[1] ROSE G. De Novis Quibusdam Fossilibus, Quae in Montibus Uraliis Inveniuntur[J]. Annals of Physics, 1839, 48: 558.
[2] LI X, CAO M, YU F, et al. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications[J]. Small, 2017, 13: 1603996.
[3] YANG G, TAO H, QIN P, et al. Recent Progress in Electron Transport Layers for Efficient Perovskite Solar Cells[J]. Journal of Materials Chemistry A, 2016, 4: 3970.
[4] KIM Y H, WOLF C, KIM H, et al. Charge Carrier Recombination and Ion Migration in Metal−Halide Perovskite Nanoparticle Films for Efficient Light−Emitting Diodes[J]. Nano Energy, 2018, 52:329.
[5] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut[J]. Nano Letters, 2015, 15: 3692–3696.
[6] HUANG J L, SU B B, SONG E, et al. Ultra–Broad–Band–Excitable Cu(I)−Based Organometallic Halide with Near-Unity Emission for Light–Emitting Diode Applications[J]. Chemistry of Materials, 2021: 33, 4382–4389.
[7] JEON N J, NOH J H, YANG W S, et al. Compositional Engineering of Perovskite Materials for High−Performance Solar Cells[J]. Nature, 2015, 517: 476.
[8] SALIBA M, MATSUI T, DOMANSKI K, et al. Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance[J]. Science, 2016, 354: 206−209.
[9] ZHAO B, BAI S, KIM V, et al. High−Efficiency Perovskite−Polymer Bulk Heterostructure Light−Emitting Diodes[J]. Nature Photonics, 2018, 12: 783−789.
[10] CAO Y, WANG N, TIAN H, et al. Perovskite Light−Emitting Diodes Based on Spontaneously Formed Submicrometre−Scale Structures[J]. Nature, 2018, 562: 249−253.
[11] SHOAIB M, ZHANG X, WANG X, et al. Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High−Performance Photodetectors[J]. Journal of the American Chemical Society, 2017, 139: 15592−15595.
[12] XU L J, LIN X, HE Q, et al. Highly Efficient Eco−Friendly X−Ray Scintillators Based on An Organic Manganese Halide[J]. Nature Communications, 2020, 11: 4329.
[13] CHEN D, CHEN X. Luminescent Perovskite Quantum Dots: Synthesis, Microstructures, Optical Properties and Applications[J]. Journal of Materials Chemistry C, 2019, 7: 1413−1446.
[14] LU C H, BIESOLD−MCGEE G V, LIU Y J, et al. Doping and Ion Substitution in Colloidal Metal Halide Perovskite Nanocrystals[J]. Chemical Society Reviews, 2020, 49: 4953−5007.
[15] GOLDSCHMIDT V M. Die Gesetze der Krystallochemie[J]. Naturwissenschaften, 1926,4: 477−485.
[16] LI Z, YANG M, PARK J S, et al. Stabilizing Perovskite Structures by Turning Tolerance Factor: Fomation of Formamidinium and Cesium Lead Iodide Solid−State Alloys[J]. Chemistry of Materials, 2015, 28: 284−292.
[17] SUN S Q, LU M, GAO X, et al. 0D Perovskites: Unique Properties, Synthesis, and Their Applications[J]. Advanced Science, 2021, 8: 2102689.
[18] MATTEW D S, HEMAMALA I. K. White−Light Emission from Layered Halide Perovskites[J]. Accounts of Chemical Research, 2018, 51: 619−627.
[19] YUAN Z, ZHOU C K, TIAN Y, et al. One−Dimensional Organic Lead Halide Perovskites with Efficient Bluish White−Light Emission[J]. Nature Communications, 2017, 8: 14051.
[20] ZHANG W F, PAN W J, XU T, et al. One−Dimensional Face−Shared Perovskites with Broad−Band Bluish White−Light Emissions[J]. Inorganic Chemistry, 2020, 59: 14085−14092.
[21] SU B B, XIA Z G, Research Progresses of Photoluminescence and Application for Emerging Zero-dimensional Metal Halides Luminescence Materials[J]. Chinese Journal of Luminescence, 2021, 42: 733−754.
