[1] 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24.
[2] 邹才能, 熊波, 薛华庆, 等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发, 2021, 48(2): 411-420.
[3] 袁志逸, 李振宇, 康利平, 等. 中国交通部门低碳排放措施和路径研究综述[J]. 气候变化研究进展, 2021, 17(1): 27.
[4] 刘动, 孟晨旭, 潘正阳, 等. 居民小区经营性电动汽车充电站投资建设研究[J]. 电气技术, 2022, 23(6): 104-108.
[5] 李瑞忠, 陈铮, 苏宏田. 2018 年我国能源消费形势分析[J]. 煤炭经济研究, 2019, 39(7): 4-9.
[6] YUAN M, MAI J, LIU X, et al. Current Implementation and Development Countermeasures of Green Energy in China’s Highway Transportation[J]. Sustainability, 2023, 15(4): 3024.
[7] LI J, CHEN S, WU Y, et al. How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China[J]. Renewable and Sustainable Energy Reviews, 2021, 137: 110626.
[8] LI C, DONG Z, CHEN G, et al. Data-driven planning of electric vehicle charging infrastructure: a case study of Sydney, Australia[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3289-3304.
[9] 张宇轩, 郭力, 刘一欣, 等. 电动汽车充电负荷概率分布的数值建模方法[J]. 电力系统自动化, 2021.
[10] 张洪财, 胡泽春, 宋永华, 等. 考虑时空分布的电动汽车充电负荷预测方法[J]. 电力系统自动化, 2014, 38(1): 13-20.
[11] 陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225.
[12] 冯仕杰, 刘韬, 潘萨, 等. 基于分层优化的电动汽车有序充电策略[J]. 电气工程学报, 2021, 16(3): 137-144.
[13] 邵尹池, 穆云飞, 余晓丹, 等. “车-路-网” 模式下电动汽车充电负荷时空预测及其对配电网潮流的影响[J]. 中国电机工程学报, 2017, 37(18): 5207-5219.
[14] NANSAI K, TOHNO S, KONO M, et al. Effects of electric vehicles (EV) on environmental loads with consideration of regional differences of electric power generation and charging characteristic of EV users in Japan[J]. Applied energy, 2002, 71(2): 111-125.
[15] XIANG Y, JIANG Z, GU C, et al. Electric vehicle charging in smart grid: A spatial-temporal simulation method[J]. Energy, 2019, 189: 116221.
[16] 陈静鹏, 艾芊, 肖斐. 基于集群响应的规模化电动汽车充电优化调度[J]. 电力系统自动化, 2016, 40(22): 43-48.
[17] ZHANG X, KONG X, YAN R, et al. Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior[J]. Energy, 2023, 264: 126274.
[18] NEUMANN H M, SCHAR D, BAUMGARTNER F. The potential of photovoltaic carports to cover the energy demand of road passenger transport[J]. Progress in Photovoltaics: Research and Applications, 2012, 20(6): 639-649.
[19] BIRNIE III D P. Solar-to-vehicle (S2V) systems for powering commuters of the future[J]. Journal of Power Sources, 2009, 186(2): 539-542.
[20] GIANNOULI M, YIANOULIS P. Study on the incorporation of photovoltaic systems as an auxiliary power source for hybrid and electric vehicles[J]. Solar Energy, 2012, 86(1): 441-451.
[21] LEIBLE V, BESSLER W G. Passive hybridization of photovoltaic cells with a lithium-ion battery cell: An experimental proof of concept[J]. Journal of Power Sources, 2021, 482: 229050.
[22] SHAMSDIN S H, SEIFI A, ROSTAMI-SHAHRBABAKI M, et al. Plug-in electric vehicle optimization and management charging in a smart parking lot[C]//2019 IEEE Texas power and energy conference (TPEC). IEEE, 2019: 1-7.
[23] MOHAMED A, SALEHI V, MA T, et al. Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy[J]. IEEE Transactions on Sustainable Energy, 2013, 5(2): 577-586.
[24] CHEN Y, MEI S, ZHOU F, et al. An energy sharing game with generalized demand bidding: Model and properties[J]. IEEE Transactions on Smart Grid, 2019, 11(3): 2055-2066.
[25] CHAUDHARI K, UKIL A, KUMAR K N, et al. Hybrid optimization for economic deployment of ESS in PV-integrated EV charging stations[J]. IEEE Transactions on Industrial Informatics, 2017, 14(1): 106-116.
