中文版 | English
题名

频率-贝塞尔变换在风暴期间面波提取和矿区面波勘探中的应用

其他题名
APPLICATIONS OF THE FREQUENCY-BESSEL TRANSFORM IN THE EXTRACTION OF SURFACE WAVES DURING ENERGETIC STORMS AND SURFACE WAVE EXPLORATION IN MINING AREAS
姓名
姓名拼音
FENG Xuping
学号
11930721
学位类型
博士
学位专业
080100力学
学科门类/专业学位类别
08 工学
导师
陈晓非
导师单位
地球与空间科学系
论文答辩日期
2023-05-16
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

地震背景噪声成像作为二十一世纪地震学领域一项革命性的技术,过去近二
十年间学者们在该领域取得了长足进展。其本质上为对两个接收器的噪声记录或
者地震尾波做互相关可以近似为这两点间的格林函数。相比于地震激发-台站接收
的传统方法,该技术克服了地震时空分布不均的缺点,为地震成像研究带来前所
未有之空间分辨率。除长时间的背景噪声外,强风暴活动期间产生的背景噪声很
少用来研究地下结构,且前人的工作中未系统地分析这期间所提取信息的可靠性。
此外,风暴期间多阶面波信噪比变化与其活动关系也尚未得到探讨。最后,各类
地震台阵方法在矿区密集阵列成像中得适用性亦需进行探究与测试,以期找到合
适的阵列成像方法。
本文根据美国东南海岸的数据通过对比不同处理背景噪声的方法和提取频散
曲线的阵列技术组合结果,发现将频率-时间归一化算法和频率-贝塞尔(frequency-
Bessel, F-J)变换相结合不仅能提取较宽频带的基阶频散曲线,且频散曲线分辨率
也较高。通过分析不同旅行路径的飓风,本文揭示了在海岸和大陆架行进的飓风
期间提取的频散曲线信噪比高于在岸上和深海活动的飓风期间的结果。通过风暴
期间提取的频散数据估计的速度结构与整年噪声数据结果进行对比,本文发现两
者在地壳及上地幔中剪切波速度差异小于0.1km/s,进而验证了风暴期间频散数据
的可靠性。
另外,本文利用F-J 变换方法于两个台风活动期间从蒙古国境内的地震台阵提
取ZZ、RR 和TT 分量高阶面波频散曲线,考虑到台风与风速和海浪活动高度密切
相关,故计算了频散曲线强度分别与风速和海浪有效波高两个因素之间的相关系
数的地理分布。结果显示在0.1Hz 以下(第一类地脉动频带)频散曲线强度与风速和有效波高之间相关性较弱,在0.1Hz 以上(第二类地脉动频带)时,ZZ 分量各阶频散曲线强度与风速之间的较大相关系数的地理分布与台风活动区域相近,RR分量基阶频散曲线强度亦如此,但TT 分量对应数据相关性则不明显。另一方面各个分量频散曲线强度与有效波高之间较大相关系数的地理分布与台风活动区域相去甚远。本文结果表明台风与0.1Hz 以上的Rayleigh 波的激发关系密切,但Love波的产生与台风活动关系不明显,该结果进一步说明台风期间Rayleigh 波和Love波的产生机制存在差异。本研究根据频散曲线强度与风速之间的相关性对面波信号的噪声源进行定位,这为今后探讨面波噪声源定位问题提供了新思路。

最后本文根据频率-贝塞尔变换阵列叠加方法可有效拓宽频散曲线频带及提高
频散谱中频散曲线分辨率这两项优势对两个矿区开展了密集阵列的被动源面波勘
探研究,并揭示了位于美国和加拿大交界的Marathon 小镇矿区于500 至1000m 深度存在一高速辉长岩侵入体,同时推断了基性岩浆由西向东侵入,并为该矿区铂铜矿成因探讨提供资料。另外本文发现芬兰得Kylylahti 矿区中包含一个延伸至约300m 深度且非常陡峭的低速岩体,且剪切波速度水平切片展示的波速差异分布与地表岩性波速分布符合得较好。本文通过以上两个矿区勘探例子说明F-J 变换方法在被动源面波探矿领域具有很好的应用前景,并可为矿产估计及开采提供重要的参考依据。

其他摘要

Seismic ambient noise tomography (SANT) has far-reaching applications at exploration,regional, continental and global scales in past two decades since this revolutionary technique was proposed. The cross-correlation function of seismic records made by two receivers is considered as a virtual seismic signal for which the seismic source is at one
point and the receiver is at another point. SANT attracts researchers’ growing interests in illuminating the earth’s interior because it does not rely on the distribution of earthquakes compared with traditional earthquake-based data. Thus, SANT has unparalleled horizontal spatial resolution, to some extent, depending on the spacings between seismic stations. Besides of long-range ambient noise, data during energetic storms are rarely used to investigate earth’s structure, and the reliability of dispersion data during storm period has never been systematically validated. Furthermore, the relation between multimodal surface waves and strong storms is significant for us to retrieve multimodal dispersion curves for effectively imaging our planet Earth. Finally, superdense seismic arrays precipitate the applications of different array stacking methods. Thus, choosing one suitible array method is crucial for us to illuminate the near surface in mining areas.

This study incorporates the frequency-time normalization and the frequency-Bessel
(F-J) transform for the first time to extract fundamental mode dispersion curves of higher resolution and wider frequency band compared with other combinations of noise normalization and array stacking methods. Furthermore, compared with dispersion curves from hurricanes traveling onshore or in the deepwater, dispersion curves have higher signalto- noise ratios from hurricanes moving near the coast or along the continental shelf. The average dispersion curve obtained from stacked cross-correlations of all used hurricanes agrees closely with that from annual ambient noise. We utilize this average dispersion curve to obtain a reliable shear wave velocity (Vs) model, and this Vs model matches that derived from yearly ambient noise results with an average difference less than 0.1km/s in the crust and uppermost mantle.

