[1] LIU L, DENG H, TANG X, et al. Specific Electromagnetic Radiation in the Wireless Signal Range Increases Wakefulness in Mice [J]. Proceedings of the National Academy of Sciences, 2021, 118(31), e2105838118.
[2] MOORE A L, SHI L. Emerging Challenges and Materials for Thermal Management of Electronics [J]. Materials Today, 2014, 17(4):163-74.
[3] SMALYUKH I I. Thermal Management by Engineering the Alignment of Nanocellulose [J]. Advanced Materials, 2021, 33(28):2001228.
[4] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-Designing Electronics with Microfluidics for More Sustainable Cooling [J]. Nature, 2020, 585(7824):211-6.
[5] SONG H, LIU J, LIU B, et al. Two-Dimensional Materials for Thermal Management Applications [J]. Joule, 2018, 2(3):442-63.
[6] SONG Y, LEI M, HAN D, et al. Multifunctional Membrane for Thermal Management Applications [J]. ACS Applied Materials & Interfaces, 2021, 13(16):19301-11.
[7] YANG A, CAI L, ZHANG R, et al. Thermal Management in Nanofiber-Based Face Mask [J]. Nano Letters, 2017, 17(6):3506-10.
[8] WU B, QIAN G, YAN Y, et al. Design of Interconnected Carbon Fiber Thermal Management Composites with Effective EMI Shielding Activity [J]. ACS Applied Materials & Interfaces, 2022, 14(43):49082-93.
[9] ZHAO B, WU H, TIAN Q, et al. Laminated MXene Foam/Cellulose@LDH Composite Membrane with Efficient EMI Shielding Property for Asymmetric Personal Thermal Management [J]. ACS Applied Materials & Interfaces, 2023, 15, 8751−8760.
[10] LI X, SHENG M, GONG S, et al. Flexible and Multifunctional Phase Change Composites Featuring High-efficiency Electromagnetic Interference Shielding and Thermal Management for Use in Electronic Devices [J]. Chemical Engineering Journal, 2022, 430:132928.
[11] ZHANG Z, WANG J, SHANG J, et al. A Through‐Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption [J]. Small, 2023, 19(4):2205716.
[12] PAN D, GUI Y, HALA M A, et al. Vertically Aligned Silicon Carbide Nanowires/ Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites [J]. Nano-Micro Letter, 2022, 14(118), 1-19.
[13] MOU P, ZHAO J, WANG G, et al. BCN Nanosheets Derived from Coconut Shells with Outstanding Microwave Absorption and Thermal Conductive Properties [J]. Chemical Engineering Journal, 2022, 437:135285.
[14] QIAN Y, TAO Y, LI Y, et al. High-performance Epoxy Resin with Efficient Electromagnetic Wave Absorption and Heat Dissipation Properties for Electron packaging by Modification of 3D MDCF@hBN [J]. Chemical Engineering Journal, 2022, 441:136033.
[15] QIAN Y, TAO Y, LI W, et al. High Electromagnetic Wave Absorption and Thermal Management Performance in 3D CNF@C-Ni/epoxy Resin Composites [J]. Chemical Engineering Journal, 2021, 425:131608.
[16] MIAO P, ZHANG T, WANG T, et al. A Two‐Dimensional Semiconductive Metal‐Organic Framework for Highly Efficient Microwave Absorption [J]. Chinese Journal of Chemistry, 2022, 40(4):467-74.
[17] LI R, GAO Q, XING H, et al. Lightweight, Multifunctional MXene/polymer Composites with Enhanced Electromagnetic Wave Absorption and High-Performance Thermal Conductivity [J]. Carbon, 2021, 183:301-12.
[18] YANG X, FU K, WU L, et al. Synergistic Enhancement of Thermal Conduction and Microwave Absorption of Silica Films Based on Graphene/Chiral PPy/Al2O3 Ternary Aerogels [J]. Carbon, 2022, 199:1-12.
