[1] CAPON J. Applications of detection and estimation theory to large array seismology[J]. Proceedingsof the IEEE, 1970, 58(5):760-770.
[2] ROST S, THOMAS C. Array seismology: Methods and applications[J]. Reviews of Geophysics,2002, 40(3):2-1.
[3] SELBY N D. Relative locations of the october 2006 and may 2009 dprk announced nuclear tests using international monitoring system seismometer arrays[J]. Bulletin of the Seismological Society of America, 2010, 100(4):1779-1784.
[4] MCNAMARA D E, BULAND R P. Ambient noise levels in the continental united states[J]. Bulletin of the seismological society of America, 2004, 94(4):1517-1527.
[5] MARZORATI S, BINDI D. Ambient noise levels in north central italy[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9).
[6] DÍAZ J, RUIZ M, SÁNCHEZ-PASTOR P S, et al. Urban seismology: On the origin of earth vibrations within a city[J]. Scientific Reports, 2017, 7(1):1-11.
[7] EVANGELIDIS C, MELIS N. Ambient noise levels in greece as recorded at the hellenic unified seismic network[J]. Bulletin of the Seismological Society of America, 2012, 102(6):2507-2517.
[8] GIBNEY E. Coronavirus lockdowns have changed the way earth moves.[J]. Nature, 2020, 580 (7802):176-178.
[9] LECOCQ T, HICKS S P, VAN NOTEN K, et al. Global quieting of high-frequency seismic noise due to covid-19 pandemic lockdown measures[J]. Science, 2020, 369(6509):1338-1343.
[10] POLI P, BOAGA J, MOLINARI I, et al. The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in northern italy[J]. Scientific Reports, 2020, 10(1):1-8.
[11] XIAO H, EILON Z C, JI C, et al. Covid-19 societal response captured by seismic noise in china and italy[J]. Seismological Research Letters, 2020, 91(5):2757-2768.
[12] DIAS F L, ASSUMPÇÃO M, PEIXOTO P S, et al. Using seismic noise levels to monitor social isolation: An example from rio de janeiro, brazil[J]. Geophysical Research Letters, 2020, 47 (16):e2020GL088748.
[13] GIMBERT F, NANNI U, ROUX P, et al. A multi-physics experiment with a temporary dense seismic array on the argentière glacier, french alps: The resolve project[J]. Seismological Research Letters, 2021, 92(2A):1185-1201.
[14] GUILLEMOT A, BAILLET L, GARAMBOIS S, et al. Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling[J]. The Cryosphere, 2021, 15(2):501-529.
[15] O’NEEL S, MARSHALL H P, MCNAMARA D E, et al. Seismic detection and analysis of icequakes at columbia glacier, alaska[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F3).
[16] WALTER F, O’NEEL S, MCNAMARA D, et al. Iceberg calving during transition from grounded to floating ice: Columbia glacier, alaska[J]. Geophysical Research Letters, 2010, 37(15).
[17] PETTIT E C, LEE K M, BRANN J P, et al. Unusually loud ambient noise in tidewater glacier fjords: A signal of ice melt[J]. Geophysical Research Letters, 2015, 42(7):2309-2316.
[18] WITHERS M M, ASTER R C, YOUNG C J, et al. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth[J]. Bulletin of the Seismological Society of America, 1996, 86(5):1507-1515.
[19] BURTIN A, CATTIN R, BOLLINGER L, et al. Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: The “torrent de st pierre”, french alps [J]. Journal of Hydrology, 2011, 408(1-2):43-53.
[20] KOPER K D, DE FOY B, BENZ H. Composition and variation of noise recorded at the yellowknife seismic array, 1991–2007[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B10).
[21] HAUBRICH R, MUNK W, SNODGRASS F. Comparative spectra of microseisms and swell [J]. Bulletin of the Seismological Society of America, 1963, 53(1):27-37.
[22] OLIVER J, PAGE R. Concurrent storms of long and ultralong period microseisms[J]. Bulletin of the Seismological Society of America, 1963, 53(1):15-26.
[23] VINNIK L. Sources of microseismicp waves[J]. Pure and Applied Geophysics, 1973, 103(1): 282-289.
[24] NISHIDA K. Global propagation of body waves revealed by cross-correlation analysis of seismic hum[J]. Geophysical Research Letters, 2013, 40(9):1691-1696.
[25] LONGUET-HIGGINS M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1950, 243 (857):1-35.
[26] HASSELMANN K. A statistical analysis of the generation of microseisms[J]. Reviews of Geophysics, 1963, 1(2):177-210.