[22] WANG Z L, YANG Z Y, WANG N, et al. Single−Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for WLEDs[J]. Advanced Optical Materials, 2020, 8: 1901512.
[23] ZHOU Y, YU C, SONG E, et al. Three Birds with One Stone: K2SiF6:Mn4+ Single Crystal Phosphors for High−Power and Laser−Driven Lighting[J]. Advanced Optical Materials, 2020, 8: 2000976.
[24] ZHANG Y, LIU Y, LI Y, et al. Perovskite CH3NH3Pb (BrxI1−x)3 Single Crystals with Controlled Composition for Fine−Tuned Bandgap Towards Optimized Optoelectronic Applications[J]. Journal of Materials Chemistry C, 2016, 4: 9172–9178.
[25] ZHANG Y, LIU Y, YANG Z, et al. High−Quality Perovskite MAPbI3 Single Crystals for Broad−Spectrum and Rapid Response Integrate Photodetector[J]. Journal of Energy Chemistry, 2018, 27: 722–727.
[26] LIAN Z, YAN Q, GAO T, et al. Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Censity Toward 108 cm −3[J]. Journal of the American Chemical Society, 2016, 138: 9409–9412.
[27] DONG Q, FANG Y, SHAO Y, et al. Electron−Hole Diffusion Lengths>175 μm in Solution−Grown CH3NH3PbI3 Single Crystals[J]. Science, 2015, 347: 967–970.
[28] MITZI D B, FEILD C A, SCHLESINGER Z, et al. Transport, Optical, and Magnetic Properties of The Conducting Halide Perovskite CH3NH3SnI3[J]. Journal of Solid–State Chemistry, 1995, 114: 159–163.
[29] LIAN Z P, YAN Q F, LV Q R, et al. High−Performance Planar−Type Photodetector on (100) Facet of MAPbI3 Single Crystal[J]. Scientific Reports, 2015, 5:16563.
[30] SAIDAMINOW M I, ABDELHADY A L, MURALI B, et al. High−Quality Bulk Hybrid Perovskite Single Crystals within Minutes by Inverse Temperature Crystallization[J]. Nature Communications, 2015, 6: 7586.
[31] GUO Y X, YIN X T, LIU J, et al. Highly Efficient CsPbIBr2 Perovskite Solar Cells with Efficiency over 9.8% Fabricated Using a Preheating−Assisted Spin−Coating Method[J]. Journal of Materials Chemistry A, 2019, 7: 19008–19016.
[32] IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 Cuboids with Controlled Size for High−Efficiency Perovskite Solar Cells[J]. Nature Nanotechnology, 2014, 9: 927–932.
[33] LIU X Y, TAN X H, LIU Z Y, et al. Boosting the Efficiency of Carbon−Based Planar CsPbBr3 Perovskite Solar Cells by A Modified Multistep Spin−Coating Technique and Interface Engineering[J]. Nano Energy, 2019, 56: 184–195.
[34] MURALI B, SAIDAMINOW M I, ABDELHADY A L, et al. Robust and Air−Stable Sandwiched Organo−Lead Halide Perovskites for Photodetector Applications[J]. Journal of Materials Chemistry C, 2016, 4: 2545–2552.
[35] LI Y C, WANG C Y, HU G C, et al. Promoting the Doping Efficiency and Photoluminescence Quantum Yield of Mn−Doped Perovskite Nanocrystals via Two−Step Hot−Injection[J]. Chemical Communications, 2022, 58: 941–944.
[36] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright Light−Emitting Diodes Based on Organometal Halide Perovskite[J]. Nature Nanotechnology, 2014, 9: 687–692.
[37] LIN K, XING J, QUAN L N, et al. Perovskite Light−Emitting Diodes with External Quantum Efficiency Exceeding 20 Percent[J]. Nature, 2018, 562: 245−248.
[38] KIM J S, HEO J M, PARK G S. et al. Ultra−Bright, Efficient and Stable Perovskite Light−Emitting Diodes[J]. Nature,2022, 611: 688–694.