During two strong typhoons, we also analyze the relations between ZZ-, RR- and TT-component dispersion curve amplitudes from seismic noise and two variables: wind speed and significant wave height (SWH). Our results show that cross-coefficients between Rayleigh wave dispersion curve amplitudes over 0.1Hz and wind speed are high at the region near the two typhoons, but not for Rayleigh wave dispersion data less than 0.1Hz or Love wave. We find that the region of high cross-coefficients between all dispersion amplitudes and SWH is far from the two typhoons. Our results suggest that the excitation sources of Rayleigh and Love waves are unlikely from the same place. Analyzing the cross-coefficients between dispersion curve amplitudes and wind speed offers us the new idea of locating the noise sources of surface waves, especially for Rayleigh wave.

Finally, we apply the F-J transform to extract reliable Rayleigh wave dispersion curves from super dense seismic arrays at two ore sites taking into consideration the high resolution and broad frequency band of dispersion data by the F-J transform. Utilizing massive dispersion data at Marathon town, the border between the United States and Canada, we find that there is a gabbro intrusion of high Vs at the depth range of 500−1000m and it inserted the stratum from the west to east. On the other hand, we reveal that a obvious low-Vs rock region which reaches at the depth of 300m at Kylylahti region in the southeast of Finland, which matches well with the Vs map of rock types on the surface. Our results suggest that the F-J transform is very promising in the passive surface wave exploration field for mining areas, which can provide important reference basis for mineral evaluation and mining.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] CAPON J. Applications of detection and estimation theory to large array seismology[J]. Proceedingsof the IEEE, 1970, 58(5):760-770.
[2] ROST S, THOMAS C. Array seismology: Methods and applications[J]. Reviews of Geophysics,2002, 40(3):2-1.
[3] SELBY N D. Relative locations of the october 2006 and may 2009 dprk announced nuclear tests using international monitoring system seismometer arrays[J]. Bulletin of the Seismological Society of America, 2010, 100(4):1779-1784.
[4] MCNAMARA D E, BULAND R P. Ambient noise levels in the continental united states[J]. Bulletin of the seismological society of America, 2004, 94(4):1517-1527.
[5] MARZORATI S, BINDI D. Ambient noise levels in north central italy[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9).
[6] DÍAZ J, RUIZ M, SÁNCHEZ-PASTOR P S, et al. Urban seismology: On the origin of earth vibrations within a city[J]. Scientific Reports, 2017, 7(1):1-11.
[7] EVANGELIDIS C, MELIS N. Ambient noise levels in greece as recorded at the hellenic unified seismic network[J]. Bulletin of the Seismological Society of America, 2012, 102(6):2507-2517.
[8] GIBNEY E. Coronavirus lockdowns have changed the way earth moves.[J]. Nature, 2020, 580 (7802):176-178.
[9] LECOCQ T, HICKS S P, VAN NOTEN K, et al. Global quieting of high-frequency seismic noise due to covid-19 pandemic lockdown measures[J]. Science, 2020, 369(6509):1338-1343.
[10] POLI P, BOAGA J, MOLINARI I, et al. The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in northern italy[J]. Scientific Reports, 2020, 10(1):1-8.
[11] XIAO H, EILON Z C, JI C, et al. Covid-19 societal response captured by seismic noise in china and italy[J]. Seismological Research Letters, 2020, 91(5):2757-2768.
[12] DIAS F L, ASSUMPÇÃO M, PEIXOTO P S, et al. Using seismic noise levels to monitor social isolation: An example from rio de janeiro, brazil[J]. Geophysical Research Letters, 2020, 47 (16):e2020GL088748.
[13] GIMBERT F, NANNI U, ROUX P, et al. A multi-physics experiment with a temporary dense seismic array on the argentière glacier, french alps: The resolve project[J]. Seismological Research Letters, 2021, 92(2A):1185-1201.
[14] GUILLEMOT A, BAILLET L, GARAMBOIS S, et al. Modal sensitivity of rock glaciers to elastic changes from spectral seismic noise monitoring and modeling[J]. The Cryosphere, 2021, 15(2):501-529.
[15] O’NEEL S, MARSHALL H P, MCNAMARA D E, et al. Seismic detection and analysis of icequakes at columbia glacier, alaska[J]. Journal of Geophysical Research: Earth Surface, 2007, 112(F3).
[16] WALTER F, O’NEEL S, MCNAMARA D, et al. Iceberg calving during transition from grounded to floating ice: Columbia glacier, alaska[J]. Geophysical Research Letters, 2010, 37(15).
[17] PETTIT E C, LEE K M, BRANN J P, et al. Unusually loud ambient noise in tidewater glacier fjords: A signal of ice melt[J]. Geophysical Research Letters, 2015, 42(7):2309-2316.
[18] WITHERS M M, ASTER R C, YOUNG C J, et al. High-frequency analysis of seismic background noise as a function of wind speed and shallow depth[J]. Bulletin of the Seismological Society of America, 1996, 86(5):1507-1515.
[19] BURTIN A, CATTIN R, BOLLINGER L, et al. Towards the hydrologic and bed load monitoring from high-frequency seismic noise in a braided river: The “torrent de st pierre”, french alps [J]. Journal of Hydrology, 2011, 408(1-2):43-53.
[20] KOPER K D, DE FOY B, BENZ H. Composition and variation of noise recorded at the yellowknife seismic array, 1991–2007[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B10).
[21] HAUBRICH R, MUNK W, SNODGRASS F. Comparative spectra of microseisms and swell [J]. Bulletin of the Seismological Society of America, 1963, 53(1):27-37.
[22] OLIVER J, PAGE R. Concurrent storms of long and ultralong period microseisms[J]. Bulletin of the Seismological Society of America, 1963, 53(1):15-26.
[23] VINNIK L. Sources of microseismicp waves[J]. Pure and Applied Geophysics, 1973, 103(1): 282-289.
[24] NISHIDA K. Global propagation of body waves revealed by cross-correlation analysis of seismic hum[J]. Geophysical Research Letters, 2013, 40(9):1691-1696.
[25] LONGUET-HIGGINS M S. A theory of the origin of microseisms[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1950, 243 (857):1-35.
[26] HASSELMANN K. A statistical analysis of the generation of microseisms[J]. Reviews of Geophysics, 1963, 1(2):177-210.