[27] ARDHUIN F, STUTZMANN E, SCHIMMEL M, et al. Ocean wave sources of seismic noise [J]. Journal of Geophysical Research: Oceans, 2011, 116(C9).
[28] GUALTIERI L, STUTZMANN E, CAPDEVILLE Y, et al. Modelling secondary microseismic noise by normal mode summation[J]. Geophysical Journal International, 2013, 193(3):1732-1745.
[29] GUALTIERI L, CAMARGO S J, PASCALE S, et al. The persistent signature of tropical cyclones in ambient seismic noise[J]. Earth and Planetary Science Letters, 2018, 484:287-294.
[30] ANDREAS F, LUCIA G, NORI N. Introduction in seismic ambient noise[M]. [S.l.]: Cambridge University Press, 2019: xx-xxi.
[31] STEHLY L, CAMPILLO M, SHAPIRO N. A study of the seismic noise from its long-range correlation properties[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B10).
[32] NAWA K, SUDA N, FUKAO Y, et al. Incessant excitation of the earth’s free oscillations[J]. Earth, Planets and Space, 1998, 50(1):3-8.
[33] TANIMOTO T, UM J, NISHIDA K, et al. Earth’s continuous oscillations observed on seismically quiet days[J]. Geophysical Research Letters, 1998, 25(10):1553-1556.
[34] TANIMOTO T, UM J. Cause of continuous oscillations of the earth[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12):28723-28739.
[35] SUDA N, NAWA K, FUKAO Y. Earth’s background free oscillations[J]. Science, 1998, 279 (5359):2089-2091.
[36] NISHIDA K, KOBAYASHI N, FUKAO Y. Resonant oscillations between the solid earth and the atmosphere[J]. Science, 2000, 287(5461):2244-2246.
[37] NISHIDA K. Earth’s background free oscillations[J]. Annual Review of Earth and Planetary Sciences, 2013, 41:719-740.
[38] RHIE J, ROMANOWICZ B. Excitation of earth’s continuous free oscillations by atmosphere–ocean–seafloor coupling[J]. Nature, 2004, 431(7008):552-556.
[39] WEBB S C. The earth’s hum: the excitation of earth normal modes by ocean wves[J]. Geophysical Journal International, 2008, 174(2):542-566.
[40] BROMIRSKI P D, GERSTOFT P. Dominant source regions of the earth’s “hum”are coastal [J]. Geophysical Research Letters, 2009, 36(13).
[41] GERSTOFT P, FEHLER M C, SABRA K G. When katrina hit california[J]. GeophysicalResearch Letters, 2006, 33(17).
[42] EBELING C W, STEIN S. Seismological identification and characterization of a large hurricane [J]. Bulletin of the Seismological Society of America, 2011, 101(1):399-403.
[43] XIAO H, XUE M, PAN M, et al. Characteristics of microseisms in south china[J]. Bulletin of the Seismological Society of America, 2018, 108(5A):2713-2723.
[44] LIN J, LIN J, XU M. Microseisms generated by super typhoon megi in the western pacific ocean [J]. Journal of Geophysical Research: Oceans, 2017, 122(12):9518-9529.
[45] LIN J, WANG Y, WANG W, et al. Seismic remote sensing of super typhoon lupit (2009) with seismological array observation in ne china[J]. Remote Sensing, 2018, 10(2):235.
[46] RETAILLEAU L, GUALTIERI L. Toward high-resolution period-dependent seismic monitoring of tropical cyclones[J]. Geophysical Research Letters, 2019, 46(3):1329-1337.
[47] RETAILLEAU L, GUALTIERI L. Multi-phase seismic source imprint of tropical cyclones[J]. Nature Communications, 2021, 12(1):1-8.
[48] FENG X, CHEN X. Rayleigh-wave dispersion curves from energetic hurricanes in the southeastern united states[J]. Bulletin of the Seismological Society of America, 2022, 112(2):622-633.
[49] PETERSON J R. Observations and modeling of seismic background noise[R]. [S.l.]: US Geological Survey, 1993.
[50] TOKSÖZ M N, LACOSS R T. Microseisms: Mode structure and sources[J]. Science, 1968, 159(3817):872-873.
[51] SHAPIRO N M, CAMPILLO M. Emergence of broadband rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[52] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715):1615-1618.
[53] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise rayleigh wave tomography across europe[J]. Geophysical Journal International, 2007, 168(1):259-274.
[54] YAO H, HILST R D V D, HOOP M V D. Surface-wave array tomography in se tibet from ambient seismic noise and two-station analysis–i. phase velocity maps[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 166(2):732-744.