[39] WANG J, CHEN H, WEI S H, et al. Materials Design of Solar Cell Absorbers Beyond Perovskites and Conventional Semiconductors via Combining Tetrahedral and Octahedral Coordination[J]. Advanced Materials, 2019, 31: 1806593.
[40] AKIHIRO K, KENJIRO T, YASUO S, et al. Organometal Halide Perovskites as Visible−Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society, 2009, 131: 6050–6051.
[41] National Renewable Energy Laboratory USA. Best Research−Cell Efficiencies [EB/OL].
[2023−03−13], https://www.nrel.gov/pv/cell−efficiency.html.
[42] IM J H, LEE C R, PARK S W, et al. 6.5% Efficient Perovskite Quantum−Dot−Sensitized Solar Cell[J]. Nanoscale. 2011, 3: 4088−4093.
[43] KIM H S, LEE C R, IM J H, et al. Lead Iodide Perovskite Sensitized All−Solid−State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2: 591.
[44] BURSCHKA J L, PELLET N, MOON S J, et al. Sequential Deposition as A Route to High−Performance Perovskite−Sensitized Solar Cells[J]. Nature, 2013, 499: 316−319.
[45] JIANG Q, ZHAO Y, ZHANG X. et al. Surface Passivation of Perovskite Film for Efficient Solar Cells[J]. Nature Photonics, 2019, 13: 460–466.
[46] MIN H, LEE D Y, KIM J, et al. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO2 Electrodes[J]. Nature, 2021, 598: 444–450.
[47] PARK S, CHANG W, LEE C, et al. Photocatalytic Hydrogen Generation from Hydriodic Acid Using Methylammonium Lead Iodide in Dynamic Equilibrium with Aqueous Solution[J]. Nature Energy, 2017, 2: 16185.
[48] XIAO M, HAO M M, LYU M Q, et al. Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Light–Driven Hydrogen Generation[J]. Advanced Functional Materials, 2019, 29: 1905683.
[49] XU Y F, YANG M Z, CHEN B X, et al. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction[J]. Journal of the American Chemical Society, 2017, 139: 5660–5663.
[50] LI S R, LUO J J, LIU J, et al. Self–Trapped Excitons in All–Inorganic Halide Perovskites: Fundamentals, Status, and Potential Applications [J]. The Journal of Physical Chemistry Letters, 2019, 10: 1999–2007.
[51] EIJK C W. Cross–Luminescence[J]. Journal of Luminescence, 1994, 60: 936–941.
[52] FRENKEL J. On the Transformation of Light into Heat in Solids. II [J]. Physical Review, 1931, 37: 1276–1294.
[53] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing Optoelectronic Properties of Metal Halide Perovskites[J]. Chemical Reviews, 2016, 116: 12956–13008.
[54] SAPAROV B, MITZI D B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design[J]. Chemical Reviews, 2016, 116: 4558–4596.
[55] CHEN P, BAI Y, WANG S, et al. In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells[J]. Advanced Functional Materials, 2018, 28: 1706923.
[56] GIEBINK N C, WIEDERRECHT G P, WASIELEWSKI M R, et al. Ideal Diode Equation for Organic Heterojunctions. I. Derivation and Application [J]. Physical Review B Condensed Matter, 2010, 82: 1456–1461.
[57] AGRANOVICH V M, GARTSTEIN Y N, LITINSKAYA M. Hybrid Resonant Organic–Inorganic Nanostructures for Optoelectronic Applications [J]. Chemical Reviews, 2011, 111: 5179–5214.
[58] CHO H, JEONG S H, PARK M H, et al. Overcoming the Electroluminescence Efficiency Limitations of Perovskite Light–Emitting Diodes [J]. Science, 2015, 350: 1222–1225.
[59] HONG K, VAN LE Q, KIM S Y, et al. Low–Dimensional Halide Perovskites: Review and Issues [J]. Journal of Materials Chemistry C, 2018, 6: 2189–2209.
[60] LIN H R, ZHOU C K, TIAN Y, et al. Low–Dimensional Organometal Halide Perovskites [J]. ACS Energy Letters, 2017, 3: 54–62.
