[1] BURGE R, DAWSON-HUGHES B, SOLOMON D H, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025 [J]. Journal of Bone and Mineral Research, 2007, 22(3): 465-75.
[2] REICHERT J C, CIPITRIA A, EPARI D R, et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones [J]. Science Translational Medicine, 2012, 4(141): 141ra93-ra93.
[3] WILLIAM JR G, EINHORN T A, KOVAL K, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery: a critical analysis [J]. The Journal of Bone and Joint Surgery, 2007, 89(3): 649-58.
[4] TANNOURY C A, AN H S J T S J. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery [J]. Spine Journal, 2014, 14(3): 552-9.
[5] SI L, WINZENBERG T, JIANG Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010–2050 [J]. Osteoporosis International, 2015, 26(7): 1929-37.
[6] DECOSTER T A, GEHLERT R J, MIKOLA E A, et al. Management of posttraumatic segmental bone defects [J]. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2004, 12(1): 28-38.
[7] KRONENBERG H M. Developmental regulation of the growth plate [J]. Nature, 2003, 423(6937): 332-6.
[8] LONG F. Building strong bones: molecular regulation of the osteoblast lineage [J]. Nature reviews Molecular Cell Biology, 2011, 13(1): 27-38.
[9] RAMASAMY S K, KUSUMBE A P, SCHILLER M, et al. Blood flow controls bone vascular function and osteogenesis [J]. Nature Communications, 2016, 7(1): 13601.
[10] DIOMEDE F, MARCONI G D, FONTICOLI L, et al. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration [J]. International Journal of Molecular Sciences, 2020, 21(9):3242.
[11] MAES C, KOBAYASHI T, SELIG M K, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels [J]. Developmental Cell, 2010, 19(2): 329-44.
[12] HAUSMAN M R, SCHAFFLER M B, MAJESKA R J. Prevention of fracture healing in rats by an inhibitor of angiogenesis [J]. Bone, 2001, 29(6): 560-4.
[13] SIVARAJ K K, ADAMS R H. Blood vessel formation and function in bone [J]. Development (Cambridge, England), 2016, 143(15): 2706-15.
[14] RISAU W, FLAMME I, BIOLOGY D. Vasculogenesis [J]. Mechanisms of Development, 1995, 11(1): 73-91.
[15] GEUDENS I, GERHARDT H. Coordinating cell behaviour during blood vessel formation [J]. Nature Reviews Molecular Cell Biology, 2011, 138(21): 4569-83.
[16] ADAMS R H, ALITALO K. Molecular regulation of angiogenesis and lymphangiogenesis [J]. Nature Reviews Molecular Cell Biology, 2007, 8(6): 464-78.
[17] CARMELIET P, JAIN R K. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature, 2011, 473(7347): 298-307.
[18] KUHNERT F, MANCUSO M R, SHAMLOO A, et al. Essential regulation of CNS angiogenesis by the orphan G protein–coupled receptor GPR124 [J]. Science, 2010, 330(6006): 985-9.
[19] NOLAN D J, GINSBERG M, ISRAELY E, et al. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration [J]. Developmental Cell, 2013, 26(2): 204-19.
[20] RAFII S, BUTLER J M, DING B-S. Angiocrine functions of organ-specific endothelial cells [J]. Nature, 2016, 529(7586): 316-25.
[21] CROCK H J. A revision of the anatomy of the arteries supplying the upper end of the human femur [J]. Journal of Anatomy, 1965, 99(Pt 1): 77.
[22] TRUETA J, MORGAN J D. The vascular contribution to osteogenesis. I. Studies by the injection method [J]. The Journal of Bone and Joint Surgery, 1960, 42: 97-109.
[23] CARMELIET P, DE SMET F, LOGES S, et al. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way [J]. Nature Reviews Clinical Oncology, 2009, 6(6): 315-26.
[24] CARMELIET P. Mechanisms of angiogenesis and arteriogenesis [J]. Nature Medicine, 2000, 6(4): 389-95.
[25] RAMASAMY S K, KUSUMBE A P, WANG L, et al. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone [J]. Nature, 2014, 507(7492): 376-80.