[27] ARDHUIN F, STUTZMANN E, SCHIMMEL M, et al. Ocean wave sources of seismic noise [J]. Journal of Geophysical Research: Oceans, 2011, 116(C9).
[28] GUALTIERI L, STUTZMANN E, CAPDEVILLE Y, et al. Modelling secondary microseismic noise by normal mode summation[J]. Geophysical Journal International, 2013, 193(3):1732-1745.
[29] GUALTIERI L, CAMARGO S J, PASCALE S, et al. The persistent signature of tropical cyclones in ambient seismic noise[J]. Earth and Planetary Science Letters, 2018, 484:287-294.
[30] ANDREAS F, LUCIA G, NORI N. Introduction in seismic ambient noise[M]. [S.l.]: Cambridge University Press, 2019: xx-xxi.
[31] STEHLY L, CAMPILLO M, SHAPIRO N. A study of the seismic noise from its long-range correlation properties[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B10).
[32] NAWA K, SUDA N, FUKAO Y, et al. Incessant excitation of the earth’s free oscillations[J]. Earth, Planets and Space, 1998, 50(1):3-8.
[33] TANIMOTO T, UM J, NISHIDA K, et al. Earth’s continuous oscillations observed on seismically quiet days[J]. Geophysical Research Letters, 1998, 25(10):1553-1556.
[34] TANIMOTO T, UM J. Cause of continuous oscillations of the earth[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B12):28723-28739.
[35] SUDA N, NAWA K, FUKAO Y. Earth’s background free oscillations[J]. Science, 1998, 279 (5359):2089-2091.
[36] NISHIDA K, KOBAYASHI N, FUKAO Y. Resonant oscillations between the solid earth and the atmosphere[J]. Science, 2000, 287(5461):2244-2246.
[37] NISHIDA K. Earth’s background free oscillations[J]. Annual Review of Earth and Planetary Sciences, 2013, 41:719-740.
[38] RHIE J, ROMANOWICZ B. Excitation of earth’s continuous free oscillations by atmosphere–ocean–seafloor coupling[J]. Nature, 2004, 431(7008):552-556.
[39] WEBB S C. The earth’s hum: the excitation of earth normal modes by ocean wves[J]. Geophysical Journal International, 2008, 174(2):542-566.
[40] BROMIRSKI P D, GERSTOFT P. Dominant source regions of the earth’s “hum”are coastal [J]. Geophysical Research Letters, 2009, 36(13).
[41] GERSTOFT P, FEHLER M C, SABRA K G. When katrina hit california[J]. GeophysicalResearch Letters, 2006, 33(17).
[42] EBELING C W, STEIN S. Seismological identification and characterization of a large hurricane [J]. Bulletin of the Seismological Society of America, 2011, 101(1):399-403.
[43] XIAO H, XUE M, PAN M, et al. Characteristics of microseisms in south china[J]. Bulletin of the Seismological Society of America, 2018, 108(5A):2713-2723.
[44] LIN J, LIN J, XU M. Microseisms generated by super typhoon megi in the western pacific ocean [J]. Journal of Geophysical Research: Oceans, 2017, 122(12):9518-9529.
[45] LIN J, WANG Y, WANG W, et al. Seismic remote sensing of super typhoon lupit (2009) with seismological array observation in ne china[J]. Remote Sensing, 2018, 10(2):235.
[46] RETAILLEAU L, GUALTIERI L. Toward high-resolution period-dependent seismic monitoring of tropical cyclones[J]. Geophysical Research Letters, 2019, 46(3):1329-1337.
[47] RETAILLEAU L, GUALTIERI L. Multi-phase seismic source imprint of tropical cyclones[J]. Nature Communications, 2021, 12(1):1-8.
[48] FENG X, CHEN X. Rayleigh-wave dispersion curves from energetic hurricanes in the southeastern united states[J]. Bulletin of the Seismological Society of America, 2022, 112(2):622-633.
[49] PETERSON J R. Observations and modeling of seismic background noise[R]. [S.l.]: US Geological Survey, 1993.
[50] TOKSÖZ M N, LACOSS R T. Microseisms: Mode structure and sources[J]. Science, 1968, 159(3817):872-873.
[51] SHAPIRO N M, CAMPILLO M. Emergence of broadband rayleigh waves from correlations of the ambient seismic noise[J]. Geophysical Research Letters, 2004, 31(7).
[52] SHAPIRO N M, CAMPILLO M, STEHLY L, et al. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 2005, 307(5715):1615-1618.
[53] YANG Y, RITZWOLLER M H, LEVSHIN A L, et al. Ambient noise rayleigh wave tomography across europe[J]. Geophysical Journal International, 2007, 168(1):259-274.
[54] YAO H, HILST R D V D, HOOP M V D. Surface-wave array tomography in se tibet from ambient seismic noise and two-station analysis–i. phase velocity maps[J]. Geophysical Journal of the Royal Astronomical Society, 2006, 166(2):732-744.
[55] LIN F C, MOSCHETTI M P, RITZWOLLER M H. Surface wave tomography of the western united states from ambient seismic noise: Rayleigh and love wave phase velocity maps[J]. Geophysical Journal International, 2008, 173(1):281-298.
[56] BENSEN G, RITZWOLLER M, BARMIN M, et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophysical Journal International, 2007, 169(3):1239-1260.
[57] WEAVER R, LOBKIS O. Ultrasonics without a source: thermal fluctuation correlations at mhz frequencies.[J]. Physical Review Letters, 2001, 8713:134301.
[58] WEAVER R, LOBKIS O. On the emergence of the green’s function in the correlations of a diffuse field[J]. Ultrasonics, 2002, 40(1-8):435-439.
[59] WEAVER R L, LOBKIS O I. Diffuse fields in open systems and the emergence of the green’s function (l)[J]. The Journal of the Acoustical Society of America, 2004, 116(5):2731-2734.
[60] DERODE A, LAROSE E, TANTER M, et al. Recovering the green’s function from fieldfield correlations in an open scattering medium (l)[J]. The Journal of the Acoustical Society of America, 2003, 113(6):2973-2976.
