中文版 | English
题名

取向结构高导热吸波碳纤维复合材料的制备及性能研究

其他题名
STUDY ON FABRICATION AND PERFORMANCES OF ALIGNED CARBON FIBER COMPOSITES FOR HIGH THERMAL CONDUCTIVITY AND EFFICIENT ELECTROMAGNETIC WAVE ABSORPTION
姓名
姓名拼音
ZHANG Zhen
学号
12132604
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
胡友根 研究员
导师单位
Shenzhen Institute of Advanced Tchnology, CAS
论文答辩日期
2023-05-16
论文提交日期
2023-06-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着通信电子器件朝着高频、小型、多功能和集成化发展,电磁干扰与散热问题日益严重,集高导热与高效吸波性能于一体的高导热吸波材料在解决芯片和电子器件的电磁干扰与散热问题方面具有重要应用价值。由于导热和吸波对材料的本征结构要求存在显著差异,如何在同一材料上实现两个功能的高水平集成是当前面临的重要挑战。

本文选用高长径比的沥青基碳纤维为导热填料,聚合物基体是硅胶,通过溶剂热在碳纤维表面生长镍钴双金属氢氧化物和镍钴氧化物以调控其电磁参数和阻抗匹配,并对碳纤维进行取向排列,实现面内方向电磁隔离、面外方向导热通道连续的高导热与高效吸波一体化集成。

当直接采用碳纤维作为导热填料时,制得取向结构的碳纤维/硅胶复合材料纵向热导率高达34.94 W/(m·K),但碳纤维的高电导性使碳纤维/硅胶复合材料阻抗失配,电磁波最小反射损耗仅为-5 dB。在碳纤维表面预生长层状镍钴双金属氢氧化物,制得垂直排列结构的镍钴双金属氢氧化物@碳纤维/硅胶复合材料,其纵向热导率为12.35 W/(m·K)、最小反射损耗达到-40.19 dB, 有效吸收带宽从0增加到6.97 GHz,吸波性能显著增加。对上述碳纤维退火处理得到氧化钴镍@碳纤维,再进一步制备取向结构的氧化钴镍@碳纤维/硅胶复合材料,其纵向热导率达到15.55 W/(m·K)、最小反射损耗为-55.15 dB、有效吸收带宽为8.25 GHz,实现了导热性能与吸波性能的同时最优化。本研究为高性能导热吸波材料的开发提供了一种具有参考价值的方法和技术路径。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] LIU L, DENG H, TANG X, et al. Specific Electromagnetic Radiation in the Wireless Signal Range Increases Wakefulness in Mice [J]. Proceedings of the National Academy of Sciences, 2021, 118(31), e2105838118.
[2] MOORE A L, SHI L. Emerging Challenges and Materials for Thermal Management of Electronics [J]. Materials Today, 2014, 17(4):163-74.
[3] SMALYUKH I I. Thermal Management by Engineering the Alignment of Nanocellulose [J]. Advanced Materials, 2021, 33(28):2001228.
[4] VAN ERP R, SOLEIMANZADEH R, NELA L, et al. Co-Designing Electronics with Microfluidics for More Sustainable Cooling [J]. Nature, 2020, 585(7824):211-6.
[5] SONG H, LIU J, LIU B, et al. Two-Dimensional Materials for Thermal Management Applications [J]. Joule, 2018, 2(3):442-63.
[6] SONG Y, LEI M, HAN D, et al. Multifunctional Membrane for Thermal Management Applications [J]. ACS Applied Materials & Interfaces, 2021, 13(16):19301-11.
[7] YANG A, CAI L, ZHANG R, et al. Thermal Management in Nanofiber-Based Face Mask [J]. Nano Letters, 2017, 17(6):3506-10.
[8] WU B, QIAN G, YAN Y, et al. Design of Interconnected Carbon Fiber Thermal Management Composites with Effective EMI Shielding Activity [J]. ACS Applied Materials & Interfaces, 2022, 14(43):49082-93.
[9] ZHAO B, WU H, TIAN Q, et al. Laminated MXene Foam/Cellulose@LDH Composite Membrane with Efficient EMI Shielding Property for Asymmetric Personal Thermal Management [J]. ACS Applied Materials & Interfaces, 2023, 15, 8751−8760.
[10] LI X, SHENG M, GONG S, et al. Flexible and Multifunctional Phase Change Composites Featuring High-efficiency Electromagnetic Interference Shielding and Thermal Management for Use in Electronic Devices [J]. Chemical Engineering Journal, 2022, 430:132928.