[26] PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling [J]. Theranostics, 2020, 10(1): 426.
[27] TIEMEIJER L, FRIMAT J, STASSEN O, et al. Spatial patterning of the Notch ligand Dll4 controls endothelial sprouting in vitro [J]. Scientific Reports, 2018, 8(1): 6392.
[28] BOOPATHY G T, HONG W J F I C, BIOLOGY D. Role of hippo pathway-YAP/TAZ signaling in angiogenesis [J]. Frontiers in Cell and Developmental Biology, 2019, 7: 49.
[29] SIVARAJ K K, DHARMALINGAM B, MOHANAKRISHNAN V, et al. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells [J]. ELife, 2020, 9: e50770.
[30] HENDRIKS M, RAMASAMY S K. Blood Vessels and Vascular Niches in Bone Development and Physiological Remodeling [J]. Frontiers in Cell and Developmental Biology, 2020, 8: 602278.
[31] KUSUMBE A P, RAMASAMY S K, ADAMS R H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone [J]. Nature, 2014, 507(7492): 323-8.
[32] PENG Y, WU S, LI Y, et al. Type H blood vessels in bone modeling and remodeling [J]. Theranostics, 2020, 10(1): 426-36.
[33] KUSUMBE A P, RAMASAMY S K, ITKIN T, et al. Age-dependent modulation of vascular niches for haematopoietic stem cells [J]. Nature, 2016, 532(7599): 380-4.
[34] ZHOU B O, YUE R, MURPHY M M, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow [J]. Cell Stem Cell, 2014, 15(2): 154-68.
[35] RAMASAMY S K J S C I. Structure and functions of blood vessels and vascular niches in bone [J]. Stem Cells International, 2017, 2017.
[36] ONO N, ONO W, MIZOGUCHI T, et al. Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage [J]. Developmental Cell, 2014, 29(3): 330-9.
[37] JEFFERY E C, MANN T L, POOL J A, et al. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair [J]. Cell Stem Cell, 2022, 29(11): 1547-61. e6.
[38] MIZOGUCHI T, PINHO S, AHMED J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development [J]. Developmental Cell, 2014, 29(3): 340-9.
[39] CHEN C, ULUDAĞ H, WANG Z, et al. Noggin suppression decreases BMP-2-induced osteogenesis of human bone marrow-derived mesenchymal stem cells in vitro [J]. Journal of Cellular Biochemistry, 2012, 113(12): 3672-80.
[40] ROMEO S G, ALAWI K M, RODRIGUES J, et al. Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation [J]. Nature Cell Biology, 2019, 21(4): 430-41.
[41] XU R, YALLOWITZ A, QIN A, et al. Targeting skeletal endothelium to ameliorate bone loss [J]. Nature Medicine, 2018, 24(6): 823-33.
[42] GERBER H P, VU T H, RYAN A M, et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation [J]. Nature Medicine, 1999, 5(6): 623-8.
[43] TOMBRAN-TINK J, BARNSTABLE C J. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone [J]. Biochemical and Biophysical Research Communications, 2004, 316(2): 573-9.
[44] JAMES A W, PéAULT B. Perivascular Mesenchymal Progenitors for Bone Regeneration [J]. Journal of Orthopaedic Research, 2019, 37(6): 1221-8.
[45] ZHANG X, PéAULT B, CHEN W, et al. The Nell-1 growth factor stimulates bone formation by purified human perivascular cells [J]. Tissue Engineering Part A, 2011, 17(19-20): 2497-509.
[46] SACCHETTI B, FUNARI A, REMOLI C, et al. No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels [J]. Stem Cell Reports, 2016, 6(6): 897-913.
[47] ASKARINAM A, JAMES A W, ZARA J N, et al. Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein [J]. Tissue Engineering Part A, 2013, 19(11-12): 1386-97.
[48] JAMES A W, ZHANG X, CRISAN M, et al. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering [J]. PloS one, 2017, 12(5): e0177308.
