[1] CUI Y, LIU F, JING X, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158-167.
[2] ZHANG J A, LIU F, MASOUROS C, et al. An overview of signal processing techniques for joint communication and radar sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1295-1315.
[3] LIU F, CUI Y, MASOUROS C, et al. Integrated sensing and communications: Towards dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728-1767.
[4] SHANNON C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 379-423.
[5] KAY S M. Fundamentals of statistical signal processing: estimation theory[M]. Prentice-Hall, Inc., 1993.
[6] TAN B, CHEN Q, CHETTY K, et al. Exploiting WiFi channel state information for residential healthcare informatics[J]. IEEE Communications Magazine, 2018, 56(5): 130-137.
[7] AMIN M G, ZHANG Y D, AHMAD F, et al. Radar signal processing for elderly fall detection: The future for in-home monitoring[J]. IEEE Signal Processing Magazine, 2016, 33(2): 71-80.
[8] MEALEY R M. A Method for Calculating Error Probabilities in a Radar Communication System[J/OL]. IEEE Transactions on Space Electronics and Telemetry, 1963, 9(2): 37-42. DOI: 10.1109/TSET.1963.4337601.
[9] REED J H, CLEGG A W, PADAKI A V, et al. On the Co-Existence of TD-LTE and Radar Over 3.5 GHz Band: An Experimental Study[J/OL]. IEEE Wireless Communications Letters, 2016, 5(4): 368-371. DOI: 10.1109/LWC.2016.2560179.
[10] RAO R M, MAROJEVIC V, REED J H. Semi-Blind Post-Equalizer SINR Estimation and Dual CSI Feedback for Radar-Cellular Coexistence[J/OL]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9720-9735. DOI: 10.1109/TVT.2020.3001911.
[11] CUI Y, KOIVUNEN V, JING X. Interference alignment based precoder-decoder design for radar-communication co-existence[C/OL]//2017 51st Asilomar Conference on Signals, Systems, and Computers. 2017: 1290-1295. DOI: 10.1109/ACSSC.2017.8335561.
[12] WANG X, FEI Z, ZHENG Z, et al. Joint Waveform Design and Passive Beamforming for RIS-Assisted Dual-Functional Radar-Communication System[J/OL]. IEEE Transactions on Vehicular Technology, 2021, 70(5): 5131-5136. DOI: 10.1109/TVT.2021.3075497.
[13] XU C, CLERCKX B, CHEN S, et al. Rate-Splitting Multiple Access for Multi-Antenna Joint Radar and Communications[J/OL]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1332-1347. DOI: 10.1109/JSTSP.2021.3110312.
[14] YUAN W, WEI Z, LI S, et al. Integrated Sensing and Communication-Assisted Orthogonal Time Frequency Space Transmission for Vehicular Networks[J/OL]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1515-1528. DOI: 10.1109/JSTSP.2021.3117404.
[15] LIU F, MASOUROS C, PETROPULU A P, et al. Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead[J/OL]. IEEE Transactions on Communications, 2020, 68(6): 3834-3862. DOI: 10.1109/TCOMM.2020.2973976.
[16] XU C, CLERCKX B, ZHANG J. Multi-antenna joint radar and communications: Precoder optimization and weighted sum-rate vs probing power tradeoff[J]. IEEE Access, 2020, 8: 173974-173982.
[17] HAN L, WU K. Joint wireless communication and radar sensing systems–state of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876-885.
[18] LI X, ZHAO Q, GUAN X, et al. Sensing and Communication Tradeoff for Cognitive Access of Continues-Time Markov Channels[C/OL]//2010 IEEE Wireless Communication and Networking Conference. 2010: 1-6. DOI: 10.1109/WCNC.2010.5506649.
[19] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity[J/OL]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168-2181. DOI: 10.1109/TSP.2015.2505667.
[20] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Non-coherent PSK-based dual-function radar-communication systems[C/OL]//2016 IEEE Radar Conference (RadarConf). 2016: 1-6. DOI: 10.1109/RADAR.2016.7485066.