[19] SEYEDIN S, UZUN S, LEVITT A, et al. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles [J]. Advanced Functional Materials, 2020, 30(12):1910504.
[20] 戴洋. MXene基轻质电磁防护复材料的结构设计及其性能调控. [D] 北京化工大学, 2022.
[21] 张坤. MOFs衍生纳米复合材料的构建及其电磁波吸收性能研究. [D] 南京理工大学, 2021.
[22] 鱼甜甜. 水滑石基纤维材料的制备及其电磁波吸收性能的研究. [D] 北京化工大学, 2020.
[23] 李素萍. 铁钴合金/介电型复合材料的制备及其吸波性能的研究. [D] 西北工业大学, 2019.
[24] WANG L, LI X, LI Q, et al. Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth [J]. Small, 2019, 15(18):1900900.
[25] YOSHIYUKI N, KUNIHIRO S. Application of Ferrite to Electromagnetic Wave Absorber and Its Characteristics [C]. IEEE Transactions on Microwave Theory and Techniques, 1971, MTT-19(1).
[26] HERZER G. Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets [C]. IEEE Transactions on Magnetics, 1990, 26(5).
[27] QIAN X, ZHANG Y, WU Z, et al. Multi‐Path Electron Transfer in 1D Double‐Shelled Sn@Mo2C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance [J]. Small, 2021, 17(30):2100283.
[28] HUO J, WANG L, YU H. Polymeric Nanocomposites for Electromagnetic Wave Absorption [J]. Journal of Materials Science, 2009, 44(15):3917-27.
[29] HAO T, KAWAI AKIO, et al. Mechanism of the Electrorheological Effect: Evidence from the Conductive, Dielectric, and Surface Characteristics of Water-free Electrorheological Fluids [J]. Langmuir, 1998, 14:1256-1262.
[30] WANG S, LI D, ZHOU Y, et al. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO Array Hybrid Nanostructures on Cotton Fabric for Durable Self-Cleaning and Enhanced Microwave Absorption [J]. ACS Nano, 2020, 14(7):8634-45.
[31] 梁小会. MOFs衍生轻质吸波材料的构筑及电磁特性研究. [D] 南京航空航天大学, 2020.
[32] 李万崇. 碳化硅/碳泡沫基电磁波吸收超材料研究. [D] 中国科学技术大学, 2019.
[33] MA Z, CAO C, LIU Q, et al. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers [J]. Chinese Physics Letter, 2012, 29(3):38401.
[34] HUANG Y, YUAN J, SONG W, et al. Microwave Absorbing Materials: Solutions for Real Functions under Ideal Conditions of Microwave Absorption [J]. Chinese Physics Letters, 2010, 27(2):273-6.
[35] LI A, ZHANG C, ZHANG Y. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications [J]. Polymers, 2017, 9(9):437.
[36] MA H, MA Y, TIAN Z. Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers [J]. ACS Applied Polymer Materials, 2019, 1(10):2566-70.
[37] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of Thermal Conductivity in Composites: Mechanisms, Parameters, and Theory [J]. Progress in Polymer Science, 2016, 61:1-28.
[38] YANG X, LIANG C, MA T, et al. A Review on Thermally Conductive Polymeric Composites: Classification, Measurement, Model and Equations, Mechanism, and Fabrication Methods [J]. Advanced Composites and Hybrid Materials, 2018, 1(2):207-30.
[39] CHEN Q, MA Z, WANG Z, et al. Scalable, Robust, Low‐Cost, and Highly Thermally Conductive Anisotropic Nanocomposite Films for Safe and Efficient Thermal Management [J]. Advanced Functional Materials, 2022, 32(8):2110782.
[40] YANG Y, LYU J, CHEN J, et al. Flame‐Retardant Host–Guest Films for Efficient Thermal Management of Cryogenic Devices [J]. Advanced Functional Materials, 2021, 31(41):2102232.
[41] MATETI S, YANG K, LIU X, et al. Bulk Hexagonal Boron Nitride with a Quasi‐Isotropic Thermal Conductivity [J]. Advanced Functional Materials, 2018, 28(28):1707556.