[49] GöKçINAR-YAGCI B, YERSAL N, KORKUSUZ P, et al. Generation of human umbilical cord vein CD146+ perivascular cell origined three-dimensional vascular construct [J]. Microvascular Research, 2018, 118: 101-12.
[50] WOLFF J. The law of bone remodelling [M]. Springer Science & Business Media, 2012.
[51] FROST D E, GREGG J M, TERRY B C, et al. Mandibular interpositional and onlay bone grafting for treatment of mandibular bony deficiency in the edentulous patient [J]. Journal of Oral and Maxillofacial Surgery, 1982, 40(6): 353-60.
[52] SUN L-W, LI S, YANG X, et al. Contribution of bone micromechanical behavior beyond lamellar length scale to the macroscopic bone quality of hind limb unloading rats [J]. Acta Astronautica, 2018, 152: 468-73.
[53] ACEVEDO C, STADELMANN V A, PIOLETTI D P, et al. Fatigue as the missing link between bone fragility and fracture [J]. Nature Biomedical Engineering, 2018: 1.
[54] HUISKES R, RUIMERMAN R, VAN LENTHE G H, et al. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone [J]. Nature, 2000, 405(6787): 704.
[55] LI H, LI R-X, WAN Z-M, et al. Counter-effect of constrained dynamic loading on osteoporosis in ovariectomized mice [J]. Journal of Biomechanics, 2013, 46(7): 1242-7.
[56] LIU C, CARRERA R, FLAMINI V, et al. Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing [J]. Bone, 2018, 108: 145-55.
[57] RIDDLE R C, DONAHUE H J. From streaming potentials to shear stress: 25 Years of bone cell mechanotransduction [J]. Journal of Orthopaedic Research, 2009, 27(2): 143-9.
[58] CLAES L E, HEIGELE C A. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing [J]. Journal of Biomechanics, 1999, 32(3): 255-66.
[59] ANANI T, CASTILLO A B. Mechanically-regulated bone repair [J]. Bone, 2022, 154: 116223.
[60] ESTES B T, GIMBLE J M, GUILAK F. Mechanical signals as regulators of stem cell fate [J]. Current Topics in Developmental Biology, 2004, 60: 91-126.
[61] YUAN L, SAKAMOTO N, SONG G, et al. Low-level shear stress induces human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via MAPK signaling pathways [J]. Stem Cells and Development, 2013, 22(17): 2384-93.
[62] PALOMARES K T, GLEASON R E, MASON Z D, et al. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing [J]. Journal of Orthopaedic Research, 2009, 27(9): 1123-32.
[63] WANG L, YOU X, LOTINUN S, et al. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk [J]. Nature Communications, 2020, 11(1): 282.
[64] UDA Y, AZAB E, SUN N, et al. Osteocyte Mechanobiology [J]. Current Osteoporosis Reports, 2017, 15(4): 318-25.
[65] GHAFFARI S, LEASK R L, JONES E A. Flow dynamics control the location of sprouting and direct elongation during developmental angiogenesis [J]. Development (Cambridge, England), 2015, 142(23): 4151-7.
[66] ROSENFELD D, LANDAU S, SHANDALOV Y, et al. Morphogenesis of 3D vascular networks is regulated by tensile forces [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(12): 3215-20.
[67] RUEHLE M A, EASTBURN E A, LABELLE S A, et al. Extracellular matrix compression temporally regulates microvascular angiogenesis [J]. Science Advances, 2020, 6(34): eabb6351.
[68] GARDNER M J, VAN DER MEULEN M C, DEMETRAKOPOULOS D, et al. In vivo cyclic axial compression affects bone healing in the mouse tibia [J]. Journal of Orthopaedic Research, 2006, 24(8): 1679-86.
[69] LIU C, CABAHUG-ZUCKERMAN P, STUBBS C, et al. Mechanical Loading Promotes the Expansion of Primitive Osteoprogenitors and Organizes Matrix and Vascular Morphology in Long Bone Defects [J]. Journal of Bone and Mineral Research, 2019, 34(5): 896-910.
[70] FRANCO C A, JONES M L, BERNABEU M O, et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling [J]. ELife, 2016, 5: e07727.