[21] LIU F, MASOUROS C, LI A, et al. MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission[J/OL]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755-2770. DOI: 10.1109/TWC.2018.2803045.
[22] KUMARI P, GONZALEZ-PRELCIC N, HEATH R W. Investigating the IEEE 802.11ad Standard for Millimeter Wave Automotive Radar[C/OL]//2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall). 2015: 1-5. DOI: 10.1109/VTCFall.2015.7390996.
[23] GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic Radar in IEEE 802.11ad Networks[J/OL]. IEEE Transactions on Signal Processing, 2018, 66(9): 2441-2454. DOI: 10.1109/TSP.2018.2813300.
[24] CHALISE B K, AMIN M G, HIMED B. Performance tradeoff in a unified passive radar and communications system[J]. IEEE Signal Processing Letters, 2017, 24(9): 1275-1279.
[25] CHALISE B K, HIMED B. Performance tradeoff in a unified multi-static passive radar and communication system[C]//2018 IEEE Radar Conference (RadarConf18). IEEE, 2018: 0653-0658.
[26] LIU F, LIU Y F, LI A, et al. Cramer-Rao Bound Optimization for Joint Radar-Communication Beamforming[J/OL]. IEEE Transactions on Signal Processing, 2021. DOI: 10.1109/TSP.2021.3135692.
[27] HUA H, SONG X, FANG Y, et al. MIMO integrated sensing and communication with extended target: CRB-rate tradeoff[C]//GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022: 4075-4080.
[28] CHIRIYATH A R, PAUL B, JACYNA G M, et al. Inner bounds on performance of radar and communications co-existence[J]. IEEE Transactions on Signal Processing, 2015, 64(2): 464-474.
[29] CHIRIYATH A R, PAUL B, BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1-12.
[30] LIU J, LIU H, CHEN Y, et al. Wireless sensing for human activity: A survey[J]. IEEE Communications Surveys & Tutorials, 2019, 22(3): 1629-1645.
[31] LIU X, HUANG T, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929-3944.
[32] YANG Z, ZHOU Z, LIU Y. From RSSI to CSI: Indoor localization via channel response[J]. ACM Computing Surveys (CSUR), 2013, 46(2): 1-32.
[33] KOTARU M, JOSHI K, BHARADIA D, et al. Spotfi: Decimeter level localization using wifi[C]//Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. 2015: 269-282.
[34] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
[35] KIM Y, LING H. Human activity classification based on micro-Doppler signatures using a support vector machine[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(5): 1328-1337.
[36] KIM Y, MOON T. Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 13(1): 8-12.
[37] ZHANG Y, ZHENG Y, QIAN K, et al. Widar3. 0: Zero-effort cross-domain gesture recognition with Wi-Fi[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 8671-8688.
[38] ZENG Y, WU D, XIONG J, et al. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 1-26.
[39] CHEN Q, CHETTY K, WOODBRIDGE K, et al. Signs of life detection using wireless passive radar[C]//2016 IEEE Radar Conference (RadarConf). IEEE, 2016: 1-5.
[40] ZHENG Y, YUE Z, CHENSHU W. AIoT 时代的智能无线感知:特征、算法、数据集[J].中国计算机学会通讯, 2020, 16(2): 50-56.
[41] JIANG W, XUE H, MIAO C, et al. Towards 3D human pose construction using WiFi[C]//Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. 2020: 1-14.
[42] LI W, BOCUS M J, TANG C, et al. On CSI and Passive Wi-Fi Radar for Opportunistic Physical Activity Recognition[J/OL]. IEEE Transactions on Wireless Communications, 2022, 21(1): 607-620. DOI: 10.1109/TWC.2021.3098526.
[43] WANG F, GONG W, LIU J. On spatial diversity in WiFi-based human activity recognition: A deep learning-based approach[J]. IEEE Internet of Things Journal, 2018, 6(2): 2035-2047.