[55] LIN F C, MOSCHETTI M P, RITZWOLLER M H. Surface wave tomography of the western united states from ambient seismic noise: Rayleigh and love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1):281-298.
[56] BENSEN G, RITZWOLLER M, BARMIN M, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3):1239-1260.
[57] WEAVER R, LOBKIS O. Ultrasonics without a source: thermal fluctuation correlations at mhz frequencies.[J]. Physical Review Letters, 2001, 8713:134301.
[58] WEAVER R, LOBKIS O. On the emergence of the green’s function in the correlations of a diffuse field[J]. Ultrasonics, 2002, 40(1-8):435-439.
[59] WEAVER R L, LOBKIS O I. Diffuse fields in open systems and the emergence of the green’s function (l)[J]. The Journal of the Acoustical Society of America, 2004, 116(5):2731-2734.
[60] DERODE A, LAROSE E, TANTER M, et al. Recovering the green’s function from fieldfield correlations in an open scattering medium (l)[J]. The Journal of the Acoustical Society of America, 2003, 113(6):2973-2976.
[61] SNIEDER R. Extracting the green’s function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 2004, 69(4):046610.
[62] WAPENAAR K. Retrieving the elastodynamic green’s function of an arbitrary inhomogeneous medium by cross correlation[J]. Physical Review Letters, 2004, 93(25):254301.
[63] LAROSE E, CAMPILLO M, KHAN A, et al. Lunar subsurface investigated from correlation of seismic noise.[J]. Geophysical Research Letters, 2005, 32:L16201.
[64] WAPENAAR K, FOKKEMA J. Green’s function representations for seismic interferometry [J]. Geophysics, 2006, 71(4):SI33-SI46.
[65] RITZWOLLER M H, SHAPIRO N M, BARMIN M P, et al. Global surface wave diffraction tomography[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12):ESE-4.
[66] AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Earthquake Research Institute Bulletin, 1957, 35:415-456.
[67] CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2):264-269.
[68] LOBKIS O I, WEAVER R L. On the emergence of the green’s function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America, 2001, 110(6):3011-3017.
[69] TSAI V C, MOSCHETTI M P. An explicit relationship between time-domain noise correlation and spatial autocorrelation (spac) results[J]. Geophysical Journal International, 2010, 182(1): 454-460.
[70] SABRA K G, GERSTOFT P, ROUX P, et al. Surface wave tomography from microseisms in southern california[J]. Geophysical Research Letters, 2005, 32(14).
[71] SCHUSTER G, YU J, SHENG J, et al. Interferometric/daylight seismic imaging[J]. Geophysical Journal International, 2004, 157(2):838-852.
[72] SCHUSTER G T, et al. Seismic interferometry: volume 1[M]. [S.l.]: Cambridge university press Cambridge, 2009.
[73] NAKATA N, SNIEDER R, TSUJI T, et al. Shear wave imaging from traffic noise using seismic interferometry by cross-coherenceshear wave imaging from traffic noise[J]. Geophysics, 2011, 76(6):SA97-SA106.
[74] MORDRET A, LANDÈS M, SHAPIRO N, et al. Near-surface study at the valhall oil field from ambient noise surface wave tomography[J]. Geophysical Journal International, 2013, 193(3): 1627-1643.
[75] LIN F C, LI D, CLAYTON R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4):Q45-Q56.
[76] ROUX P, MOREAU L, LECOINTRE A, et al. A methodological approach towards highresolution surface wave imaging of the san jacinto fault zone using ambient-noise recordings at a spatially dense array[J]. Geophysical Journal International, 2016, 206(2):980-992.
[77] LIU Y, ZHANG H, FANG H, et al. Ambient noise tomography of three-dimensional nearsurface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array[J]. Journal of Applied Geophysics, 2018, 159:209-217.
[78] LI C, YAO H, FANG H, et al. 3D Near‐Surface Shear‐Wave Velocity Structure from Ambient Noise Tomography and Borehole Data in the Hefei Urban Area, China[J]. Seismological Research Letters, 2016, 87(4):882-892.
[79] SABRA K G, GERSTOFT P, ROUX P, et al. Extracting time-domain green’s function estimates from ambient seismic noise[J]. Geophysical Research Letters, 2005, 32(3).
[80] YANG Y, LI A, RITZWOLLER M H. Crustal and uppermost mantle structure in southern africa revealed from ambient noise and teleseismic tomography[J]. Geophysical Journal International, 2008, 174(1):235-248.
[81] BAO X, SONG X, LI J. High-resolution lithospheric structure beneath mainland china from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 2015, 417:132-141.
[82] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the united states[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6):4306-4342.