[71] CHOI D, PARK E, JUNG E, et al. ORAI1 Activates Proliferation of Lymphatic Endothelial Cells in Response to Laminar Flow Through Krüppel-Like Factors 2 and 4 [J]. Circulation Research, 2017, 120(9): 1426-39.
[72] CHOI D, PARK E, JUNG E, et al. Laminar flow downregulates Notch activity to promote lymphatic sprouting [J]. The Journal of Clinical Investigation, 2017, 127(4): 1225-40.
[73] MORROW D, CULLEN J P, CAHILL P A, et al. Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells: role in angiogenic activity [J]. Arteriosclerosis, Thrombosis, and Vascular biology, 2007, 27(6): 1289-96.
[74] MOKRES L M, PARAI K, HILGENDORFF A, et al. Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice [J]. American Journal of Physiology Lung Cellular and Molecular Physiology, 2010, 298(1): L23-35.
[75] TAKUWA Y, DU W, QI X, et al. Roles of sphingosine-1-phosphate signaling in angiogenesis [J]. Pharmacological Research, 2010, 1(10): 298.
[76] JOSIPOVIC I, PFLüGER B, FORK C, et al. Long noncoding RNA LISPR1 is required for S1P signaling and endothelial cell function [J]. Journal of Molecular and Cellular Cardiology, 2018, 116: 57-68.
[77] XIN Q, CHENG G, KONG F, et al. STAT1 transcriptionally regulates the expression of S1PR1 by binding its promoter region [J]. Gene, 2020, 736: 144417.
[78] JUETTNER V V, KRUSE K, DAN A, et al. VE-PTP stabilizes VE-cadherin junctions and the endothelial barrier via a phosphatase-independent mechanism [J]. The Journal of Cell Biology, 2019, 218(5): 1725-42.
[79] LIU Y, WADA R, YAMASHITA T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation [J]. The Journal of Clinical Investigation, 2000, 106(8): 951-61.
[80] LIU S, NI C, ZHANG D, et al. S1PR1 regulates the switch of two angiogenic modes by VE-cadherin phosphorylation in breast cancer [J]. Cell Death & Disease, 2019, 10(3): 200.
[81] JUNG B, OBINATA H, GALVANI S, et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development [J]. Developmental Cell, 2012, 23(3): 600-10.
[82] CAO J, EHLING M, MäRZ S, et al. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis [J]. Nature Communications, 2017, 8(1): 2210.
[83] BALAJI RAGUNATHRAO V A, ANWAR M, AKHTER M Z, et al. Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling [J]. Cell Reports, 2019, 29(11): 3472-87.e4.
[84] ANWAR M, MEHTA D. Post-translational modifications of S1PR1 and endothelial barrier regulation [J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2020, 1865(9): 158760.
[85] HSIEH H-J, LIU C-A, HUANG B, et al. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications [J]. Journal of Biomedical Science, 2014, 21: 1-15.
[86] CAMPINHO P, VILFAN A, VERMOT J. Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior [J]. Frontiers in Physiology, 2020, 11: 552.
[87] KWAK B R, BäCK M, BOCHATON-PIALLAT M-L, et al. Biomechanical factors in atherosclerosis: mechanisms and clinical implications [J]. European Heart Journal, 2014, 35(43): 3013-20.
[88] CHACHISVILIS M, ZHANG Y-L, FRANGOS J A. G protein-coupled receptors sense fluid shear stress in endothelial cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(42): 15463-8.
[89] YU F X, ZHAO B, PANUPINTHU N, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling [J]. Cell, 2012, 150(4): 780-91.
[90] DELA PAZ N G, MELCHIOR B, FRANGOS J A. Shear stress induces Gαq/11 activation independently of G protein-coupled receptor activation in endothelial cells [J]. The Journal of Biological Chemistry, 2017, 312(4): C428-C37.
[92] MEDEROS Y SCHNITZLER M, STORCH U, MEIBERS S, et al. Gq‐coupled receptors as mechanosensors mediating myogenic vasoconstriction [J]. EMBO Journal, 2008, 27(23): 3092-103.
