[1] JANKOVIC J. Parkinson’s disease: clinical features and diagnosis[J]. Journal of neurology, neurosurgery & psychiatry, 2008, 79(4): 368-376.
[2] WILLIAMS D R, LEES A J. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges[J]. The Lancet Neurology, 2009, 8(3): 270-279.
[3] WENNING G K, STEFANOVA N, JELLINGER K A, et al. Multiple system atrophy: a primary oligodendrogliopathy[J]. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 2008, 64(3): 239-246.
[4] SJOSTROM A C, HOLMBERG B, STRANG P. Parkinson-plus patients--an unknown group with severe symptoms[J]. Journal of Neuroscience Nursing, 2002, 34(6): 314.
[5] MENDOZA-SANTIESTEBAN C E, GABILONDO I, PALMA J A, et al. The retina in multiple system atrophy: systematic review and meta-analysis[J]. Frontiers in neurology, 2017, 8: 206.
[6] CRONIN-GOLOMB A, REYNOLDS G O, SALAZAR R D, et al. Parkinson’s disease and Parkinson-plus syndromes[M]//The Oxford handbook of adult cognitive disorders. 2019.
[7] AYGUN D, KOCABICAK E, YILDIZ M O, et al. Effect of age and disease duration on the levodopa response in patients with advanced Parkinson’s disease for deep brain stimulation of the subthalamic nucleus[J]. Frontiers in Neurology, 2016: 97.
[8] KOGA S, AOKI N, UITTI R J, et al. When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients[J]. Neurology, 2015, 85(5): 404-412.
[9] CONSTANTINIDES V C, PARASKEVAS G P, VELONAKIS G, et al. MRI planimetry and Magnetic Resonance Parkinsonism Index in the differential diagnosis of patients with parkinsonism[J]. American Journal of Neuroradiology, 2018, 39(6): 1047-1051.
[10] HORIMOTO Y, AIBA I, YASUDA T, et al. Longitudinal MRI study of multiple system atrophy–when do the findings appear, and what is the course?[J]. Journal of neurology, 2002, 249(7): 847-854.
[11] PAVIOUR D C, PRICE S L, JAHANSHAHI M, et al. Regional brain volumes distinguish PSP, MSA‐P, and PD: MRI‐based clinico‐radiological correlations[J]. Movement disorders: official journal of the Movement Disorder Society, 2006, 21(7): 989-996.
[12] OBA H, YAGISHITA A, TERADA H, et al. New and reliable MRI diagnosis for progressive supranuclear palsy[J]. Neurology, 2005, 64(12): 2050-2055.
[13] WARMUTH-METZ M, NAUMANN M, CSOTI I, et al. Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy[J]. Archives of neurology, 2001, 58(7): 1076-1079.
[14] 于静, 王晓, 胡君, 等. MRI 形态学测量对帕金森病, 多系统萎缩及进行性核上性麻痹的鉴别诊断价值[J]. 临床神经病学杂志, 2019, 32(6): 406-409.
[15] QUATTRONE A, NICOLETTI G, MESSINA D, et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy[J]. Radiology, 2008, 246(1): 214-221.
[16] MORELLI M, ARABIA G, SALSONE M, et al. Accuracy of magnetic resonance parkinsonism index for differentiation of progressive supranuclear palsy from probable or possible Parkinson disease[J]. Movement Disorders, 2011, 26(3): 527-533.
[17] WARMUTH-METZ M, NAUMANN M, CSOTI I, et al. Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy[J]. Archives of neurology, 2001, 58(7): 1076-1079.
[18] NICOLETTI G, FERA F, CONDINO F, et al. MR imaging of middle cerebellar peduncle width: differentiation of multiple system atrophy from Parkinson disease[J]. Radiology, 2006, 239(3): 825-830.
[19] PAVIOUR D C, PRICE S L, STEVENS J M, et al. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy[J]. Neurology, 2005, 64(4): 675-679.
[20] NIGRO S, CERASA A, ZITO G, et al. Fully automated segmentation of the pons and midbrain using human T1 MR brain images[J]. PloS one, 2014, 9(1): e85618.
[21] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE transactions on systems, man, and cybernetics, 1979, 9(1): 62-66.
[22] IGLESIAS J E, VAN LEEMPUT K, BHATT P, et al. Bayesian segmentation of brainstem structures in MRI[J]. Neuroimage, 2015, 113: 184-195.
[23] NIGRO S, ARABIA G, ANTONINI A, et al. Magnetic Resonance Parkinsonism Index: diagnostic accuracy of a fully automated algorithm in comparison with the manual measurement in a large Italian multicentre study in patients with progressive supranuclear palsy[J]. European radiology, 2017, 27(6): 2665-2675.
[24] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[25] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.
[26] ISENSEE F, PETERSEN J, KLEIN A, et al. nnu-net: Self-adapting framework for u-net-based medical image segmentation[J]. arXiv preprint arXiv:1809.10486, 2018.
[27] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: Learning where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999, 2018.
[28] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//International conference on medical image computing and computer-assisted intervention. Springer, Cham, 2016: 424-432.
[29] ZHU W, HUANG Y, ZENG L, et al. AnatomyNet: deep learning for fast and fully automated whole‐volume segmentation of head and neck anatomy[J]. Medical physics, 2019, 46(2): 576-589.
[30] DAMADIAN R. Tumor detection by nuclear magnetic resonance[J]. Science, 1971, 171(3976): 1151-1153.
[31] HAZLEWOOD C F, CHANG D C, MEDINA D, et al. Distinction between the preneoplastic and neoplastic state of murine mammary glands[J]. Proceedings of the National Academy of Sciences, 1972, 69(6): 1478-1480.
[32] LAUTERBUR P C. Image formation by induced local interactions: examples employing nuclear magnetic resonance[J]. nature, 1973, 242(5394): 190-191.
[33] HUBEL D H, WIESEL T N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. The Journal of physiology, 1962, 160(1): 106.
[34] FUKUSHIMA K, MIYAKE S. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition[M]//Competition and cooperation in neural nets. Springer, Berlin, Heidelberg, 1982: 267-285.
[35] ATLAS L, HOMMA T, MARKS R. An artificial neural network for spatio-temporal bipolar patterns: Application to phoneme classification[C]//Neural Information Processing Systems. 1987.
[36] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[37] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.
[38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[39] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[40] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.
[41] ISENSEE F, PETERSEN J, KLEIN A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature methods, 2021, 18(2): 203-211.
[42] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5693-5703.
[43] MAREK K, CHOWDHURY S, SIDEROWF A, et al. The Parkinson's progression markers initiative (PPMI)–establishing a PD biomarker cohort[J]. Annals of clinical and translational neurology, 2018, 5(12): 1460-1477.
[44] JENKINSON M, BANNISTER P, BRADY M, et al. Improved optimization for the robust and accurate linear registration and motion correction of brain images[J]. Neuroimage, 2002, 17(2): 825-841.
修改评论