[61] SNIEDER R. Extracting the green’s function from the correlation of coda waves: A derivation based on stationary phase[J]. Physical Review E, 2004, 69(4):046610.
[62] WAPENAAR K. Retrieving the elastodynamic green’s function of an arbitrary inhomogeneous medium by cross correlation[J]. Physical Review Letters, 2004, 93(25):254301.
[63] LAROSE E, CAMPILLO M, KHAN A, et al. Lunar subsurface investigated from correlation of seismic noise.[J]. Geophysical Research Letters, 2005, 32:L16201.
[64] WAPENAAR K, FOKKEMA J. Green’s function representations for seismic interferometry [J]. Geophysics, 2006, 71(4):SI33-SI46.
[65] RITZWOLLER M H, SHAPIRO N M, BARMIN M P, et al. Global surface wave diffraction tomography[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12):ESE-4.
[66] AKI K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Earthquake Research Institute Bulletin, 1957, 35:415-456.
[67] CLAERBOUT J F. Synthesis of a layered medium from its acoustic transmission response[J]. Geophysics, 1968, 33(2):264-269.
[68] LOBKIS O I, WEAVER R L. On the emergence of the green’s function in the correlations of a diffuse field[J]. The Journal of the Acoustical Society of America, 2001, 110(6):3011-3017.
[69] TSAI V C, MOSCHETTI M P. An explicit relationship between time-domain noise correlation and spatial autocorrelation (spac) results[J]. Geophysical Journal International, 2010, 182(1): 454-460.
[70] SABRA K G, GERSTOFT P, ROUX P, et al. Surface wave tomography from microseisms in southern california[J]. Geophysical Research Letters, 2005, 32(14).
[71] SCHUSTER G, YU J, SHENG J, et al. Interferometric/daylight seismic imaging[J]. Geophysical Journal International, 2004, 157(2):838-852.
[72] SCHUSTER G T, et al. Seismic interferometry: volume 1[M]. [S.l.]: Cambridge university press Cambridge, 2009.
[73] NAKATA N, SNIEDER R, TSUJI T, et al. Shear wave imaging from traffic noise using seismic interferometry by cross-coherenceshear wave imaging from traffic noise[J]. Geophysics, 2011, 76(6):SA97-SA106.
[74] MORDRET A, LANDÈS M, SHAPIRO N, et al. Near-surface study at the valhall oil field from ambient noise surface wave tomography[J]. Geophysical Journal International, 2013, 193(3): 1627-1643.
[75] LIN F C, LI D, CLAYTON R W, et al. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array[J]. Geophysics, 2013, 78(4):Q45-Q56.
[76] ROUX P, MOREAU L, LECOINTRE A, et al. A methodological approach towards highresolution surface wave imaging of the san jacinto fault zone using ambient-noise recordings at a spatially dense array[J]. Geophysical Journal International, 2016, 206(2):980-992.
[77] LIU Y, ZHANG H, FANG H, et al. Ambient noise tomography of three-dimensional nearsurface shear-wave velocity structure around the hydraulic fracturing site using surface microseismic monitoring array[J]. Journal of Applied Geophysics, 2018, 159:209-217.
[78] LI C, YAO H, FANG H, et al. 3D Near‐Surface Shear‐Wave Velocity Structure from Ambient Noise Tomography and Borehole Data in the Hefei Urban Area, China[J]. Seismological Research Letters, 2016, 87(4):882-892.
[79] SABRA K G, GERSTOFT P, ROUX P, et al. Extracting time-domain green’s function estimates from ambient seismic noise[J]. Geophysical Research Letters, 2005, 32(3).
[80] YANG Y, LI A, RITZWOLLER M H. Crustal and uppermost mantle structure in southern africa revealed from ambient noise and teleseismic tomography[J]. Geophysical Journal International, 2008, 174(1):235-248.
[81] BAO X, SONG X, LI J. High-resolution lithospheric structure beneath mainland china from ambient noise and earthquake surface-wave tomography[J]. Earth and Planetary Science Letters, 2015, 417:132-141.
[82] SHEN W, RITZWOLLER M H. Crustal and uppermost mantle structure beneath the united states[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6):4306-4342.
[83] SAYGIN E, KENNETT B L. Ambient seismic noise tomography of australian continent[J]. Tectonophysics, 2010, 481(1-4):116-125.
[84] SAYGIN E, KENNETT B. Crustal structure of australia from ambient seismic noise tomography [J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B1).
[85] SHEN W, RITZWOLLER M H, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath china from surface wave dispersion[J]. Geophysical Journal International, 2016, 206(2):954-979.
[86] NISHIDA K, MONTAGNER J P, KAWAKATSU H. Global surface wave tomography using seismic hum[J]. Science, 2009, 326(5949):112-112.
[87] HANED A, STUTZMANN E, SCHIMMEL M, et al. Global tomography using seismic hum [J]. Geophysical Journal International, 2016, 204(2):1222-1236.
[88] XIA J, MILLER R D, PARK C B, et al. Inversion of high frequency surface waves with fundamental and higher modes[J]. Journal of Applied Geophysics, 2003, 52(1):45-57.
[89] PAN L, CHEN X, WANG J, et al. Sensitivity analysis of dispersion curves of rayleigh waves with fundamental and higher modes[J]. Geophysical Journal International, 2019, 216(2):1276-1303.
[90] WANG J, WU G, CHEN X. Frequency-bessel transform method for effective imaging of highermode rayleigh dispersion curves from ambient seismic noise data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4):3708-3723.
[91] HU S, LUO S, YAO H. The frequency-bessel spectrograms of multi-component crosscorrelation functions from seismic ambient noise[J]. Journal of Geophysical Research: Solid Earth, 2020:1-20.
[92] LI Z, ZHOU J, WU G, et al. Cc-fjpy: A python package for extracting overtone surface-wave dispersion from seismic ambient-noise cross correlation[J]. Seismological Research Letters, 2021, 92(5):3179-3186.
[93] XI C, XIA J, MI B, et al. Modified frequency–Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophysical Journal International, 2021, 225 (2):1271-1280.