[83] SAYGIN E, KENNETT B L. Ambient seismic noise tomography of australian continent[J]. Tectonophysics, 2010, 481(1-4):116-125.
[84] SAYGIN E, KENNETT B. Crustal structure of australia from ambient seismic noise tomography [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1).
[85] SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath china from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2):954-979.
[86] NISHIDA K, MONTAGNER J P, KAWAKATSU H. Global surface wave tomography using seismic hum[J]. Science, 2009, 326(5949):112-112.
[87] HANED A, STUTZMANN E, SCHIMMEL M, et al. Global tomography using seismic hum [J]. Geophysical Journal International, 2016, 204(2):1222-1236.
[88] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1):45-57.
[89] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2):1276-1303.
[90] WANG J, WU G, CHEN X. Frequency-bessel transform method for effective imaging of highermode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4):3708-3723.
[91] HU S, LUO S, YAO H. The frequency-bessel spectrograms of multi-component crosscorrelation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 2020:1-20.
[92] LI Z, ZHOU J, WU G, et al. Cc-fjpy: A python package for extracting overtone surface-wave dispersion from seismic ambient-noise cross correlation[J]. Seismological Research Letters, 2021, 92(5):3179-3186.
[93] XI C, XIA J, MI B, et al. Modified frequency–Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225 (2):1271-1280.
[94] LI Z, SHI C, REN H, et al. Multiple leaking mode dispersion observations and applications from ambient noise cross-correlation in oklahoma[J]. Geophysical Research Letters, 2022, 49 (1):e2021GL096032.
[95] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地S 波速度成像[J]. 地球物理学报, 2019, 62(9):3400-3407.
[96] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用: 以苏州河地区为例[J]. 地球物理学报, 2020, 63(1):247-255.
[97] WU G, PAN L, WANG J N, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of usarray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1):e2019JB018213.
[98] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath northeast china revealed by the multimodal inversion of rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020, 196:104372.
[99] MA Q, PAN L, WANG JN Y Z, et al. Crustal s-wave velocity structure beneath the northwestern bohemian massif, central europe, revealed by the inversion of multimodal ambient noise dispersion curves. front[J]. Frontiers in Earth Science, 2022, 10:838751.
[100] ZHANG S, ZHANG G, FENG X, et al. A crustal lvz in iceland revealed by ambient noise multimodal surface wave tomography[J]. Frontiers in Earth Science, 2022, 10:1008354.
[101] CHEN J, PAN L, LI Z, et al. Continental reworking in the eastern south china block and its adjacent areas revealed by f-j multimodal ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024776.
[102] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[103] POUPINET G, ELLSWORTH W, FRECHET J. Monitoring velocity variations in the crust using earthquake doublets: An application to the calaveras fault, california[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7):5719-5731.
[104] SNIEDER R, GRÊT A, DOUMA H, et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science, 2002, 295(5563):2253-2255.
[105] SNIEDER R. The theory of coda wave interferometry[J]. Pure and Applied geophysics, 2006, 163(2):455-473.
[106] SENS-SCHÖNFELDER C, WEGLER U. Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, indonesia[J]. Geophysical Research Letters, 2006, 33 (21).
[107] BRENGUIER F, CAMPILLO M, HADZIIOANNOU C, et al. Postseismic relaxation along the san andreas fault at parkfield from continuous seismological observations[J]. Science, 2008, 321(5895):1478-1481.
[108] BRENGUIER F, SHAPIRO N M, CAMPILLO M, et al. Towards forecasting volcanic eruptions using seismic noise[J]. Nature Geoscience, 2008(2):126-130.
[109] WEGLER U, NAKAHARA H, SENS-SCHÖNFELDER C, et al. Sudden drop of seismic velocity after the 2004 mw 6.6 mid-niigata earthquake, japan, observed with passive image interferometry[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B6).
[110] CHEN J H, FROMENT B, LIU Q Y, et al. Distribution of seismic wave speed changes associated with the 12 may 2008 mw 7.9 wenchuan earthquake[J]. Geophysical Research Letters, 2010, 37(18).
[111] BRENGUIER F, CLARKE D, AOKI Y, et al. Monitoring volcanoes using seismic noise correlations*[J]. Comptes Rendus Geoscience, 2011(343):633-638.
[112] HOBIGER M, WEGLER U, SHIOMI K, et al. Coseismic and postseismic elastic wave velocity variations caused by the 2008 iwate-miyagi nairiku earthquake, japan[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B9).
[113] CLEMENTS T, DENOLLE M A. Tracking groundwater levels using the ambient seismic field [J]. Geophysical Research Letters, 2018, 45(13):6459-6465.