[61] LI Z C, LIU W W, CHENG H, et a1. Spin−Selective Transmission and Devisable Chirality in Two−Layer Metasurfaces[J]. Scientific Reports, 2017, 7: 8204.
[62] TAMURA K, SCHIMMEL P R. Chiral−Selective Aminoacylation of All RNA Minihelix: Mechanistic Features and Chiral Suppression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 13750−13752.
[63] LONGHI G, CASTIGLIONI E, KOSHOUBU J, et a1. Circularly Polarized Luminescence: A Review of Experimental and Theoretical Aspects[J] Chirality, 2016, 28: 696–707.
[64] WONG H Y, LO W S, YIM K H, et a1. Chirality and Chiroptics of Lanthanide Molecular and Supramolecular Assemblies[J]. Chem, 2019, 5,3058–3095.
[65] FREDERICK S. RICHARDSON, JAMES P R. Circularly polarized luminescence spectroscopy[J]. Chemical Reviews, 1977, 77: 773–792.
[66] SCHADT M, Liquid Crystal Materials and Liquid Crystal Displays[J]. Annual Review of Materials Science 1997, 27: 305–379.
[67] WAGENKNECHT C, LI M C, REINGRUBEER A, et a1. Experimental Demonstration of a Heralded Entanglement Source[J]. Nature Photonics, 2010, 4: 549–552.
[68] YANG Y, ROSENILDO C C, FUCHTER M J, et a1. Circularly Polarized Light Detection by A Chiral Organic Semiconductor Transistor[J]. Nature Photonics,2013, 7: 634–638.
[69] ZINNA F, GIOVANELLA U, BAR L D. Highly Circularly Polarized Electroluminescence from A Chiral Europium Complex[J]. Advanced Materials, 2015, 27: 1791–1795.
[70] YANG D, HAN J, LIU M, et al. Photon Upconverted Circularly Polarized Luminescence via Triplet–Triplet Annihilation[J]. Advanced Materials, 2019, 31: 1805683.
[71] ZHAO T, HAN J, JIN X, et al. Enhanced Circularly Polarized Luminescence from Reorganized Chiral Emitters on The Skeleton of a Zeolitic Imidazolate Framework[J]. Angewandte Chemie, 2019, 58: 4978–4982.
[72] LI B, YU Y, XING G X, et al. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials[J]. Progress in Chemistry, 2022, 34: 2340–2350.
[73] BILLING D G, LEMMERER A. Bis–[(S)–β–Phenethyl–Ammonium] Tri–Bromo–Plumbate (II)[J]. Acta Crystallographica, 2003, 59: 381–383.
[74] KIM Y H, ZHAI Y, GAULDING E A, et al. Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic–Inorganic Hybrid Perovskite Nanocrystals[J]. ACS Nano, 2020, 14: 8816-8825.
[75] JIAN Z, ZHANG T, DONG X Y, et al. Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides[J]. Journal of the American Chemical Society, 2019, 141: 15755–15760.
[76] MA J Q, CHEN F, CHAO C, et al. Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence[J]. ACS Nano, 2019, 13: 3659–3665.
[77] SU R, DIEDERICJS C, WANG J, et al. Room–Temperature Polariton Lasing in All–Inorganic Perovskite Nanoplatelets[J]. Nano Letters, 2017, 17: 3982–3988.
[78] HU H, DONG B H, ZHANG W. Low–Toxic Metal Halide Perovskites: Opportunities and Future Challenges[J]. Journal of Materials Chemistry A, 2017, 5: 11436–11449
[79] XIAO Z W, SONG Z N, YAN Y F. From Lead Halide Perovskites to Lead–Free Metal Halide Perovskites and Perovskite Derivatives[J]. Advanced Materials, 2019, 31: 18037922.
[80] ZHOU L, LIAO J, HUANG Z G, et al. Intrinsic Self–Trapped Emission in 0D Lead–Free (C4 H14N2)2In2Br10 Single Crystal[J]. Angewandte Chemie International Edition, 2019, 58: 15435–15440
[81] HAN P G, LUO C, YANG S Q, et al. All–Inorganic Lead–Free 0D Perovskites by a Doping Strategy to Achieve a PLQY Boost from <2 % to 90 %[J]. Angewandte Chemie International Edition, 2020, 59: 12709–12713.