[26] YAO L, DAMIRAN Z, LIM W H. Optimal charging and discharging scheduling for electric vehicles in a parking station with photovoltaic system and energy storage system[J]. Energies, 2017, 10(4): 550.
[27] KOUKA K, MASMOUDI A, ABDELKAFI A, et al. Dynamic energy management of an electric vehicle charging station using photovoltaic power[J]. Sustainable Energy, Grids and Networks, 2020, 24: 100402.
[28] ELDEEB H, FADDEL S, MOHAMMED O A. Multi-objective optimization technique for the operation of grid tied PV powered EV charging station[J]. Electric Power Systems Research, 2018, 164: 201-211.
[29] MEHTA R, SRINIVASAN D, TRIVED A. Optimal charging scheduling of plug-in electric vehicles for maximizing penetration within a workplace car park[C]//2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016: 3646-3653.
[30] ZHANG P, SHAO W, QU H, et al. Study on charging strategy of electric vehicle parking lot based on improved PSO[C]//2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016: 4456-4460.
[31] MEHRJERDI H, HEMMATI R. Stochastic model for electric vehicle charging station integrated with wind energy[J]. Sustainable Energy Technologies and Assessments, 2020, 37: 100577.
[32] YAO L, LIM W H, TSAI T S. A real-time charging scheme for demand response in electric vehicle parking station[J]. IEEE Transactions on Smart Grid, 2016, 8(1): 52-62.
[33] WANG R, WANG P, XIAO G. Two-stage mechanism for massive electric vehicle charging involving renewable energy[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4159-4171.
[34] PENA-BELLO A, PARRA D, HERBERZ M, et al. Integration of prosumer peer-to-peer trading decisions into energy community modelling[J]. Nature Energy, 2022, 7(1): 74-82.
[35] 朱浩昊, 朱继忠, 李盛林, 等. 电-热综合能源系统优化调度综述[J]. Journal of Global Energy Interconnection, 2022, 5(4).
[36] 司方远, 汪晋宽, 韩英华, 等. 信息物理融合的智慧能源系统多级对等协同优化[J]. 自动化学报, 2019, 45(1): 84-97.
[37] 徐敏, 刘早富, 康哲. 计及光热电站和 “源荷” 双侧博弈的综合能源系统优化运行[J]. 电工电能新技术, 2022, 41(9): 27-39.
[38] 冯宜伟, 毋智军, 王鑫. 智能微网能源管理系统研究综述[J]. Smart Grid, 2020, 10: 312.
[39] AFRASIABI M, MOHAMMADI M, RASTEGAR M, et al. Stochastic distributed microgrid energy management based on over-relaxed alternative direction method of multipliers[J]. IET Renewable Power Generation, 2020, 14(14): 2639-2648
[40] ZHNAG C, WU J, ZHOU Y, et al. Peer-to-Peer energy trading in a Microgrid. Applied Energy[J], 2018, 220: 1-12.
[41] LONG C, WU J, ZHANG C, et al. Peer-to-peer energy trading in a community microgrid[C]//2017 IEEE power & energy society general meeting. IEEE, 2017: 1-5.
[42] LIU N, YU X,WANG C, et al. Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers. IEEE Transactions on Power Systems[J], 2017, 32(5): 3569-3583.
[43] SALDARRIAGA-ZULUAGA S D, LOPEZ-LEZAMA J M, MUNOZ-GALEANO N. Optimal coordination of over-current relays in microgrids using unsupervised learning techniques[J]. Applied Sciences, 2021, 11(3): 1241.
[44] ALOBAIDI A H, KHODAYAR M E, SHAHIDEHPOUR M. Decentralized energy management for unbalanced networked microgrids with uncertainty[J]. IET Generation, Transmission & Distribution, 2021, 15(13): 1922-1938.
[45] 张伟亮, 张辉, 支娜, 等. 考虑网络损耗的基于模型预测直流微电网群能量优化策略[J]. 电力系统自动化, 2021, 45(13): 49-56.
[46] CHEN Y, HAO L, YIN G. Distributed Energy Management of the Hybrid AC/DC Microgrid with High Penetration of Distributed Energy Resources Based on ADMM[J]. Complexity, 2021, 2021.