[42] KIM T Y, PARK C, MARZARI N. The Electronic Thermal Conductivity of Graphene [J]. Nano Letters, 2016, 16(4):2439-43.
[43] ZHAO L, TANG J, ZHOU M, et al. A Review of the Coefficient of Thermal Expansion and Thermal Conductivity of Graphite [J]. New Carbon Materials, 2022, 37(3):544-55.
[44] LIU J, ZHANG L, WU H. Enhancing the Low/Middle‐Frequency Electromagnetic Wave Absorption of Metal Sulfides through F− Regulation Engineering [J]. Advanced Functional Materials, 2022, 32(13):2110496.
[45] LIU J, ZHANG L, ZANG D, et al. A Competitive Reaction Strategy toward Binary Metal Sulfides for Tailoring Electromagnetic Wave Absorption [J]. Advanced Functional Materials, 2021, 31(45):2105018.
[46] GAO Z, MA Z, LAN D, et al. Synergistic Polarization Loss of MoS2‐Based Multiphase Solid Solution for Electromagnetic Wave Absorption [J]. Advanced Functional Materials, 2022, 32(18):2112294.
[47] ZHANG H, CHENG J, WANG H, et al. Initiating VB‐Group Laminated NbS2 Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48 GHz through Phase Engineering Modulation [J]. Advanced Functional Materials, 2022, 32(6):2108194.
[48] LIU P, GAO S, ZHANG G, et al. Hollow Engineering to Co@N‐Doped Carbon Nanocages via Synergistic Protecting‐Etching Strategy for Ultrahigh Microwave Absorption [J]. Advanced Functional Materials, 2021, 31(27):2102812.
[49] XU H, YIN X, FAN X, et al. Constructing A Tunable Heterogeneous Interface in Bimetallic Metal-Organic Frameworks Derived Porous Carbon for Excellent Microwave Absorption Performance [J]. Carbon, 2019, 148:421-9.
[50] LIANG X, QUAN B, JI G, et al. Novel Nanoporous Carbon Derived from Metal–Organic Frameworks with Tunable Electromagnetic Wave Absorption Capabilities [J]. Inorganic Chemistry Frontiers, 2016, 3(12):1516-26.
[51] YE F, SONG Q, ZHANG Z, et al. Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High-Performance Microwave Absorption [J]. Advanced Functional Materials, 2018, 28(17):1707205.
[52] LIANG J, YE F, CAO Y, et al. Defect‐Engineered Graphene/Si3N4 Multilayer Alternating Core‐Shell Nanowire Membrane: A Plainified Hybrid for Broadband Electromagnetic Wave Absorption [J]. Advanced Functional Materials, 2022, 32(22):2200141.
[53] LUO Z, REN X, ZHOU L, et al. A High‐Performance Nonlinear Metasurface for Spatial‐Wave Absorption [J]. Advanced Functional Materials, 2022, 32(16):2109544.
[54] LV H, YANG Z, XU H, et al. An Electrical Switch‐Driven Flexible Electromagnetic Absorber [J]. Advanced Functional Materials, 2019, 30(4):1907251.
[55] CHENG Z, CAO Y, WANG R, et al. Hierarchical Surface Engineering of Carbon Fiber for Enhanced Composites Interfacial Properties and Microwave Absorption Performance [J]. Carbon, 2021, 185:669-80.
[56] LIANG L, LI Q, YAN X, et al. Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance [J]. ACS Nano, 2021, 15(4):6622-32.
[57] YU R, WEN X, LIU J, et al. A Green and High-yield Route to Recycle Waste Masks into CNTs/Ni Hybrids Via Catalytic Carbonization and their Application for Superior Microwave Absorption [J]. Applied Catalysis B: Environmental, 2021, 298:120544.
[58] ZHANG F, REN D, ZHANG Y, et al. Production of Highly oriented Graphite Monoliths with High Thermal Conductivity [J]. Chemical Engineering Journal, 2022, 431:134102.