[114] RIVET D, BRENGUIER F, CAPPA F. Improved detection of preeruptive seismic velocity drops at the piton de la fournaise volcano[J]. Geophysical Research Letters, 2015, 42(15):6332-6339.
[115] WANG Q Y, BRENGUIER F, CAMPILLO M, et al. Seasonal crustal seismic velocity changes throughout japan[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10):7987-8002.
[116] COMPAIRE N, MARGERIN L, MONNEREAU M, et al. Seasonal variations of subsurface seismic velocities monitored by the seis-insight seismometer on mars[J]. Geophysical Journal International, 2022, 229(2):776-799.
[117] CAMPILLO M, ROUX P. 1.12 crust and lithospheric structure—seismic imaging and monitoring with ambient noise correlations. treatise on geophysics , 391–417, doi: 10.1016[R]. [S.l.]: B978-0-444-53802-4.00024-5, 2015.
[118] GOUÉDARD P, ROUX P, CAMPILLO M, et al. Convergence of the two-point correlation function toward the green’s function in the context of a seismic-prospecting data set[J]. Geophysics, 2008, 73(6):V47-V53.
[119] TONEGAWA T, NISHIDA K, WATANABE T, et al. Seismic interferometry of teleseicmic swave coda for retrieval of body waves: an application to the philippine sea slab underneath the japanese islands[J]. Geophysical Journal International, 2009, 178(3):1574-1586.
[120] GERSTOFT P, SHEARER P M, HARMON N, et al. Global p, pp, and pkp wave microseisms observed from distant storms[J]. Geophysical Research Letters, 2008, 35(23).
[121] ZHANG J, GERSTOFT P, BROMIRSKI P D. Pelagic and coastal sources of p-wave microseisms: Generation under tropical cyclones[J]. Geophysical Research Letters, 2010a, 37(15).
[122] ZHANG J, GERSTOFT P, SHEARER P M. Resolving p-wave travel-time anomalies using seismic array observations of oceanic storms[J]. Earth and Planetary Science Letters, 2010b, 292(3-4):419-427.
[123] LANDÈS M, HUBANS F, SHAPIRO N M, et al. Origin of deep ocean microseisms by using teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B5).
[124] LIU Q, KOPER K D, BURLACU R, et al. Source locations of teleseismic p, sv, and sh waves observed in microseisms recorded by a large aperture seismic array in china[J]. Earth and Planetary Science Letters, 2016, 449:39-47.
[125] NISHIDA K, TAKAGI R. Teleseismic s wave microseisms[J]. Science, 2016, 353(6302):919-921.
[126] LIU Q, NI S, QIU Y, et al. Observation of teleseismic s wave microseisms generated by typhoons in the western pacific ocean[J]. Geophysical Research Letters, 2020, 47(19):e2020GL089031.
[127] ZHAN Z, NI S, HELMBERGER D V, et al. Retrieval of moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophysical Journal International, 2010, 182(1):408-420.
[128] POLI P, CAMPILLO M, PEDERSEN H, et al. Body-wave imaging of earth’s mantle discontinuities from ambient seismic noise[J]. Science, 2012, 338(6110):1063-1065.
[129] SIDORIN I, GURNIS M, HELMBERGER D V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle[J]. Science, 1999, 286(5443):1326-1331.
[130] POLI P, THOMAS C, CAMPILLO M, et al. Imaging the d reflector with noise correlations[J]. Geophysical Research Letters, 2015, 42(1):60-65.
[131] LIN F C, TSAI V C, SCHMANDT B, et al. Extracting seismic core phases with array interferometry[J]. Geophysical Research Letters, 2013, 40(6):1049-1053.
[132] BOUÉ P, POLI P, CAMPILLO M, et al. Teleseismic correlations of ambient seismic noise for deep global imaging of the earth[J]. Geophysical Journal International, 2013, 194(2):844-848.
[133] NAKATA N, CHANG J P, LAWRENCE J F, et al. Body wave extraction and tomography at long beach, california, with ambient-noise interferometry[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2):1159-1173.
[134] QUIROS D A, BROWN L D, KIM D. Seismic interferometry of railroad induced ground motions: Body and surface wave imaging[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 2016, 205(1):301-313.
[135] BRENGUIER F, BOUÉ P, BEN-ZION Y, et al. Train traffic as a powerful noise source for monitoring active faults with seismic interferometry[J]. Geophysical Research Letters, 2019, 46(16):9529-9536.
[136] DALES P, PINZON-RICON L, BRENGUIER F, et al. Virtual sources of body waves from noise correlations in a mineral exploration context[J]. Seismological Research Letters, 2020, 91(4):2278-2286.
