtering[M]. Springer Vienna, 1981.
[45] 赖少发. 基于DSP的汽车雷达目标跟踪算法研究[D].南京理工大学,2017.
[46] PEARCE A, ZHANG J A, XU R, et al. Multi-Object Tracking with mmWave Radar: A Review [J]. Electronics, 2023, 12(2): 308.
[47] LIU F, LIU, Y F, et al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2021,70: 240-253.

所在学位评定分委会
材料科学与工程
国内图书分类号
TP391.4
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543874
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
李柯. 基于毫米波雷达的目标检测与跟踪的设计与实现[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132125-李柯-电子与电气工程系(6610KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李柯]的文章
百度学术
百度学术中相似的文章
[李柯]的文章
必应学术
必应学术中相似的文章
[李柯]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。