[1] ZHANG Q, CHENG L, BOUTABA R. Cloud computing: State-of-the-art and research chal-lenges[J]. Journal of Internet Services and Applications, 2010, 1: 7-18.
[2] NAZÁRIO R T F, E SILVA J L, SOBREIRO V A, et al. A literature review of technical analysis on stock markets[J]. The Quarterly Review of Economics and Finance, 2017, 66: 115-126.
[3] NOSHY M, IBRAHIM A, ALI H A. Optimization of live virtual machine migration in cloud computing: A survey and future directions[J]. Journal of Network and Computer Applications, 2018, 110: 1-10.
[4] ZHANG F, LIU G, FU X, et al. A survey on virtual machine migration: Challenges, techniques, and open issues[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1206-1243.
[5] YANG H, RYU D, RYU D. Investor sentiment, asset returns and firm characteristics: Evidence from the Korean stock market[J]. Investment Analysts Journal, 2017, 46(2): 132-147.
[6] ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learn-ing: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38.
[7] GUCK J W, VAN BEMTEN A, REISSLEIN M, et al. Unicast QoS routing algorithms for SDN: A comprehensive survey and performance evaluation[J]. IEEE Communications Surveys & Tutorials, 2017, 20(1): 388-415.
[8] SHAFIQ D A, JHANJHI N, ABDULLAH A. Load balancing techniques in cloud comput-ing environment: A review[J]. Journal of King Saud University Computer and Information Sciences, 2022, 34(7): 3910-3933.
[9] KAURAV N S, YADAV P. A genetic algorithm based load balancing approach for resource optimization for cloud computing environment[J]. International Journal of Computer Science and Information Technologies, 2019, 6(3): 175-184.
[10] MOLY M, HOSSAIN A, LECTURER S, et al. Load balancing approach and algorithm in cloud computing environment[J]. American journal of Engineering Research, 2019, 8(4): 99-105.
[11] JYOTI A, SHRIMALI M, MISHRA R. Cloud computing and load balancing in cloud computing-survey[C]//2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). IEEE, 2019: 51-55.
[12] BABU K, JOY A. Samuel (2017) Load balancing of tasks using hybrid technique with analyt-ical method of esce & throttled algorithm[J]. International Journal of Innovative Research & Development, 2(6): 61-66.
[13] PHI N X, TIN C T, THU L N K, et al. Proposed load balancing algorithm to reduce response time and processing time on cloud computing[J]. The International Journal of Computer Networks & Communications, 2018, 10(3): 87-98.
[14] FALISHA I N, PURBOYO T W, LATUCONSINA R, et al. Experimental model for load balanc-ing in cloud computing using equally spread current execution load algorithm[J]. International Journal of Applied Engineering Research, 2018, 13(2): 1134-1138.
[33] BOUCHERIE R J, VAN DIJK N M. Markov decision processes in practice: volume 248[M]. Springer, 2017.
[34] MAO H, VENKATAKRISHNAN S B, SCHWARZKOPF M, et al. Variance reduction for re-inforcement learning in input-driven environments[A]. 2018.
[35] REZA M F, ZHAO B. Deep reinforcement learning with different rewards for scheduling in high-performance computing systems[C]//2021 IEEE International Midwest Symposium on Circuits and Systems. IEEE, 2021: 183-186.
[36] MONDAL S S, SHEORAN N, MITRA S. Scheduling of time-varying workloads using re-inforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence: vol-ume 35. 2021: 9000-9008.
[37] TONG Z, DENG X, CHEN H, et al. DDMTS: A novel dynamic load balancing scheduling scheme under SLA constraints in cloud computing[J]. Journal of Parallel and Distributed Com-puting, 2021, 149: 138-148.
[38] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [A]. 2013.
[39] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[40] VAN HASSELT H, GUEZ A, SILVER D. Deep reinforcement learning with double q-learning [C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 30. 2016.
[41] DABNEY W, ROWLAND M, BELLEMARE M, et al. Distributional reinforcement learning with quantile regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 32. 2018.