[11] ZHANG Z, WANG J, SHANG J, et al. A Through‐Thickness Arrayed Carbon Fibers Elastomer with Horizontal Segregated Magnetic Network for Highly Efficient Thermal Management and Electromagnetic Wave Absorption [J]. Small, 2023, 19(4):2205716.
[12] PAN D, GUI Y, HALA M A, et al. Vertically Aligned Silicon Carbide Nanowires/ Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites [J]. Nano-Micro Letter, 2022, 14(118), 1-19.
[13] MOU P, ZHAO J, WANG G, et al. BCN Nanosheets Derived from Coconut Shells with Outstanding Microwave Absorption and Thermal Conductive Properties [J]. Chemical Engineering Journal, 2022, 437:135285.
[14] QIAN Y, TAO Y, LI Y, et al. High-performance Epoxy Resin with Efficient Electromagnetic Wave Absorption and Heat Dissipation Properties for Electron packaging by Modification of 3D MDCF@hBN [J]. Chemical Engineering Journal, 2022, 441:136033.
[15] QIAN Y, TAO Y, LI W, et al. High Electromagnetic Wave Absorption and Thermal Management Performance in 3D CNF@C-Ni/epoxy Resin Composites [J]. Chemical Engineering Journal, 2021, 425:131608.
[16] MIAO P, ZHANG T, WANG T, et al. A Two‐Dimensional Semiconductive Metal‐Organic Framework for Highly Efficient Microwave Absorption [J]. Chinese Journal of Chemistry, 2022, 40(4):467-74.
[17] LI R, GAO Q, XING H, et al. Lightweight, Multifunctional MXene/polymer Composites with Enhanced Electromagnetic Wave Absorption and High-Performance Thermal Conductivity [J]. Carbon, 2021, 183:301-12.
[18] YANG X, FU K, WU L, et al. Synergistic Enhancement of Thermal Conduction and Microwave Absorption of Silica Films Based on Graphene/Chiral PPy/Al2O3 Ternary Aerogels [J]. Carbon, 2022, 199:1-12.
[19] SEYEDIN S, UZUN S, LEVITT A, et al. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles [J]. Advanced Functional Materials, 2020, 30(12):1910504.
[20] 戴洋. MXene基轻质电磁防护复材料的结构设计及其性能调控. [D] 北京化工大学, 2022.
[21] 张坤. MOFs衍生纳米复合材料的构建及其电磁波吸收性能研究. [D] 南京理工大学, 2021.
[22] 鱼甜甜. 水滑石基纤维材料的制备及其电磁波吸收性能的研究. [D] 北京化工大学, 2020.
[23] 李素萍. 铁钴合金/介电型复合材料的制备及其吸波性能的研究. [D] 西北工业大学, 2019.
[24] WANG L, LI X, LI Q, et al. Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth [J]. Small, 2019, 15(18):1900900.
[25] YOSHIYUKI N, KUNIHIRO S. Application of Ferrite to Electromagnetic Wave Absorber and Its Characteristics [C]. IEEE Transactions on Microwave Theory and Techniques, 1971, MTT-19(1).
[26] HERZER G. Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets [C]. IEEE Transactions on Magnetics, 1990, 26(5).
[27] QIAN X, ZHANG Y, WU Z, et al. Multi‐Path Electron Transfer in 1D Double‐Shelled Sn@Mo2C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance [J]. Small, 2021, 17(30):2100283.
[28] HUO J, WANG L, YU H. Polymeric Nanocomposites for Electromagnetic Wave Absorption [J]. Journal of Materials Science, 2009, 44(15):3917-27.
[29] HAO T, KAWAI AKIO, et al. Mechanism of the Electrorheological Effect: Evidence from the Conductive, Dielectric, and Surface Characteristics of Water-free Electrorheological Fluids [J]. Langmuir, 1998, 14:1256-1262.
[30] WANG S, LI D, ZHOU Y, et al. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO Array Hybrid Nanostructures on Cotton Fabric for Durable Self-Cleaning and Enhanced Microwave Absorption [J]. ACS Nano, 2020, 14(7):8634-45.
[31] 梁小会. MOFs衍生轻质吸波材料的构筑及电磁特性研究. [D] 南京航空航天大学, 2020.
[32] 李万崇. 碳化硅/碳泡沫基电磁波吸收超材料研究. [D] 中国科学技术大学, 2019.
[33] MA Z, CAO C, LIU Q, et al. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers [J]. Chinese Physics Letter, 2012, 29(3):38401.
[34] HUANG Y, YUAN J, SONG W, et al. Microwave Absorbing Materials: Solutions for Real Functions under Ideal Conditions of Microwave Absorption [J]. Chinese Physics Letters, 2010, 27(2):273-6.