[82] TAN Z F, CHU Y M, CHEN J X, et al. Lead–Free Perovskite Variant Solid Solutions Cs2Sn1–xTexCl6: Bright Luminescence and High Anti–Water Stability[J]. Advanced Materials.2020, 32: 2002443.
[83] ZHOU Q, DOLGOV L, SRIVASTAVA A M, et al. Mn2+ and Mn4+ Red Phosphors: Synthesis, Luminescence and Applications in WLEDs[J]. Journal of Materials Chemistry C.2018, 6: 2652–2671.
[84] WANG X J, JIA D, YEN W M. Mn2+ Activated Green, Yellow, and Red Long Persistent Phosphors[J]. Journal of Luminescence, 2003, 102103: 34–37.
[85] PRADHAN N. Mn–Doped Semiconductor Nanocrystals: 25 Years and Beyond[J]. Journal of Physical Chemistry Letters, 2019, 10:2574–2577.
[86] DAVID M L, COTTON F A. Phosphine Oxide Complexes. Part V. Tetrahedral Complexes of Manganese (II) Containing Triphenylphosphine Oxide, and Triphenylarsine Oxide as Ligands[J]. Journal of the Chemical Society, 1961, 726: 3735–3741.
[87] SONG E H, YE S, LIU T H, et al. Tailored Near–Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super–Exchange between Divalent Manganese Ions[J]. Advanced Science, 2015, 2: 1500089.
[88] ZOU S H, LIU Y S, LI J H, et al. Stabilizing Cesium Lead Halide Perovskite Lattice through Mn (II) Substitution for Air–Stable Light–Emitting Diodes[J]. Journal of the American Chemical Society, 2017, 139: 11443–11450.
[89] PENG B, ZHANG H, SHAO H Z, et al. Chemical Intuition for High Thermoelectric Performance in Monolayer Black Phosphorus, α–arsenene and aW–antimonene[J]. Journal of Materials Chemisrty A, 2018, 6: 2018–2033
[90] XU L J, SUN C Z, XIAO H, et al. Green–Light–Emitting Diodes Based on Tetrabromide Manganese (II) Complex through Solution Process[J]. Advanced Materials, 2017, 29: 1605739.
[91] BALSAMY S, NATARAJAN P, VEDALAKSHMI R, et al Triboluminescence and Vapor–Induced Phase Transitions in the Solids of Methyltriphenylphosphonium Tetrahalomanganate(II) Complexes[J]. Inorganic Chemistry, 2014, 53: 6054−6059.
[92] ZHANG Y, LIAO W Q, FU D W, et al. The First Organic−Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3[J]. Advanced Materials. 2015, 27: 3942–3946.
[93] ZHANG Y, LIAO W Q, FU D W, et al. Highly Efficient Red−Light Emission in An Organic−Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl3[J]. Journal of the American Chemical Society, 2015, 137: 4928–4931.
[94] YE H Y, ZHOU Q H, NIU X H, et al. High–Temperature Ferroelectricity and Photoluminescence in a Hybrid Organic–Inorganic Compound: (3–Pyrrolinium)MnCl3[J]. Journal of the American Chemical Society, 2015, 137: 13148–13154.
[95] SHI P P, TANG Y Y, LI P F, et al. Symmetry Breaking in Molecular Ferroelectrics[J]. Chemical Society Reviews, 2016, 45: 3811–3827.
[96] ZHANG W Y, YE Q, FU D W, et al. Optoelectronic Duple Bistable Switches: A Bulk Molecular Single Crystal and Unidirectional Ultraflexible Thin Film Based on Imidazolium Fluorochromate[J]. Advanced Functional Materials,2017, 27: 1603945.
[97] LV X H, LIAO W Q, LI P F, et al. Dielectric and Photoluminescence Properties of a Layered Perovskite–Type Organic–Inorganic Hybrid Phase Transition Compound: NH3(CH2)5NH3MnCl4[J]. Journal of Materials Chemistry C,2016, 4: 1881–1885.