[94] LI Z, SHI C, REN H, et al. Multiple leaking mode dispersion observations and applications from ambient noise cross-correlation in oklahoma[J]. Geophysical Research Letters, 2022, 49 (1):e2021GL096032.
[95] 吴华礼, 陈晓非, 潘磊. 基于频率-贝塞尔变换法的关东盆地S 波速度成像[J]. 地球物理学报, 2019, 62(9):3400-3407.
[96] 李雪燕, 陈晓非, 杨振涛, 等. 城市微动高阶面波在浅层勘探中的应用: 以苏州河地区为例[J]. 地球物理学报, 2020, 63(1):247-255.
[97] WU G, PAN L, WANG J N, et al. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of usarray transportable array[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(1):e2019JB018213.
[98] ZHAN W, PAN L, CHEN X. A widespread mid-crustal low-velocity layer beneath northeast china revealed by the multimodal inversion of rayleigh waves from ambient seismic noise[J]. Journal of Asian Earth Sciences, 2020, 196:104372.
[99] MA Q, PAN L, WANG JN Y Z, et al. Crustal s-wave velocity structure beneath the northwestern bohemian massif, central europe, revealed by the inversion of multimodal ambient noise dispersion curves. front[J]. Frontiers in Earth Science, 2022, 10:838751.
[100] ZHANG S, ZHANG G, FENG X, et al. A crustal lvz in iceland revealed by ambient noise multimodal surface wave tomography[J]. Frontiers in Earth Science, 2022, 10:1008354.
[101] CHEN J, PAN L, LI Z, et al. Continental reworking in the eastern south china block and its adjacent areas revealed by f-j multimodal ambient noise tomography[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(11):e2022JB024776.
[102] LI Z, CHEN X. An effective method to extract overtones of surface wave from array seismic records of earthquake events[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(3): e2019JB018511.
[103] POUPINET G, ELLSWORTH W, FRECHET J. Monitoring velocity variations in the crust using earthquake doublets: An application to the calaveras fault, california[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7):5719-5731.
[104] SNIEDER R, GRÊT A, DOUMA H, et al. Coda wave interferometry for estimating nonlinear behavior in seismic velocity[J]. Science, 2002, 295(5563):2253-2255.
[105] SNIEDER R. The theory of coda wave interferometry[J]. Pure and Applied geophysics, 2006, 163(2):455-473.
[106] SENS-SCHÖNFELDER C, WEGLER U. Passive image interferometry and seasonal variations of seismic velocities at merapi volcano, indonesia[J]. Geophysical Research Letters, 2006, 33 (21).
[107] BRENGUIER F, CAMPILLO M, HADZIIOANNOU C, et al. Postseismic relaxation along the san andreas fault at parkfield from continuous seismological observations[J]. Science, 2008, 321(5895):1478-1481.
[108] BRENGUIER F, SHAPIRO N M, CAMPILLO M, et al. Towards forecasting volcanic eruptions using seismic noise[J]. Nature Geoscience, 2008(2):126-130.
[109] WEGLER U, NAKAHARA H, SENS-SCHÖNFELDER C, et al. Sudden drop of seismic velocity after the 2004 mw 6.6 mid-niigata earthquake, japan, observed with passive image interferometry[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B6).
[110] CHEN J H, FROMENT B, LIU Q Y, et al. Distribution of seismic wave speed changes associated with the 12 may 2008 mw 7.9 wenchuan earthquake[J]. Geophysical Research Letters, 2010, 37(18).
[111] BRENGUIER F, CLARKE D, AOKI Y, et al. Monitoring volcanoes using seismic noise correlations*[J]. Comptes Rendus Geoscience, 2011(343):633-638.
[112] HOBIGER M, WEGLER U, SHIOMI K, et al. Coseismic and postseismic elastic wave velocity variations caused by the 2008 iwate-miyagi nairiku earthquake, japan[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B9).
[113] CLEMENTS T, DENOLLE M A. Tracking groundwater levels using the ambient seismic field [J]. Geophysical Research Letters, 2018, 45(13):6459-6465.
[114] RIVET D, BRENGUIER F, CAPPA F. Improved detection of preeruptive seismic velocity drops at the piton de la fournaise volcano[J]. Geophysical Research Letters, 2015, 42(15):6332-6339.
[115] WANG Q Y, BRENGUIER F, CAMPILLO M, et al. Seasonal crustal seismic velocity changes throughout japan[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10):7987-8002.
[116] COMPAIRE N, MARGERIN L, MONNEREAU M, et al. Seasonal variations of subsurface seismic velocities monitored by the seis-insight seismometer on mars[J]. Geophysical Journal International, 2022, 229(2):776-799.
[117] CAMPILLO M, ROUX P. 1.12 crust and lithospheric structure—seismic imaging and monitoring with ambient noise correlations. treatise on geophysics , 391–417, doi: 10.1016[R]. [S.l.]: B978-0-444-53802-4.00024-5, 2015.
[118] GOUÉDARD P, ROUX P, CAMPILLO M, et al. Convergence of the two-point correlation function toward the green’s function in the context of a seismic-prospecting data set[J]. Geophysics, 2008, 73(6):V47-V53.
[119] TONEGAWA T, NISHIDA K, WATANABE T, et al. Seismic interferometry of teleseicmic swave coda for retrieval of body waves: an application to the philippine sea slab underneath the japanese islands[J]. Geophysical Journal International, 2009, 178(3):1574-1586.
[120] GERSTOFT P, SHEARER P M, HARMON N, et al. Global p, pp, and pkp wave microseisms observed from distant storms[J]. Geophysical Research Letters, 2008, 35(23).
[121] ZHANG J, GERSTOFT P, BROMIRSKI P D. Pelagic and coastal sources of p-wave microseisms: Generation under tropical cyclones[J]. Geophysical Research Letters, 2010a, 37(15).
[122] ZHANG J, GERSTOFT P, SHEARER P M. Resolving p-wave travel-time anomalies using seismic array observations of oceanic storms[J]. Earth and Planetary Science Letters, 2010b, 292(3-4):419-427.