[93] ZOU Y, AKAZAWA H, QIN Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II [J]. Naunyn Schmiedebergs Arch Pharmacol, 2004, 6(6): 499-506.
[94] SILTARI A, KORPELA R, VAPAATALO H. Bradykinin–induced vasodilatation: Role of age, ACE1-inhibitory peptide, mas-and bradykinin receptors [J]. Peptides, 2016, 85: 46-55.
[95] ERDOGMUS S, STORCH U, DANNER L, et al. Helix 8 is the essential structural motif of mechanosensitive GPCRs [J]. Nature Communications, 2019, 10(1): 5784.
[96] IWASAWA E, ISHIBASHI S, SUZUKI M, et al. Sphingosine-1-phosphate receptor 1 activation enhances leptomeningeal collateral development and improves outcome after stroke in mice [J]. Journal of Stroke and Cerebrovascular Diseases, 2018, 27(5): 1237-51.
[97] CANTALUPO A, GARGIULO A, DAUTAJ E, et al. S1PR1 (sphingosine-1-phosphate receptor 1) signaling regulates blood flow and pressure [J]. Hypertension, 2017, 70(2): 426-34.
[98] MEISSNER A J H. S1PR (Sphingosine-1-Phosphate Receptor) signaling in the regulation of vascular tone and blood pressure: is S1PR1 doing the Trick? [Z]. American Heart Association. 2017: 232-4
[99] BEN SHOHAM A, MALKINSON G, KRIEF S, et al. S1P1 inhibits sprouting angiogenesis during vascular development [J]. Development (Cambridge, England), 2012, 139(20): 3859-69.
[100]GENG X, YANAGIDA K, AKWII R G, et al. S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress-dependent VEGF-C signaling [J]. Journal of Clinical Investigation Insight, 2020, 5(14).
[101]XIAO L, ZHOU Y, FRIIS T, et al. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology [J]. Frontiers in Immunology, 2019, 10: 1409.
[102]MATSUZAKI E, HIRATSUKA S, HAMACHI T, et al. Sphingosine-1-phosphate promotes the nuclear translocation of β-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines [J]. Bone, 2013, 55(2): 315-24.
[103]SINHA R K, PARK C, HWANG I Y, et al. B lymphocytes exit lymph nodes through cortical lymphatic sinusoids by a mechanism independent of sphingosine-1-phosphate-mediated chemotaxis [J]. Immunity, 2009, 30(3): 434-46.
[104]TAKAYANAGI H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems [J]. Nature Reviews Immunology, 2007, 7(4): 292-304.
[105]MCLELLAN M A, ROSENTHAL N A, PINTO A R. Cre‐loxP‐mediated recombination: general principles and experimental considerations [J]. Current Protocols in Mouse Biology, 2017, 7(1): 1-12.
[106]ALLENDE M L, YAMASHITA T, PROIA R L. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation [J]. Blood, 2003, 102(10): 3665-7.
[107]SANNA M G, WANG S-K, GONZALEZ-CABRERA P J, et al. Enhancement of capillary leakage and restoration of lymphocyte egress by a chiral S1P1 antagonist in vivo [J]. Nature Chemical Biology, 2006, 2(8): 434-41.
[108]MULLERSHAUSEN F, ZECRI F, CETIN C, et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors [J]. Nature Chemical Biology, 2009, 5(6): 428-34.
[109]NEWBY J, SCHILLER J L, WESSLER T, et al. A blueprint for robust crosslinking of mobile species in biogels with weakly adhesive molecular anchors [J]. Nature Communications, 2017, 8(1): 833.
[110]THOMPSON M S, SCHELL H, LIENAU J, et al. Digital image correlation: a technique for determining local mechanical conditions within early bone callus [J]. Medical Engineering & Physics, 2007, 29(7): 820-3.
[111]KUTZNER I, HEINLEIN B, GRAICHEN F, et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects [J]. Journal of Biomechanics, 2010, 43(11): 2164-73.