[98] LAWSON K. Optical Studies of Electronic Transitions in Hexa–and Tetracoordinated Mn2+ Crystals[J]. Journal of Chemical Physics, 1967, 47: 3627–3633.
[99] STOUT J W. Absorption Spectrum of Manganous Fluoride[J]. Journal of Chemical Physics, 1959, 31: 709–719.
[100] GAO J X, ZHANG W Y, WU Z G, et al. Enantiomorphic Perovskite Ferroelectrics with Circularly Polarized Luminescence[J]. Journal of the American Chemical Society,2020, 142: 4756–4761.
[101] YAO L, NIU G, LI J, et al. Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters[J]. The Journal of Physical Chemistry Letters, 2020, 11: 1255–1260.
[102] LI S, DONG X Y, QI K S, et al. Full–Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from The Co–Assembly of Chiral Silver(I) Clusters and Dyes[J]. Journal of the American Chemical Society, 2021, 143: 20574–20578
[103] LONG G, SABATINI R, SAIDAMINOV M I, et al. Chiral–Perovskite Optoelectronics[J]. Nature Reviews Materials, 2020, 5: 423–439.
[104] LONG G K, JIANG C Y, SABATINI R, et al. Spin Control in Reduced–Dimensional Chiral Perovskites. Nature Photonics, 2018, 12: 528–533.
[105] HU M, YE F Y, DU C, et al. Tunable Circularly Polarized Luminescence from Single Crystal and Powder of the Simplest Tetraphenylethylene Helicate[J]. ACS Nano, 2021, 15: 16673–16682.
[106] WANG J, FANG C, MA J Q, et al. Aqueous Synthesis of Low–Dimensional Lead Halide Perovskites for Room–Temperature Circularly Polarized Light Emission and Detection[J]. ACS Nano, 2019, 13: 9473–9481.
[107] WEI Y, LI C, LI Y W, et al. Circularly Polarized Luminescence from Zero–Dimensional Hybrid Lead–Tin Bromide with Near–Unity Photoluminescence Quantum Yield[J]. Angewandte Chemie International Edition, 2022, 61: e202212685.
[108] MA J Q, FANG C, CHEN C, et al. Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence[J]. ACS Nano, 2019, 13: 3659–3665.
[109] HAN C, BRADFORD A J, SLAWIN M Z, et al. Structural Features in Some Layered Hybrid Copper Chloride Perovskites: ACuCl4 or A2CuCl4[J]. Inorganic Chemistry, 2021, 60: 11014–11024.
[110] HAN C, BRADFORD A J, MCNULTY J A, et al. Polarity and Ferromagnetism in Two–Dimensional Hybrid Copper Perovskites with Chlorinated Aromatic Spacers[J]. Chemistry of Materials, 2022, 34: 2458–2467.
[111] HAN C, BRADFORD A J, MCNULTY J A, et al. Polar Ferromagnet Induced by Fluorine Positioning in Isomeric Layered Copper Halide Perovskites[J]. Inorganic Chemistry, 2022, 61: 3230–3239.
[112] FORD P C, CARIATI E, BOURASSA J. Photoluminescence Properties of Multinuclear Copper(I) Compounds[J]. Chemical Reviews, 1999, 99: 3625–3648.
[113] ZHANG X, LIU W, WEI G Z, et al. Systematic Approach in Designing Rare–Earth–Free Hybrid Semiconductor Phosphors for General Lighting Applications[J]. Journal of the American Chemical Society, 2014, 136: 14230–14236.
[114] LIU W, FANG Y, LI J. Copper Iodide Based Hybrid Phosphors for Energy−Efficient General Lighting Technologies[J]. Advanced Functional Materials, 2018, 28: 1705593.
[115] TROYANO J, ZAMORA F, DELGADO S. Copper(Ⅰ)–iodide cluster structures as functional and processable platform materials[J]. Chemical Society Reviews, 2021, 50: 4606–4628.
[116] WANG S X, MORGAN E E, PANUGANTI S, et al. Ligand Control of Structural Diversity in Luminescent Hybrid Copper(I) Iodides[J]. Chemistry of Materials, 2022, 34: 3206–3216.