[42] HESSEL M, MODAYIL J, VAN HASSELT H, et al. Rainbow: Combining improvements in deep reinforcement learning[C]//Proceedings of the AAAI Conference on Artificial Intelli-gence: volume 32. 2018.
[43] DUAN Y, CHEN X, HOUTHOOFT R, et al. Benchmarking deep reinforcement learning for continuous control[C]//International Conference on Machine Learning. PMLR, 2016: 1329-1338.
[44] MNIH V, BADIA A P, MIRZA M, et al. Asynchronous methods for deep reinforcement learning [C]//International Conference on Machine Learning. PMLR, 2016: 1928-1937.
[45] SCHULMAN J, LEVINE S, ABBEEL P, et al. Trust region policy optimization[C]//International Conference on Machine Learning. PMLR, 2015: 1889-1897.
[46] SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms [A]. 2017.
[47] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[A]. 2015.
[48] FUJIMOTO S, HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[C]//International Conference on Machine Learning. PMLR, 2018: 1587-1596.
[49] HAARNOJA T, ZHOU A, HARTIKAINEN K, et al. Soft actor-critic algorithms and applica-tions[A]. 2018.
[50] JANG B, KIM M, HARERIMANA G, et al. Q-learning algorithms: A comprehensive classifi-cation and applications[J]. IEEE Access, 2019, 7: 133653-133667.
[51] SALIMANS T, HO J, CHEN X, et al. Evolution strategies as a scalable alternative to reinforce-ment learning[A]. 2017.
[52] CONTI E, MADHAVAN V, PETROSKI SUCH F, et al. Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[J]. Ad-vances in Neural Information Processing Systems, 2018, 31.
[53] CHOROMANSKI K, ROWLAND M, SINDHWANI V, et al. Structured evolution with com-pact architectures for scalable policy optimization[C]//International Conference on Machine Learning. PMLR, 2018: 970-978.
[54] CHOROMANSKI K, PACCHIANO A, PARKER-HOLDER J, et al. When random search is not enough: Sample-efficient and noise-robust blackbox optimization of RL policies[A]. 2019.
[55] LEHMAN J, STANLEY K O, et al. Exploiting open-endedness to solve problems through the search for novelty.[C]//Alife. 2008: 329-336.
[56] LEHMAN J, STANLEY K O. Abandoning objectives: Evolution through the search for novelty alone[J]. Evolutionary Computation, 2011, 19(2): 189-223.
[57] PUGH J K, SOROS L B, STANLEY K O. Quality diversity: A new frontier for evolutionary computation[J]. Frontiers in Robotics and AI, 2016: 40.
[58] GANGWANI T, PENG J. Policy optimization by genetic distillation[A]. 2017.
[59] GUNANTARA N. A review of multi-objective optimization: Methods and its applications[J]. Cogent Engineering, 2018, 5(1): 1502242.
[60] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[61] LARRAÍN S, PRADENAS L, PULKKINEN I, et al. Multiobjective optimization of a con-tinuous kraft pulp digester using SPEA2[J]. Computers & Chemical Engineering, 2020, 143: 107086.
[62] TANG L, WANG X. A hybrid multiobjective evolutionary algorithm for multiobjective opti-mization problems[J]. IEEE Transactions on Evolutionary Computation, 2012, 17(1): 20-45.
[63] ZHANG Q, LI H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition [J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731.
[64] MAO H, SCHWARZKOPF M, VENKATAKRISHNAN S B, et al. Learning scheduling algo-rithms for data processing clusters[M]//Proceedings of the ACM Special Interest Group on Data Communication. 2019: 270-288.
[65] TANG Y, AGRAWAL S. Discretizing continuous action space for on-policy optimization[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 34. 2020: 5981-5988.
[66] ZHANG Y, YU W, TURK G. Learning novel policies for tasks[C]//International Conference on Machine Learning. PMLR, 2019: 7483-7492.
修改评论