[59] GAO J, YAN Q, LV L, et al. Lightweight Thermal Interface Materials Based on Hierarchically Structured Graphene Paper with Superior Through-Plane Thermal Conductivity [J]. Chemical Engineering Journal, 2021, 419:129609.
[60] YAO Y, ZHU X, ZENG X, et al. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites [J]. ACS Applied Materials & Interfaces, 2018, 10(11):9669-78.
[61] HAN J, DU G, GAO W, et al. An AnisotropicaLly High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre‐Mimetic 3D Network [J]. Advanced Functional Materials, 2019, 29(13):1900412.
[62] QIAN Y, LUO Y, HARUNA A Y, et al. Multifunctional Epoxy‐Based Electronic Packaging Material MDCF@LDH/EP for Electromagnetic Wave Absorption, Thermal Management, and Flame Retardancy [J]. Small, 2022, 18(46):2204303.
[63] WANG L, HUANG M, QIAN X, et al. Confined Magnetic‐Dielectric Balance Boosted Electromagnetic Wave Absorption [J]. Small, 2021, 17(30):2100970.
[64] LIANG H, ZHANG L, WU H. Exploration of Twin‐Modified Grain Boundary Engineering in Metallic Copper Predominated Electromagnetic Wave Absorber [J]. Small, 2022, 18(38):2203620.
[65] LING M, WU F, LIU P, et al. Fabrication of Graphdiyne/Graphene Composite Microsphere with Wrinkled Surface via Ultrasonic Spray Compounding and its Microwave Absorption Properties [J]. Small, 2023, 19(7):2205925.
[66] YAO L, ZHOU S, PAN L, et al. Multifunctional Metamaterial Microwave Blackbody with High‐Frequency Compatibility, Temperature Insensitivity, and Structural Scalability [J]. Advanced Functional Materials, 2023, 33(5):2209340.
[67] LI B, MA Z, ZHANG X, et al. NiO/Ni Heterojunction on N‐Doped Hollow Carbon Sphere with Balanced Dielectric Loss for Efficient Microwave Absorption [J]. Small, 2023, 19(12):2207197.
[68] LIU M, ZHAO B, PEI K, et al. An Ion‐Engineering Strategy to Design Hollow FeCo/CoFe2O4 Microspheres for High‐Performance Microwave Absorption [J]. Small, 2023:2300363.
[69] 王振宇. 超分子作用力调控聚硫辛酸基界面材料的导热系数和柔顺性. [D] 中国科学院大学, 2022.
[70] WEI J, LIAO M, MA A, et al. Enhanced Thermal Conductivity of Polydimethylsiloxane Composites with Carbon Fiber [J]. Composites Communications, 2020, 17:141-6.
[71] GUO L, ZHANG Z, LI M, et al. Extremely High Thermal Conductivity of Carbon Fiber/Epoxy with Synergistic Effect of MXenes by Freeze-Drying [J]. Composites Communications, 2020, 19:134-41.
[72] LI X, LI C, ZHANG X, et al. Simultaneously Enhanced Thermal Conductivity and Mechanical Properties of PP/BN Composites Via Constructing Reinforced Segregated Structure with a Trace Amount of BN Wrapped PP Fiber [J]. Chemical Engineering Journal, 2020, 390:124563.
[73] LIU J, LI W, GUO Y, et al. Improved Thermal Conductivity of Thermoplastic Polyurethane Via Aligned Boron Nitride Platelets Assisted by 3D Printing [J]. Composites Part A: Applied Science and Manufacturing, 2019, 120:140-6.
[74] GONG S, LI X, SHENG M, et al. High Thermal Conductivity and Mechanical Strength Phase Change Composite with Double Supporting Skeletons for Industrial Waste Heat Recovery [J]. ACS Applied Materials & Interfaces, 2021, 13(39):47174-84.