[137] 张唤兰, 王保利, 宁杰远, 等. 高铁地震数据干涉成像技术初探[J]. 地球物理学报, 2019, 62 (6):2321-2327.
[138] 温景充, 石永祥, 宁杰远. 高铁地震面波相速度频散曲线提取[J]. 地球物理学报, 2021, 64(9):3246-3256.
[139] NISHIDA K. Ambient seismic wave field[J]. Proceedings of the Japan Academy, Series B, 2017, 93(7):423-448.
[140] BROMIRSKI P D. Earth vibrations[J]. Science, 2009, 324(5930):1026-1027.
[141] LE PAPE F, CRAIG D, BEAN C J. How deep ocean-land coupling controls the generation of secondary microseism love waves[J]. Nature Communications, 2021, 12(1):1-15.
[142] CHEN X, TIAN D, WEN L. Microseismic sources during hurricane sandy[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(9):6386-6403.
[143] KRIM H, VIBERG M. Two decades of array signal processing research: the parametric approach[ J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
[144] SCHWEITZER J, FYEN J, MYKKELTVEIT S, et al. Seismic arrays[M]//New manual of seismological observatory practice 2 (NMSOP-2). [S.l.]: Deutsches GeoForschungsZentrum GFZ, 2012: 1-80.
[145] EULER G G, WIENS D A, NYBLADE A A. Evidence for bathymetric control on the distribution of body wave microseism sources from temporary seismic arrays in africa[J]. Geophysical Journal International, 2014, 197(3):1869-1883.
[146] GAL M, READING A M, ELLINGSEN S P, et al. Improved implementation of the fk and capon methods for array analysis of seismic noise[J]. Geophysical Journal International, 2015, 198(2):1045-1054.
[147] GAL M, READING A M, ELLINGSEN S P, et al. Deconvolution enhanced direction of arrival estimation using 1- and 3-component seismic arrays applied to ocean induced microseisms[J]. Geophysical Journal International, 2016, 206(1):345-359.
[148] GAL M, READING A M, NAKATA N, et al. Beamforming and polarisation analysis[J]. Seismic Ambient Noise, 2019:32-72.
[149] KOPER K D, HAWLEY V L. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central united states[J]. Earthquake Science, 2010, 23(5):439-447.
[150] SCHIMMEL M, STUTZMANN E, ARDHUIN F, et al. Polarized earth’s ambient microseismic noise[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7).
[151] ZHA Y, WEBB S C, MENKE W. Determining the orientations of ocean bottom seismometers using ambient noise correlation[J]. Geophysical Research Letters, 2013, 40(14):3585-3590.
[152] HAUBRICH R A, MCCAMY K. Microseisms: Coastal and pelagic sources[J]. Reviews of Geophysics, 1969, 7(3):539-571.
[153] LACOSS R T, KELLY E J, TOKSÖZ M N. Estimation of seismic noise structure using arrays [J]. Geophysics, 1969, 34(1):21-38.
[154] CESSARO R K. Sources of primary and secondary microseisms[J]. Bulletin of the Seismological Society of America, 1994, 84(1):142-148.
[155] GERSTOFT P, TANIMOTO T. A year of microseisms in southern california[J]. Geophysical Research Letters, 2007, 34(20).
[156] TRAER J, GERSTOFT P, BROMIRSKI P D, et al. Microseisms and hum from ocean surface gravity waves[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B11).
[157] XIAO H, XUE M, YANG T, et al. The characteristics of microseisms in south china sea: Results from a combined data set of obss, broadband land seismic stations, and a global wave heightmodel[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5):3923-3942.
[158] DAVY C, BARRUOL G, FONTAINE F R, et al. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophysical Research Letters, 2014, 41(24): 8825-8831.
[159] FARRA V, STUTZMANN E, GUALTIERI L, et al. Ray-theoretical modeling of secondary microseism p waves[J]. Geophysical Journal International, 2016, 2016(3):1730-1739.
[160] FAN W, MCGUIRE J J, DE GROOT-HEDLIN C D, et al. Stormquakes[J]. Geophysical Research Letters, 2019, 46(22):12909-12918.
[161] ISHII M, SHEARER P M, HOUSTON H, et al. Teleseismic p wave imaging of the 26 december 2004 sumatra-andaman and 28 march 2005 sumatra earthquake ruptures using the hi-net array[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B11):1-16.
[162] XU Y, KOPER K D, SUFRI O, et al. Rupture imaging of the mw 7.9 12 may 2008 wenchuan earthquake from back projection of teleseismic p waves[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(4).