[117] MAO L L, CHEN J, VISHNOI P, et al. The Renaissance of Functional Hybrid Transition–Metal Halides[J]. Accounts of Materials Research, 2022, 3: 439–448.
[118] LIU W, FANG Y, WEI G Z, et al. A Family of Highly Efficient CuI–Based Lighting Phosphors Prepared by a Systematic, Bottom–up Synthetic Approach[J]. Journal of the American Chemical Society, 2015, 137: 9400–9408.
[119] LIU W, ZHU K, TEAT, S J, et al. All–in–One: Achieving Robust, Strongly Luminescent and Highly Dispersible Hybrid Materials by Combining Ionic and Coordinate Bonds in Molecular Crystals[J]. Journal of the American Chemical Society, 2017, 139: 9281–9290.
[120] WANG J J, ZHOU H Y, YANG J N, et al. Chiral Phosphine–Copper Iodide Hybrid Cluster Assemblies for Circularly Polarized Luminescence[J]. Journal of the American Chemical Society, 2021, 143: 10860–10864.
[121] JI X Q, GENG S N, ZHANG S, et al. Chiral 2D Cu(I) Halide Frameworks[J]. Chemistry of Materials, 2022, 34: 8262–8270.
[122] KITAGAAWA H, OZAWA Y, TORIUMI. Flexibility of Cubane–Like Cu4I4 Framework: Temperature Dependence of Molecular Structure and Luminescence Thermochromism of [Cu4I4(PPh3)4] in Two Polymorphic Crystalline States[J]. Chemical Communications, 2010, 46: 6302–6304.
[123] PERRUCHAS S, GODD X F, MARON S B, et al. Mechanochromic and Thermochromic Luminescence of a Copper Iodide Cluster[J]. Journal of the American Chemical Society, 2010, 132: 10967–10969.
[124] SHAN X C, JIANG F L, CHEN L, et al. Using Cuprophilicity as a Multi–Responsive Chromophore Switching Color in Response to Temperature, Mechanical Force and Solvent Vapors[J]. Journal of Materials Chemistry C, 2013, 1: 4339–4349.
[125] WEI F, LIU X C, LIU Z W, et al. Structural and Photophysical Study of Copper(I) Iodide Complex with P^N or P^N^P ligand[J]. CrystEngComm, 2014, 16: 5338–5341.
[126] YUAN S, LIU S S, SUN D. Two Isomeric [Cu4I4] Luminophores: Solvothermal/Mechanochemical Syntheses, Structures and Thermochromic Luminescence Properties[J]. CrystEngComm, 2014, 16: 1927–1933.
[127] XU K, LIU B, ZHANG R, et al. From a Blue to White to Yellow Emitter: A Hexanuclear Copper Iodide Nanocluster[J]. Dalton Transactions, 2020, 49: 5859–5868.
[128] PRONOLD M, SCHEER M, WACHTER J, et al. Investigation into The Formation of Supramolecular Compounds from Mixed As/S–Ligand Complexes [(Cp*Mo)2As2S3] (Cp* = C5Me5) and Copper Halides[J]. Inorganic Chemistry, 2007, 46: 1396–1400.
[129] MOLL H E, CORDIER M, NOCTON G, et al. A Heptanuclear Copper Iodide Nanocluster[J]. Inorganic Chemistry, 2018, 57: 11961–11969.
[130] CHEN X C, ZHANG H B, CHEN L, et al. Multistimuli–Responsive Luminescent Material Reversible Switching Colors via Temperature and Mechanical Force[J]. Crystal Growth & Design, 2013, 13: 1377–1381.
[131] HUITOREL B, MOLL H E, UTRERA–MELERO R, et al. Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters[J]. Inorganic Chemistry, 2018, 57: 4328–4339.
[132] HUITOREL B, UTRERA–MELERO R, MASSUYEAU F. et al. Luminescence Mechanochromism of Copper Iodide Clusters: A Rational Investigation[J]. Dalton Transactions, 2019, 48: 7899–7906.