[44] WANG D, YANG J, CUI W, et al. Multimodal CSI-based human activity recognition using GANs[J]. IEEE Internet of Things Journal, 2021, 8(24): 17345-17355.
[45] 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz[J]. 3GPP TR 38.901 V16.1.0, Dec. 2019.
[46] MALTSEV A, PUDEYEV A, LOMAYEV A, et al. Channel modeling in the next generation mmWave Wi-Fi: IEEE 802.11 ay standard[C]//European Wireless 2016; 22th European Wireless Conference. VDE, 2016: 1-8.
[47] KYOSTI P. WINNER II channel models[J]. IST, Tech. Rep. IST-4-027756 WINNER II D1. 1.2 V1. 2, 2007.
[48] NURMELA V, KARTTUNEN A, ROIVAINEN A, et al. Deliverable D1. 4 METIS channel models[J]. Proc. Mobile Wireless Commun. Enablers Inf. Soc.(METIS), 2015: 1.
[49] JAECKEL S, RASCHKOWSKI L, BÖRNER K, et al. QuaDRiGa: A 3-D multi-cell channel model with time evolution for enabling virtual field trials[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 3242-3256.
[50] JU S, KANHERE O, XING Y, et al. A millimeter-wave channel simulator NYUSIM with spatial consistency and human blockage[C]//2019 IEEE Global Communications Conference (GLOBECOM). IEEE, 2019: 1-6.
[51] BOULIC R, THALMANN N M, THALMANN D. A global human walking model with real-time kinematic personification[J]. The Visual Computer, 1990, 6(6): 344-358.
[52] Motion Research Laboratory, Carnegie Mellon University. Motion Capture Technology[EB/OL]. http://mocap.cs.cmu.edu.
[53] DOMHAN T, SPRINGENBERG J T, HUTTER F. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves[C]//Twenty-fourth International Joint Conference on Artificial Intelligence. 2015.
[54] SALEH A A, VALENZUELA R. A statistical model for indoor multipath propagation[J]. IEEE Journal on Selected Areas in Communications, 1987, 5(2): 128-137.
[55] SEIDEL S Y, RAPPAPORT T S. Site-specific propagation prediction for wireless in-building personal communication system design[J]. IEEE Transactions on Vehicular Technology, 1994, 43(4): 879-891.
[56] VAN DORP P, GROEN F. Human walking estimation with radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(5): 356-365.
[57] WANG Y, SHI Z, HUANG L, et al. An extension of spatial channel model with spatial consistency[C]//2016 IEEE 84th Vehicular Technology Conference (VTC-Fall). IEEE, 2016: 1-5.
[58] ORFANIDIS S J. Electromagnetic waves and antennas[M]. Rutgers University New Brunswick, NJ, 2002.
[59] CRISPIN J, MAFFETT A. Radar cross-section estimation for simple shapes[J]. Proceedings of the IEEE, 1965, 53(8): 833-848.
[60] ZHANG M, DU R, PENG X, et al. Channel models for WLAN sensing systems[R/OL]. 2021. https://mentor.ieee.org/802.11/documents?is_dcn=Meihong.
[61] OPPENHEIM A V. Discrete-time signal processing[M]. Pearson Education India, 1999.
[62] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14. Springer, 2016: 630-645.
[63] WANG S, WU Y C, XIA M, et al. Machine intelligence at the edge with learning centric power allocation[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7293-7308.
[64] ZHOU L, HONG Y, WANG S, et al. Learning centric wireless resource allocation for edge computing: Algorithm and experiment[J]. IEEE Transactions on Vehicular Technology, 2020, 70(1): 1035-1040.
[65] JOHNSON M, ANDERSON P, DRAS M, et al. Predicting accuracy on large datasets from smaller pilot data[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018: 450-455.
[66] LIU J, PORAT R, JINDAL N, et al. IEEE 802.11 ax channel model document[J]. Wireless LANs, Rep. IEEE, 2014: 802-11.
修改评论