[123] LANDÈS M, HUBANS F, SHAPIRO N M, et al. Origin of deep ocean microseisms by using teleseismic body waves[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B5).
[124] LIU Q, KOPER K D, BURLACU R, et al. Source locations of teleseismic p, sv, and sh waves observed in microseisms recorded by a large aperture seismic array in china[J]. Earth and Planetary Science Letters, 2016, 449:39-47.
[125] NISHIDA K, TAKAGI R. Teleseismic s wave microseisms[J]. Science, 2016, 353(6302):919-921.
[126] LIU Q, NI S, QIU Y, et al. Observation of teleseismic s wave microseisms generated by typhoons in the western pacific ocean[J]. Geophysical Research Letters, 2020, 47(19):e2020GL089031.
[127] ZHAN Z, NI S, HELMBERGER D V, et al. Retrieval of moho-reflected shear wave arrivals from ambient seismic noise[J]. Geophysical Journal International, 2010, 182(1):408-420.
[128] POLI P, CAMPILLO M, PEDERSEN H, et al. Body-wave imaging of earth’s mantle discontinuities from ambient seismic noise[J]. Science, 2012, 338(6110):1063-1065.
[129] SIDORIN I, GURNIS M, HELMBERGER D V. Evidence for a ubiquitous seismic discontinuity at the base of the mantle[J]. Science, 1999, 286(5443):1326-1331.
[130] POLI P, THOMAS C, CAMPILLO M, et al. Imaging the d ￿reflector with noise correlations[J]. Geophysical Research Letters, 2015, 42(1):60-65.
[131] LIN F C, TSAI V C, SCHMANDT B, et al. Extracting seismic core phases with array interferometry[J]. Geophysical Research Letters, 2013, 40(6):1049-1053.
[132] BOUÉ P, POLI P, CAMPILLO M, et al. Teleseismic correlations of ambient seismic noise for deep global imaging of the earth[J]. Geophysical Journal International, 2013, 194(2):844-848.
[133] NAKATA N, CHANG J P, LAWRENCE J F, et al. Body wave extraction and tomography at long beach, california, with ambient-noise interferometry[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(2):1159-1173.
[134] QUIROS D A, BROWN L D, KIM D. Seismic interferometry of railroad induced ground motions: Body and surface wave imaging[J]. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 2016, 205(1):301-313.
[135] BRENGUIER F, BOUÉ P, BEN-ZION Y, et al. Train traffic as a powerful noise source for monitoring active faults with seismic interferometry[J]. Geophysical Research Letters, 2019, 46(16):9529-9536.
[136] DALES P, PINZON-RICON L, BRENGUIER F, et al. Virtual sources of body waves from noise correlations in a mineral exploration context[J]. Seismological Research Letters, 2020, 91(4):2278-2286.
[137] 张唤兰, 王保利, 宁杰远, 等. 高铁地震数据干涉成像技术初探[J]. 地球物理学报, 2019, 62 (6):2321-2327.
[138] 温景充, 石永祥, 宁杰远. 高铁地震面波相速度频散曲线提取[J]. 地球物理学报, 2021, 64(9):3246-3256.
[139] NISHIDA K. Ambient seismic wave field[J]. Proceedings of the Japan Academy, Series B, 2017, 93(7):423-448.
[140] BROMIRSKI P D. Earth vibrations[J]. Science, 2009, 324(5930):1026-1027.
[141] LE PAPE F, CRAIG D, BEAN C J. How deep ocean-land coupling controls the generation of secondary microseism love waves[J]. Nature Communications, 2021, 12(1):1-15.
[142] CHEN X, TIAN D, WEN L. Microseismic sources during hurricane sandy[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(9):6386-6403.
[143] KRIM H, VIBERG M. Two decades of array signal processing research: the parametric approach[ J]. IEEE Signal Processing Magazine, 1996, 13(4):67-94.
[144] SCHWEITZER J, FYEN J, MYKKELTVEIT S, et al. Seismic arrays[M]//New manual of seismological observatory practice 2 (NMSOP-2). [S.l.]: Deutsches GeoForschungsZentrum GFZ, 2012: 1-80.
[145] EULER G G, WIENS D A, NYBLADE A A. Evidence for bathymetric control on the distribution of body wave microseism sources from temporary seismic arrays in africa[J]. Geophysical Journal International, 2014, 197(3):1869-1883.
[146] GAL M, READING A M, ELLINGSEN S P, et al. Improved implementation of the fk and capon methods for array analysis of seismic noise[J]. Geophysical Journal International, 2015, 198(2):1045-1054.
[147] GAL M, READING A M, ELLINGSEN S P, et al. Deconvolution enhanced direction of arrival estimation using 1- and 3-component seismic arrays applied to ocean induced microseisms[J]. Geophysical Journal International, 2016, 206(1):345-359.
[148] GAL M, READING A M, NAKATA N, et al. Beamforming and polarisation analysis[J]. Seismic Ambient Noise, 2019:32-72.
[149] KOPER K D, HAWLEY V L. Frequency dependent polarization analysis of ambient seismic noise recorded at a broadband seismometer in the central united states[J]. Earthquake Science, 2010, 23(5):439-447.
[150] SCHIMMEL M, STUTZMANN E, ARDHUIN F, et al. Polarized earth’s ambient microseismic noise[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(7).
[151] ZHA Y, WEBB S C, MENKE W. Determining the orientations of ocean bottom seismometers using ambient noise correlation[J]. Geophysical Research Letters, 2013, 40(14):3585-3590.
[152] HAUBRICH R A, MCCAMY K. Microseisms: Coastal and pelagic sources[J]. Reviews of Geophysics, 1969, 7(3):539-571.
[153] LACOSS R T, KELLY E J, TOKSÖZ M N. Estimation of seismic noise structure using arrays [J]. Geophysics, 1969, 34(1):21-38.
[154] CESSARO R K. Sources of primary and secondary microseisms[J]. Bulletin of the Seismological Society of America, 1994, 84(1):142-148.
[155] GERSTOFT P, TANIMOTO T. A year of microseisms in southern california[J]. Geophysical Research Letters, 2007, 34(20).