[133] HU Q S, ZHANG C K, WU X, et al. Highly Effective Hybrid Copper(I) Iodide Cluster Emitter with Negative Thermal Quenched Phosphorescence for X–Ray Imaging[J]. Angewandte Chemie International Edition, 2023, 62: e2022177.
[134] BONDI A. Van Der Waals Volumes and Radii[J]. The Journal of Physical Chemistry, 1964, 68: 441–451.
[135] MIAO H X, PAN X C, LI M, et al. A Copper Iodide Cluster–Based Coordination Polymer as an Unconventional Zero–Thermal–Quenching Phosphor[J]. Inorganic Chemistry, 2022, 61: 18779–18788.
[136] MAZZEO P P, MAINI L, PETROLATI A, et al. Phosphorescence Quantum Yield Enhanced by Intermolecular Hydrogen Bonds in Cu4I4 Clusters in the Solid State[J]. Dalton Transactions, 2014, 43: 9448–9455.
[137] FORD P C, VOGLER A. Photochemical and Photophysical Properties of Tetranuclear and Hexanuclear Clusters of Metals with d10 and s2 Electronic Configurations[J]. Accounts of Chemical Research, 1993, 26: 220–226.
[138] BI M G, LI G G, HUA J, et al. A Coordination Polymer of Copper(I) Iodide with 654 Topology Constructed from Cu4I4(DABCO)4[J]. CrystEngComm, 2007, 9: 984–992.
[139] SONG K H, WANG J J, FENG L Z, et al. Thermochromic Phosphors Based on One–Dimensional Ionic Copper–Iodine Chains Showing Solid–State Photoluminescence Efficiency Exceeding 99 %[J]. Angewandte Chemie International Edition, 2022, 61: e2022089.
[140] HU M, YE F Y, DU C, Tunable Circularly Polarized Luminescence from Single Crystal and Powder of the Simplest Tetraphenylethylene Helicate[J]. ACS Nano 2021, 15, 16673–16682.
[141] CHEN J, ZHANG S, PAN X, et al. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides[J]. Angewandte Chemie International Edition, 2022, 134: e202205906.
[142] GUO N, HUANG Y, YOU H, et al. Ca9Lu (PO4) 7: Eu2+, Mn2+: A Potential Single–Phased White–Light–Emitting Phosphor Suitable for White–Light–Emitting Diodes[J]. Inorganic Chemistry, 2010, 49: 10907–10913.
[143] TANIYASU Y, KASU M, MAKIMOTO T. An Aluminium Nitride Light–Emitting Diode with A Wavelength of 210 Nanometres[J]. Nature, 2006, 441: 325–328.
[144] LI Y Q, RIZZO A, CINGOLANI R, et al. Bright White–Light–Emitting Device from Ternary Nanocrystal Composites[J]. Advanced Materials, 2006, 18: 2545–2548.
[145] NIZAMOGLU S, ZENGIN G, DEMI H V. Color–Converting Combinations of Nanocrystal Emitters for Warm–White Light Generation with High Color Rendering Index[J]. Applied Physics Letters, 2008, 92: 031102.
[146] MAO L, WU Y, STOUMPOS C C, et al. Tunable White–Light Emission in Single–Cation–Templated Three–Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10–xClx[J]. Journal of the American Chemical Society, 2017, 139: 11956–11963.
[147] LIU W, LUSTING W P, LI J. Luminescent Inorganic–Organic Hybrid Semiconductor Materials for Energy–Saving Lighting Applications[J]. EnergyChem, 2019, 1: 100008.
[148] HEI X, TEAT S J, LI M, et al. Highly Soluble Copper(I) Iodide–Based Hybrid Luminescent Semiconductors Containing Molecular and One–Dimensional Coordinated Anionic Inorganic Motifs[J]. Journal of Materials Chemistry C, 2023, 11: 3086–3094.
[149] VITALE M, PALKE W E, FORD P C. Origins of The Double Emission of The Tetranuclear Copper (I) Cluster Cu4I4(pyridine)4: An Ab Initio Study[J]. The Journal of Physical Chemistry, 1992, 96: 8329–8336.
修改评论