[112]LIEN Y-H, YONG K-C, CHO C, et al. S1P1-selective agonist, SEW2871, ameliorates ischemic acute renal failure [J]. Kidney International, 2006, 69(9): 1601-8.
[113]GE J, GUO L, WANG S, et al. The size of mesenchymal stem cells is a significant cause of vascular obstructions and stroke [J]. Stem Cell Reviews and Reports, 2014, 10(2): 295-303.
[114]GREEN A C, RUDOLPH-STRINGER V, STRASZKOWSKI L, et al. Retinoic Acid Receptor γ Activity in Mesenchymal Stem Cells Regulates Endochondral Bone, Angiogenesis, and B Lymphopoiesis [J]. Journal of Bone and Mineral Research, 2018, 33(12): 2202-13.
[115]MENEZES K, ROSA B G, FREITAS C, et al. Human mesenchymal stromal/stem cells recruit resident pericytes and induce blood vessels maturation to repair experimental spinal cord injury in rats [J]. Scientific Reports, 2020, 10(1): 19604.
[116]WILK K, YEH S-C A, MORTENSEN L J, et al. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration [J]. Stem Cell Reports, 2017, 8(4): 933-46.
[117]YANG C, LIU Y, WANG Z, et al. Controlled mechanical loading improves bone regeneration by regulating type H vessels in a S1Pr1-dependent manner [J]. FASEB Journal, 2022, 36(10): e22530.
[118]MCDERMOTT A M, HERBERG S, MASON D E, et al. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration [J]. Science Translational Medicine, 2019, 11(495).
[119]SAWALL S, BECKENDORF J, AMATO C, et al. Coronary micro-computed tomography angiography in mice [J]. Scientific Reports, 2020, 10(1): 16866.
[120]GOMARIZ A, HELBLING P M, ISRINGHAUSEN S, et al. Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy [J]. Nature Communications, 2018, 9(1): 2532.
[121]ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation [J]. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), 2018, 11045: 3-11.
[122]BATTEGAY E J, RUPP J, IRUELA-ARISPE L, et al. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors [J]. The Journal of Cell Biology, 1994, 125(4): 917-28.
[123]XIE H, CUI Z, WANG L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis [J]. Nature Medicine, 2014, 20(11): 1270-8.
[124]DUPONT K M, SHARMA K, STEVENS H Y, et al. Human stem cell delivery for treatment of large segmental bone defects [J]. Proceedings of the National Academy of Sciences of The United States Of America, 2010, 107(8): 3305-10.
[125]LIU S, FENG G, TANG B Z, et al. Recent advances of AIE light-up probes for photodynamic therapy [J].Chemical Science, 2021, 12(19): 6488-506.
[126]GAENGEL K, NIAUDET C, HAGIKURA K, et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2 [J]. Developmental Cell, 2012, 23(3): 587-99.
[127]EINHORN T A, GERSTENFELD L C. Fracture healing: mechanisms and interventions [J]. Nat Rev Rheumatol, 2015, 11(1): 45-54.
[128]GENETOS D C, GEIST D J, LIU D, et al. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts [J]. Journal of Bone and Mineral Research, 2005, 20(1): 41-9.
[129]LOTINUN S, KIVIRANTA R, MATSUBARA T, et al. Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation [J]. The Journal of Clinical Investigation, 2013, 123(2): 666-81.
[130]WANG Z, KAWABORI M, HOUKIN K. FTY720 (Fingolimod) ameliorates brain injury through multiple mechanisms and is a strong candidate for stroke treatment [J]. Current Medicinal Chemistry, 2020, 27(18): 2979-93.
[131]WANG X, LI X, LI J, et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells [J]. FASEB Journal, 2021, 35(1): e21150.
[132]YU N, WU J L, XIAO J, et al. HIF-1α regulates angiogenesis via Notch1/STAT3/ETBR pathway in trophoblastic cells [J]. Cell Cycle (Georgetown, Tex), 2019, 18(24): 3502-12.
[133]HOLSTEIN J H, ORTH M, SCHEUER C, et al. Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice [J]. Bone, 2011, 49(5): 1037-45.