[75] CHEN X, LIM JSK, YAN W, et al. Salt Template Assisted BN Scaffold Fabrication toward Highly Thermally Conductive Epoxy Composites [J]. ACS Applied Materials & Interfaces, 2020, 12(14):16987-96.
[76] GUO H, ZHAO H, NIU H, et al. Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications [J]. ACS Nano, 2021, 15(4):6917-28.
[77] WANG Y, TANG B, GAO Y, et al. Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method [J]. ACS Omega, 2021, 6(29):19238-51.
[78] LI M, ALI Z, WEI X, et al. Stress Induced Carbon Fiber Orientation for Enhanced Thermal Conductivity of Epoxy Composites [J]. Composites Part B: Engineering, 2021, 208:108599.
[79] LI M, ZHU W, LI X, et al. Ti3C2Tx/MoS2 Self‐Rolling Rod‐Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption [J]. Advanced Science, 2022, 9(16):2201118.
[80] QIN M, ZHANG L, ZHAO X, et al. Defect Induced Polarization Loss in Multi‐Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application [J]. Advanced Science, 2021, 8(8):2004640.
[81] YANG J, WANG J, LI H, et al. MoS2/MXene Aerogel with Conformal Heterogeneous Interfaces Tailored by Atomic Layer Deposition for Tunable Microwave Absorption [J]. Advanced Science, 2022, 9(7):2101988.
[82] JIANG H, YANG K, YE P, et al. Optimized NiCo2O4/rGO Hybrid Nanostructures On Carbon Fiber as an Electrode for Asymmetric Supercapacitors [J]. RSC Advances, 2018, 8(65):37550-6.
[83] GAO X, JIA Z, WANG B, et al. Synthesis of NiCo-LDH/MXene Hybrids with Abundant Heterojunction Surfaces as a Lightweight Electromagnetic Wave Absorber [J]. Chemical Engineering Journal, 2021, 419:130019.
[84] WEN C, LI X, ZHANG R, et al. High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres [J]. ACS Nano, 2022, 16(1):1150-9.
[85] WANG Y, DI X, CHEN J, et al. Multi-Dimensional C@NiCo-LDHs@Ni Aerogel: Structural and Componential Engineering Towards Efficient Microwave Absorption, Anti-Corrosion and Thermal-Insulation [J]. Carbon, 2022, 191:625-35.
[86] WU Z, CHENG HW, JIN C, et al. Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption [J]. Advanced Materials, 2022, 34(11):2107538.
[87] CHEN W, GUI X, LIANG B, et al. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface [J]. ACS Applied Materials & Interfaces, 2016, 8(17):10977-84.
[88] WU P, CHENG S, YAO M, et al. A Low-Cost, Self-Standing NiCo2O4 @CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-State Supercapacitors [J]. Advanced Functional Materials, 2017, 27(34):1702160.
[89] GONG Y, YANG Z, LIN Y, et al. Hierarchical Heterostructure NiCo2O4@CoMoO4/NF as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting [J]. Journal of Materials Chemistry a, 2018, 6(35):16950-8.
[90] LUI CH, LIU L, MAK KF, et al. Ultraflat Graphene [J]. Nature, 2009, 462(7271):339-41.
[91] CHENG L, WANG H, CAI H, et al. Iron-Catalyzed Arene C−H Hydroxylation [J]. Science, 2021, 374:77-81.
[92] VOIRY D, YANG J, KUPFERBERG J, et al. High-Quality Graphene Via Microwave Reduction of Solution-Exfoliated Graphene Oxide [J]. Science, 2016, 353(6306):1413-6.
[93] DONG L, YANG J, CHHOWALLA M, et al. Synthesis and Reduction of Large Sized Graphene Oxide Sheets [J]. Chemical Society Reviews, 2017, 46(23):7306-16.
[94] ABED J, AHMADI S, LAVERDURE L, et al. In Situ Formation of Nano Ni–Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities [J]. Advanced Materials, 2021, 33(45):2103812.