[156] TRAER J, GERSTOFT P, BROMIRSKI P D, et al. Microseisms and hum from ocean surface gravity waves[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B11).
[157] XIAO H, XUE M, YANG T, et al. The characteristics of microseisms in south china sea: Results from a combined data set of obss, broadband land seismic stations, and a global wave heightmodel[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(5):3923-3942.
[158] DAVY C, BARRUOL G, FONTAINE F R, et al. Tracking major storms from microseismic and hydroacoustic observations on the seafloor[J]. Geophysical Research Letters, 2014, 41(24): 8825-8831.
[159] FARRA V, STUTZMANN E, GUALTIERI L, et al. Ray-theoretical modeling of secondary microseism p waves[J]. Geophysical Journal International, 2016, 2016(3):1730-1739.
[160] FAN W, MCGUIRE J J, DE GROOT-HEDLIN C D, et al. Stormquakes[J]. Geophysical Research Letters, 2019, 46(22):12909-12918.
[161] ISHII M, SHEARER P M, HOUSTON H, et al. Teleseismic p wave imaging of the 26 december 2004 sumatra-andaman and 28 march 2005 sumatra earthquake ruptures using the hi-net array[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B11):1-16.
[162] XU Y, KOPER K D, SUFRI O, et al. Rupture imaging of the mw 7.9 12 may 2008 wenchuan earthquake from back projection of teleseismic p waves[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(4).
[163] WANG W, GERSTOFT P, WANG B. Seasonality of p wave microseisms from ncf-based beamforming using chinarray[J]. Geophysical Journal International, 2018, 213(3):1832-1848.
[164] 王芳, 王伟涛, 袁松湧. 大孔径地震台阵噪声互相关函数中体波信号的研究——以ChinArray 二期数据为例[J]. 地球物理学报, 2020, 63(9):3370-3386.
[165] TAKAGI N, SATO H, NISHIMURA T, et al. Rayleigh-wave group velocity in japan revealed from the cross-correlation analysis of microseisms excited by typhoons[C]//Proceedings of the8th SEGJ International Symposium. [S.l.]: Society of Exploration Geophysicists of Japan, 2006: 1-4.
[166] RUIGROK E, GIBBONS S, WAPENAAR K. Cross-correlation beamforming[J]. Journal of Seismology, 2017, 21(3):495-508.
[167] YANG Y, RITZWOLLER M H. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochemistry, Geophysics, Geosystems, 2008, 9(2).
[168] WANG Z, NIU F, HUANG J, et al. Distribution of rayleigh wave microseisms constrained by multiple seismic arrays[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022084.
[169] OKADA H, SUTO K. The microtremor survey method[M]. [S.l.]: Society of Exploration Geophysicists, 2003.
[170] DA COL F, PAPADOPOULOU M, KOIVISTO E, et al. Application of surface-wave tomography to mineral exploration: a case study from siilinjärvi, finland[J]. Geophysical Prospecting,2020, 68(1-Cost-Effective and Innovative Mineral Exploration Solutions):254-269.
[171] COLOMBERO C, PAPADOPOULOU M, KAUTI T, et al. Surface-wave tomography for mineral exploration: a successful combination of passive and active data (siilinjärvi phosphorus mine, finland)[J]. Solid Earth, 2022, 13(2):417-429.
[172] DENG B, LI J, LIU J, et al. The extended range phase shift method for broadband surface wave dispersion measurement from ambient noise and its application in ore deposit characterization [J]. Geophysics, 2022, 87(3):JM29-JM40.
[173] CHENG F, XIA J, AJO-FRANKLIN J B, et al. High-resolution ambient noise imaging of geothermal reservoir using 3c dense seismic nodal array and ultra-short observation[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(8):e2021JB021827.
[174] LEVSHIN A L, PISARENKO V, POGREBINSKY G. On a frequency-time analysis of oscillations[ C]//Annales de geophysique: volume 28. [S.l.]: Centre National de la Recherche Scientifique, 1972: 211-218.
[175] LEVSHIN A, RATNIKOVA L, BERGER J. Peculiarities of surface-wave propagation across central eurasia[J]. Bulletin of the Seismological Society of America, 1992, 82(6):2464-2493.
[176] YAO H, XU G, ZHU L, et al. Mantle structure from inter-station rayleigh wave dispersion and its tectonic implication in western china and neighboring regions[J]. Physics of the Earth and Planetary Interiors, 2005, 148(1):39-54.
[177] EKSTRÖM G, ABERS G A, WEBB S C. Determination of surface-wave phase velocities across usarray from noise and aki’s spectral formulation[J]. Geophysical Research Letters, 2009, 36 (18).
[178] PARK C B, MILLER R D, XIA J. Imaging dispersion curves of surface waves on multi-channel record[J]. Seg Technical Program Expanded Abstracts, 1998:1377-1380.
[179] PARK C, MILLER R, RYDÉN N, et al. Combined use of active and passive surface waves[J]. Journal of Environmental & Engineering Geophysics, 2005, 10(3):323-334.
[180] SÁNCHEZ-SESMA F J, CAMPILLO M. Retrieval of the green’s function from cross correlation: the canonical elastic problem[J]. Bulletin of the Seismological Society of America, 2006, 96(3):1182-1191.
[181] SHEN Y, REN Y, GAO H, et al. An improved method to extract very-broadband empirical green’s functions from ambient seismic noise[J]. Bulletin of the Seismological Society of America, 2012, 102(4):1872-1877.
[182] LUCO J E, APSEL R J. On the green’s functions for a layered half-space. part i[J]. Bulletin of the Seismologial Society of America, 1983, 73(4):909-929.
[183] KENNETT B. Seismic wave propagation in stratified media[J]. Geophysical Journal, 1986, 86 (1):219-220.
[184] CHEN X. A systematic and efficient method of computing normal modes for multilayered halfspace[ J]. Geophysical Journal International, 1993, 115(2):391-409.
[185] CHEN X. Seismogram synthesis in multi-layered half-space part ￿. theoretical formulations[J]. Earthquake Research in China, 1999(02):53-78.