[134]BAKER C E, MOORE-LOTRIDGE S N, HYSONG A A, et al. Bone Fracture Acute Phase Response-A Unifying Theory of Fracture Repair: Clinical and Scientific Implications [J]. Clinical Reviews in Bone and Mineral Metabolism, 2018, 16(4): 142-58.
[135]KORN C, AUGUSTIN H G. Mechanisms of Vessel Pruning and Regression [J]. Developmental Cell, 2015, 34(1): 5-17.
[136]SOUILHOL C, SERBANOVIC-CANIC J, FRAGIADAKI M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes [J]. Nature Reviews Cardiology, 2020, 17(1): 52-63.
[137]WEN L, ZHANG T, WANG J, et al. The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics [J]. PLoS Genetics, 2021, 17(7): e1009690.
[138]DUPONT S, MORSUT L, ARAGONA M, et al. Role of YAP/TAZ in mechanotransduction [J]. Nature, 2011, 474(7350): 179-83.
[139]LIN C, YAO E, ZHANG K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis [J]. Elife, 2017, 6.
[140]NETO F, KLAUS-BERGMANN A, ONG Y T, et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development [J]. ELife, 2018, 7: e31037.
[141]KOHARA Y, KITAZAWA R, HARAGUCHI R, et al. Macrophages are requisite for angiogenesis of type H vessels during bone regeneration in mice [J]. Bone, 2022, 154: 116200.
[142]JIANG M, SHEN Q, ZHOU Y, et al. Fluid shear stress and endothelial cells synergistically promote osteogenesis of mesenchymal stem cells via integrin β1-FAK-ERK1/2 pathway [J]. Turkish Journal of Biology, 2021, 45(6): 683-94.
[143]OZEKI N, MOGI M, HASE N, et al. Polyphosphate-induced matrix metalloproteinase-13 is required for osteoblast-like cell differentiation in human adipose tissue derived mesenchymal stem cells [J]. Bioscience Trends, 2016, 10(5): 365-71.
[144]CHOI J B, LEE J, KANG M, et al. Dysregulated ECM remodeling proteins lead to aberrant osteogenesis of Costello syndrome iPSCs [J]. Stem Cell Reports, 2021, 16(8): 1985-98.
[145]NAKAJIMA H, YAMAMOTO K, AGARWALA S, et al. Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance [J]. Developmental Cell, 2017, 40(6): 523-36 e6.
[146]WANG X, FREIRE VALLS A, SCHERMANN G, et al. YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis [J]. Developmental Cell, 2017, 42(5): 462-78 e7.
[147]BECHTEL T J, REYES-ROBLES T, FADEYI O O, et al. Strategies for monitoring cell–cell interactions [J]. Nature Chemical Biology, 2021, 17(6): 641-52.
[148]DIMITROV D, TüREI D, GARRIDO-RODRIGUEZ M, et al. Comparison of methods and resources for cell-cell communication inference from single-cell RNA-Seq data [J]. Nature Communications, 2022, 13(1): 3224.
[149]ISHII M, EGEN J G, KLAUSCHEN F, et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis [J]. Nature, 2009, 458(7237): 524-8.
[150]WESKE S, VAIDYA M, REESE A, et al. Targeting sphingosine-1-phosphate lyase as an anabolic therapy for bone loss [J]. Nature Medicine, 2018, 24(5): 667-78.
[151]TANTIKANLAYAPORN D, TOURKOVA I L, LARROUTURE Q, et al. Sphingosine-1-Phosphate Modulates the Effect of Estrogen in Human Osteoblasts [J]. Journal of Bone and Mineral Research Plus, 2018, 2(4): 217-26.
[152]PRASAD J, WIATER B P, NORK S E, et al. Characterizing gait induced normal strains in a murine tibia cortical bone defect model [J]. Journal of Biomechanics, 2010, 43(14): 2765-70.
[153]KEGELMAN C D, NIJSURE M P, MOHARRER Y, et al. YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair [J]. Journal of Bone and Mineral Research, 2021, 36(1): 143-57.
修改评论