[163] WANG W, GERSTOFT P, WANG B. Seasonality of p wave microseisms from ncf-based beamforming using chinarray[J]. Geophysical Journal International, 2018, 213(3):1832-1848.
[164] 王芳, 王伟涛, 袁松湧. 大孔径地震台阵噪声互相关函数中体波信号的研究——以ChinArray 二期数据为例[J]. 地球物理学报, 2020, 63(9):3370-3386.
[165] TAKAGI N, SATO H, NISHIMURA T, et al. Rayleigh-wave group velocity in japan revealed from the cross-correlation analysis of microseisms excited by typhoons[C]//Proceedings of the8th SEGJ International Symposium. [S.l.]: Society of Exploration Geophysicists of Japan, 2006: 1-4.
[166] RUIGROK E, GIBBONS S, WAPENAAR K. Cross-correlation beamforming[J]. Journal of Seismology, 2017, 21(3):495-508.
[167] YANG Y, RITZWOLLER M H. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2).
[168] WANG Z, NIU F, HUANG J, et al. Distribution of rayleigh wave microseisms constrained by multiple seismic arrays[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022084.
[169] OKADA H, SUTO K. The microtremor survey method[M]. [S.l.]: Society of Exploration Geophysicists, 2003.
[170] DA COL F, PAPADOPOULOU M, KOIVISTO E, et al. Application of surface-wave tomography to mineral exploration: a case study from siilinjärvi, finland[J]. Geophysical Prospecting,2020, 68(1-Cost-Effective and Innovative Mineral Exploration Solutions):254-269.
[171] COLOMBERO C, PAPADOPOULOU M, KAUTI T, et al. Surface-wave tomography for mineral exploration: a successful combination of passive and active data (siilinjärvi phosphorus mine, finland)[J]. Solid Earth, 2022, 13(2):417-429.
[172] DENG B, LI J, LIU J, et al. The extended range phase shift method for broadband surface wave dispersion measurement from ambient noise and its application in ore deposit characterization [J]. Geophysics, 2022, 87(3):JM29-JM40.
[173] CHENG F, XIA J, AJO-FRANKLIN J B, et al. High-resolution ambient noise imaging of geothermal reservoir using 3c dense seismic nodal array and ultra-short observation[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8):e2021JB021827.
[174] LEVSHIN A L, PISARENKO V, POGREBINSKY G. On a frequency-time analysis of oscillations[ C]//Annales de geophysique: volume 28. [S.l.]: Centre National de la Recherche Scientifique, 1972: 211-218.
[175] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central eurasia[J]. Bulletin of the Seismological Society of America, 1992, 82(6):2464-2493.
[176] YAO H, XU G, ZHU L, et al. Mantle structure from inter-station rayleigh wave dispersion and its tectonic implication in western china and neighboring regions[J]. Physics of the Earth and Planetary Interiors, 2005, 148(1):39-54.
[177] EKSTRÖM G, ABERS G A, WEBB S C. Determination of surface-wave phase velocities across usarray from noise and aki’s spectral formulation[J]. Geophysical Research Letters, 2009, 36 (18).
[178] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi-channel record[J]. Seg Technical Program Expanded Abstracts, 1998:1377-1380.
[179] PARK C, MILLER R, RYDÉN N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental & Engineering Geophysics, 2005, 10(3):323-334.
[180] SÁNCHEZ-SESMA F J, CAMPILLO M. Retrieval of the green’s function from cross correlation: the canonical elastic problem[J]. Bulletin of the Seismological Society of America, 2006, 96(3):1182-1191.
[181] SHEN Y, REN Y, GAO H, et al. An improved method to extract very-broadband empirical green’s functions from ambient seismic noise[J]. Bulletin of the Seismological Society of America, 2012, 102(4):1872-1877.
[182] LUCO J E, APSEL R J. On the green’s functions for a layered half-space. part i[J]. Bulletin of the Seismologial Society of America, 1983, 73(4):909-929.
[183] KENNETT B. Seismic wave propagation in stratified media[J]. Geophysical Journal, 1986, 86 (1):219-220.
[184] CHEN X. A systematic and efficient method of computing normal modes for multilayered halfspace[ J]. Geophysical Journal International, 1993, 115(2):391-409.
[185] CHEN X. Seismogram synthesis in multi-layered half-space part . theoretical formulations[J]. Earthquake Research in China, 1999(02):53-78.
[186] ARFKEN G B, WEBER H J, HARRIS F E. Mathematical methods for physicists : a comprehensive guide[J]. Physics Today, 2013, 20(5):79-79.