[186] ARFKEN G B, WEBER H J, HARRIS F E. Mathematical methods for physicists : a comprehensive guide[J]. Physics Today, 2013, 20(5):79-79.
[187] NAKAHARA H. A systematic study of theoretical relations between spatial correlation and green’s function in one-, two-and three-dimensional random scalar wavefields[J]. Geophysical Journal International, 2006, 167(3):1097-1105.
[188] HERRMANN R B. Computer programs in seismology: An evolving tool for instruction and research[J]. Seismological Research Letters, 2013, 84(6):1081-1088.
[189] FORBRIGER T. Inversion of shallow-seismic wavefields: II. Inferring subsurface properties from wavefield transforms[J]. Geophysical Journal International, 2003, 153(3):735-752.
[190] ZHOU J, CHEN X. Removal of crossed artifacts from multimodal dispersion curves with modified frequency–bessel method[J]. Bulletin of the Seismological Society of America, 2022, 112 (1):143-152.
[191] SAVITZKY A, GOLAY M J. Smoothing and differentiation of data by simplified least squares procedures.[J]. Analytical Chemistry, 1964, 36(8):1627-1639.
[192] XIA J, MILLER R D, PARK C B. Estimation of near-surface shear-wave velocity by inversion of rayleigh waves[J]. Geophysics, 1999, 64(3):691-700.
[193] BYRD R H, LU P, NOCEDAL J, et al. A limited memory algorithm for bound constrained optimization[J]. SIAM Journal on Scientific Computing, 1995, 16(5):1190-1208.
[194] BROCHER T M. Empirical relations between elastic wavespeeds and density in the earth’s crust[J]. Bulletin of the seismological Society of America, 2005, 95(6):2081-2092.
[195] CAMPILLO M, PAUL A. Long-range correlations in the diffuse seismic coda[J]. Science, 2003, 299(5606):547-549.
[196] ROUX P, SABRA K G, GERSTOFT P, et al. P-waves from cross-correlation of seismic noise [J]. Geophysical Research Letters, 2005, 32(19).
[197] ARDHUIN F, GUALTIERI L, STUTZMANN E. How ocean waves rock the earth: Two mechanisms explain microseisms with periods 3 to 300 s[J]. Geophysical Research Letters, 2015, 42 (3):765-772.
[198] NOAA. National hurricane center and central pacific hurricane center[Z]. [S.l.: s.n.], 2020.
[199] YING Y, BEAN C, BROMIRSKI P. Propagation of microseisms from the deep ocean to land [J/OL]. Geophysical Research Letters, 2014, 41:6374-6379. DOI: 10.1002/2014GL060979.
[200] BROMIRSKI P, STEPHEN R, GERSTOFT P. Are deep-ocean-generated surface-wave microseisms observed on land?[J]. Journal of Geophysical Research (Solid Earth), 2013, 118: 3610-3629.
[201] SENS-SCHÖNFELDER C, SNIEDER R, STÄHLER S C. The lack of equipartitioning in global body wave coda[J]. Geophysical Research Letters, 2015, 42(18):7483-7489.
[202] YAO H, VAN DER HILST R D. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to se tibet[J]. Geophysical Journal International, 2009, 179(2):1113-1132.
[203] TOLMAN H L, et al. User manual and system documentation of wavewatch iii tm version 3.14 [J]. Technical note, MMAB Contribution, 2009, 276(220).
[204] TAYFUN M A. Narrow-band nonlinear sea waves[J]. Journal of Geophysical Research: Oceans, 1980, 85(C3):1548-1552.
[205] WIKIPEDIA. Significant wave height[Z]. [S.l.: s.n.], 2014.
[206] SEJDIĆ E, DJUROVIĆ I, JIANG J. Time–frequency feature representation using energy concentration: An overview of recent advances[J]. Digital Signal Processing, 2009, 19(1):153-183.
[207] ARDHUIN F, GUALTIERI L, STUTZMANN E, et al. Physics of ambient noise generation by ocean waves[J]. Seismic Ambient Noise, 2019:69-108.
[208] TRAMPERT J, WOODHOUSE J H. Global phase velocity maps of love and rayleigh waves between 40 and 150 seconds[J]. Geophysical Journal International, 1995, 122(2):675-690.
[209] RITZWOLLER M H, LEVSHIN A L. Eurasian surface wave tomography: Group velocities[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B3):4839-4878.
[210] EKSTRÖM G. A global model of love and rayleigh surface wave dispersion and anisotropy, 25-250 s[J]. Geophysical Journal International, 2011, 187(3):1668-1686.
[211] CHAMARCZUK M, MALINOWSKI M, DRAGANOV D, et al. Reflection imaging of complex geology in a crystalline environment using virtual-source seismology: case study from the kylylahti polymetallic mine, finland[J]. Solid Earth, 2022, 13(3):705-723.
[212] ELBRA T, KARLQVIST R, LASSILA I, et al. Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland[J]. Geophysical Journal International, 2011, 184(1):405-415.
[213] BALAKRISHNA S, RAMANA Y V. Integrated studies of the elastic properties of some indian rocks[M]. [S.l.]: American Geophysical Union (AGU), 2012: 489-500.
[214] KERN H. Measuring and modeling of p-and s-wave velocities on crustal rocks: a key for the interpretation of seismic reflection and refraction data[J]. International Journal of Geophysics, 2011, 2011.
[215] KIM E J, SHIN D, SHIN S, et al. Skarn zonation and rock physical properties of the wondong fe-pb-zn polymetallic deposit, korea[J]. Geosciences Journal, 2015, 19(4):587-598.
[216] CHRISTENSEN N I. Seismic properties of rocks[M]. Dordrecht: Springer Netherlands, 2011: 1173-1178.

所在学位评定分委会
力学
国内图书分类号
O343.7
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543891
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
冯旭平. 频率-贝塞尔变换在风暴期间面波提取和矿区面波勘探中的应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930721-冯旭平-地球与空间科学(40678KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[冯旭平]的文章
百度学术
百度学术中相似的文章
[冯旭平]的文章
必应学术
必应学术中相似的文章
[冯旭平]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。