[47] 汪超群, 韦化, 吴思缘, 等. 七种最优潮流分解协调算法的性能比较[J]. 电力系统自动化, 2016, 40(6): 49-57.
[48] LI Q, LIAO Y, WU K, et al. Parallel and distributed optimization method with constraint decomposition for energy management of microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4627-4640.
[49] WANG Z,YU X, MU Y, et al. A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System. Applied Energy[J],2020, 260: 114327.
[50] AN J, LEE M, YEOM S, et al. Determining the Peer-to-Peer electricity trading price and strategy for energy prosumers and consumers within a microgrid. Applied Energy[J], 2020, 261: 114335.
[51] 金之钧, 白振瑞, 杨雷. 能源发展趋势与能源科技发展方向的几点思考[J]. 中国科学院院刊, 2020, 35(5): 576-582.
[52] RAJASEKARAN A S, AZEES M, AL-TURJMAN F. A comprehensive survey on blockchain technology[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102039.
[53] UR REHMAN M H, SALAH K, DAMIANI E, et al. Trust in blockchain cryptocurrency ecosystem[J]. IEEE Transactions on Engineering Management, 2019, 67(4): 1196-1212.
[54] ZAGHLOUL E, LI T, MUTKA M W, et al. Bitcoin and blockchain: Security and privacy[J]. IEEE Internet of Things Journal, 2020, 7(10): 10288-10313.
[55] TOYODA K, MACHI K, OHTAKE Y, et al. Function-level bottleneck analysis of private proof-of-authority ethereum blockchain[J]. IEEE Access, 2020, 8: 141611-141621.
[56] 龚钢军, 杨晟, 王慧娟, 等. 综合能源服务区块链的网络架构, 交互模型与信用评价[J]. 中国电机工程学报, 2020, 40(18).
[57] 赵升, 徐小舒, 吴征天. 区块链技术在分布式能源交易领域的创新应用[J]. 电器与能效管理技术, 2020 (11): 1.
[58] VIEIRA G, ZHANG J. Peer-to-peer energy trading in a microgrid leveraged by smart contracts[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110900.
[59] ESMAT A, DE VOS M, GHIASSI-FARROKHFAL Y, et al. A novel decentralized platform for peer-to-peer energy trading market with blockchain technology[J]. Applied Energy, 2021, 282: 116123.
[60] KUMARI A, SHUKLA A, GUPTA R, et al. ET-DeaL: A P2P smart contract-based secure energy trading scheme for smart grid systems[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2020: 1051-1056.
[61] 郭庆来, 王博弘, 田年丰, 等. 能源互联网数据交易: 架构与关键技术[J]. 电工技术学报, 2020, 35(11): 2285-2295.
[62] 张妍, 王龙泽, 吴靖, 等. 区块链与综合能源系统: 应用及展望[J]. 中国科学基金, 2020, 34(1): 31-37.
[63] HE Y, SONG Z, LIU Z. Fast-charging station deployment for battery electric bus systems considering electricity demand charges[J]. Sustainable Cities and Society, 2019, 48: 101530.
[64] 赵唯嘉, 张宁, 康重庆, 等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化, 2015 (16): 8-15.
[65] LOFBERG J. YALMIP: A toolbox for modeling and optimization in MATLAB[C]//2004 IEEE international conference on robotics and automation (IEEE Cat. No. 04CH37508). IEEE, 2004: 284-289.
[66] LYU C, JIA Y W, XU Z. Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles[J]. Applied Energy, 2021, 299: 117243.
[67] PAIHO S, KILJANDER J, SARALA R, et al. Towards cross-commodity energy-sharing communities–A review of the market, regulatory, and technical situation[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111568.
[68] 朱建全, 刘海欣, 叶汉芳, 等. 园区综合能源系统优化运行研究综述[J]. 高电压技术, 2022, 48(7): 2469-2482.
[69] 欧阳丽炜, 王帅, 袁勇, 等. 智能合约: 架构及进展[J]. 自动化学报, 2019, 45(3): 445-457.
[70] 平健, 陈思捷, 张宁, 等. 基于智能合约的配电网去中心化交易机制[J]. 中国电机工程学报, 2017, 37(13): 3682-3690.
[71] VYTELINGUM P, DASH R K, DAVID E, et al. A risk-based bidding strategy for continuous double auctions[J]. 2004.
修改评论