[187] NAKAHARA H. A systematic study of theoretical relations between spatial correlation and green’s function in one-, two-and three-dimensional random scalar wavefields[J]. Geophysical Journal International, 2006, 167(3):1097-1105.
[188] HERRMANN R B. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
[189] FORBRIGER T. Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms[J]. Geophysical Journal International, 2003, 153(3):735-752.
[190] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency–bessel method[J]. Bulletin of the Seismological Society of America, 2022, 112 (1):143-152.
[191] SAVITZKY A, GOLAY M J. Smoothing and differentiation of data by simplified least squares procedures.[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[192] XIA J, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of rayleigh waves[J]. Geophysics, 1999, 64(3):691-700.
[193] BYRD R H, LU P, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5):1190-1208.
[194] BROCHER T M. Empirical relations between elastic wavespeeds and density in the earth’s crust[J]. Bulletin of the seismological Society of America, 2005, 95(6):2081-2092.
[195] CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda[J]. Science, 2003, 299(5606):547-549.
[196] ROUX P, SABRA K G, GERSTOFT P, et al. P-waves from cross-correlation of seismic noise [J]. Geophysical Research Letters, 2005, 32(19).
[197] ARDHUIN F, GUALTIERI L, STUTZMANN E. How ocean waves rock the earth: Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 2015, 42 (3):765-772.
[198] NOAA. National hurricane center and central pacific hurricane center[Z]. [S.l.: s.n.], 2020.
[199] YING Y, BEAN C, BROMIRSKI P. Propagation of microseisms from the deep ocean to land [J/OL]. Geophysical Research Letters, 2014, 41:6374-6379. DOI: 10.1002/2014GL060979.
[200] BROMIRSKI P, STEPHEN R, GERSTOFT P. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. Journal of Geophysical Research (Solid Earth), 2013, 118: 3610-3629.
[201] SENS-SCHÖNFELDER C, SNIEDER R, STÄHLER S C. The lack of equipartitioning in global body wave coda[J]. Geophysical Research Letters, 2015, 42(18):7483-7489.
[202] YAO H, VAN DER HILST R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to se tibet[J]. Geophysical Journal International, 2009, 179(2):1113-1132.
[203] TOLMAN H L, et al. User manual and system documentation of wavewatch iii tm version 3.14 [J]. Technical note, MMAB Contribution, 2009, 276(220).
[204] TAYFUN M A. Narrow-band nonlinear sea waves[J]. Journal of Geophysical Research: Oceans, 1980, 85(C3):1548-1552.
[205] WIKIPEDIA. Significant wave height[Z]. [S.l.: s.n.], 2014.
[206] SEJDIĆ E, DJUROVIĆ I, JIANG J. Time–frequency feature representation using energy concentration: An overview of recent advances[J]. Digital Signal Processing, 2009, 19(1):153-183.
[207] ARDHUIN F, GUALTIERI L, STUTZMANN E, et al. Physics of ambient noise generation by ocean waves[J]. Seismic Ambient Noise, 2019:69-108.
[208] TRAMPERT J, WOODHOUSE J H. Global phase velocity maps of love and rayleigh waves between 40 and 150 seconds[J]. Geophysical Journal International, 1995, 122(2):675-690.
[209] RITZWOLLER M H, LEVSHIN A L. Eurasian surface wave tomography: Group velocities[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B3):4839-4878.
[210] EKSTRÖM G. A global model of love and rayleigh surface wave dispersion and anisotropy, 25-250 s[J]. Geophysical Journal International, 2011, 187(3):1668-1686.
[211] CHAMARCZUK M, MALINOWSKI M, DRAGANOV D, et al. Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the kylylahti polymetallic mine, finland[J]. Solid Earth, 2022, 13(3):705-723.
[212] ELBRA T, KARLQVIST R, LASSILA I, et al. Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland[J]. Geophysical Journal International, 2011, 184(1):405-415.
[213] BALAKRISHNA S, RAMANA Y V. Integrated studies of the elastic properties of some indian rocks[M]. [S.l.]: American Geophysical Union (AGU), 2012: 489-500.
[214] KERN H. Measuring and modeling of p-and s-wave velocities on crustal rocks: a key for the interpretation of seismic reflection and refraction data[J]. International Journal of Geophysics, 2011, 2011.
[215] KIM E J, SHIN D, SHIN S, et al. Skarn zonation and rock physical properties of the wondong fe-pb-zn polymetallic deposit, korea[J]. Geosciences Journal, 2015, 19(4):587-598.
[216] CHRISTENSEN N I. Seismic properties of rocks[M]. Dordrecht: Springer Netherlands, 2011: 1173-1178.
修改评论