[95] SHIMAZAKI Y, HOJO F, TAKEZAWA Y. Preparation and Characterization of Thermoconductive Polymer Nanocomposite with Branched Alumina Nanofiber [J]. Applied Physics Letters, 2008, 92(13):133309.
[96] AGARI Y, UNO T. Estimation on Thermal Conductivities of Filled Polymers [J]. Journal of Applied Polymer Science, 1986, 32(7):5705-12.
[97] AGARI Y, UEDA A, NAGAI S. Thermal Conductivity of a Polyethylene Filled with Disoriented Short-Cut Carbon Fibers [J]. Journal of Applied Polymer Science, 1991, 43(6):1117-24.
[98] LIANG L, GU W, WU Y, et al. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities [J]. Advanced Materials, 2022, 34(4):2106195.
[99] WANG S, LI D, ZHOU Y, et al. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO Array Hybrid Nanostructures on Cotton Fabric for Durable Self-Cleaning and Enhanced Microwave Absorption [J]. ACS Nano, 2020, 14(7):8634-45.
[100] WANG J, LIU L, JIAO S, et al. Hierarchical Carbon Fiber@MXene@MoS2 Core‐sheath Synergistic Microstructure for Tunable and Efficient Microwave Absorption [J]. Advanced Functional Materials, 2020, 30(45):2002595.
[101] FANG Y, WANG W, WANG S, et al. A Quantitative Permittivity Model for Designing Electromagnetic Wave Absorption Materials with Conduction Loss: A Case Study with Microwave-Reduced Graphene Oxide [J]. Chemical Engineering Journal, 2022, 439:135672.
[102] ZHANG Y, WANG P, WANG Y, et al. Synthesis and Excellent Electromagnetic Wave Absorption Properties of Parallel Aligned FeCo@C Core-Shell Nanoflake Composites [J]. Journal of materials chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(41):1813-8.
[103] ZHENG J, HE X, LI Y, et al. Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption [J]. Industrial & Engineering Chemistry Research, 2020, 59(8):3425-37.
[104] CHEN T, JIANG S, LI L, et al. Vertically Aligned MnO2 Nanostructures on Carbon Fibers with Tunable Electromagnetic Wave Absorption Performance [J]. Applied Surface Science, 2022, 589:152858.
[105] NI L, CHEN S, JIANG X, et al. Anisotropic Electromagnetic Wave Absorption Performance of Polyimide/multi-walled Carbon Nanotubes Composite Aerogels with Aligned Slit-Like Channels Structure [J]. Composites Part A: Applied Science and Manufacturing, 2022, 154:106781.
[106] YANG M, YUAN Y, LI Y, et al. Anisotropic Electromagnetic Absorption of Aligned Ti3C2Tx MXene/Gelatin Nanocomposite Aerogels [J]. ACS Applied Materials & Interfaces, 2020, 12(29):33128-38.
[107] SONG Z, SUN X, LI Y, et al. Carbon Fibers Embedded with Aligned Magnetic Particles for Efficient Electromagnetic Energy Absorption and Conversion [J]. ACS Applied Materials & Interfaces, 2021, 13(4):5266-74.
[108] LIU P, HUANG Y, YAN J, et al. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and their Enhanced Microwave Absorption Properties [J]. ACS Applied Materials & Interfaces, 2016, 8(8):5536-46.
[109] SUN H, CHE R, YOU X, et al. Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities [J]. Advanced Materials, 2014, 26(48):8120-5.
[110] NING Y, YANG M, ZHAO Z, et al. Anisotropic Electromagnetic Absorption of the Aligned Ti3C2Tx MXene/RGO Nanocomposite Foam [J]. Composites Science and Technology, 2022, 227:109609.
[111] LIU Y, ZHANG Y, ZHANG C, et al. Aligned Fluorinated Single-Walled Carbon Nanotubes as a Transmission Channel Towards Attenuation of Broadband Electromagnetic Waves [J]. Journal of Materials Chemistry C, 2018, 6(35):9399-409.
修改评论