[35] LI A, ZHANG C, ZHANG Y. Thermal Conductivity of Graphene-Polymer Composites: Mechanisms, Properties, and Applications [J]. Polymers, 2017, 9(9):437.
[36] MA H, MA Y, TIAN Z. Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers [J]. ACS Applied Polymer Materials, 2019, 1(10):2566-70.
[37] BURGER N, LAACHACHI A, FERRIOL M, et al. Review of Thermal Conductivity in Composites: Mechanisms, Parameters, and Theory [J]. Progress in Polymer Science, 2016, 61:1-28.
[38] YANG X, LIANG C, MA T, et al. A Review on Thermally Conductive Polymeric Composites: Classification, Measurement, Model and Equations, Mechanism, and Fabrication Methods [J]. Advanced Composites and Hybrid Materials, 2018, 1(2):207-30.
[39] CHEN Q, MA Z, WANG Z, et al. Scalable, Robust, Low‐Cost, and Highly Thermally Conductive Anisotropic Nanocomposite Films for Safe and Efficient Thermal Management [J]. Advanced Functional Materials, 2022, 32(8):2110782.
[40] YANG Y, LYU J, CHEN J, et al. Flame‐Retardant Host–Guest Films for Efficient Thermal Management of Cryogenic Devices [J]. Advanced Functional Materials, 2021, 31(41):2102232.
[41] MATETI S, YANG K, LIU X, et al. Bulk Hexagonal Boron Nitride with a Quasi‐Isotropic Thermal Conductivity [J]. Advanced Functional Materials, 2018, 28(28):1707556.
[42] KIM T Y, PARK C, MARZARI N. The Electronic Thermal Conductivity of Graphene [J]. Nano Letters, 2016, 16(4):2439-43.
[43] ZHAO L, TANG J, ZHOU M, et al. A Review of the Coefficient of Thermal Expansion and Thermal Conductivity of Graphite [J]. New Carbon Materials, 2022, 37(3):544-55.
[44] LIU J, ZHANG L, WU H. Enhancing the Low/Middle‐Frequency Electromagnetic Wave Absorption of Metal Sulfides through F− Regulation Engineering [J]. Advanced Functional Materials, 2022, 32(13):2110496.
[45] LIU J, ZHANG L, ZANG D, et al. A Competitive Reaction Strategy toward Binary Metal Sulfides for Tailoring Electromagnetic Wave Absorption [J]. Advanced Functional Materials, 2021, 31(45):2105018.
[46] GAO Z, MA Z, LAN D, et al. Synergistic Polarization Loss of MoS2‐Based Multiphase Solid Solution for Electromagnetic Wave Absorption [J]. Advanced Functional Materials, 2022, 32(18):2112294.
[47] ZHANG H, CHENG J, WANG H, et al. Initiating VB‐Group Laminated NbS2 Electromagnetic Wave Absorber toward Superior Absorption Bandwidth as Large as 6.48 GHz through Phase Engineering Modulation [J]. Advanced Functional Materials, 2022, 32(6):2108194.
[48] LIU P, GAO S, ZHANG G, et al. Hollow Engineering to Co@N‐Doped Carbon Nanocages via Synergistic Protecting‐Etching Strategy for Ultrahigh Microwave Absorption [J]. Advanced Functional Materials, 2021, 31(27):2102812.
[49] XU H, YIN X, FAN X, et al. Constructing A Tunable Heterogeneous Interface in Bimetallic Metal-Organic Frameworks Derived Porous Carbon for Excellent Microwave Absorption Performance [J]. Carbon, 2019, 148:421-9.
[50] LIANG X, QUAN B, JI G, et al. Novel Nanoporous Carbon Derived from Metal–Organic Frameworks with Tunable Electromagnetic Wave Absorption Capabilities [J]. Inorganic Chemistry Frontiers, 2016, 3(12):1516-26.
[51] YE F, SONG Q, ZHANG Z, et al. Direct Growth of Edge-Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High-Performance Microwave Absorption [J]. Advanced Functional Materials, 2018, 28(17):1707205.
[52] LIANG J, YE F, CAO Y, et al. Defect‐Engineered Graphene/Si3N4 Multilayer Alternating Core‐Shell Nanowire Membrane: A Plainified Hybrid for Broadband Electromagnetic Wave Absorption [J]. Advanced Functional Materials, 2022, 32(22):2200141.
[53] LUO Z, REN X, ZHOU L, et al. A High‐Performance Nonlinear Metasurface for Spatial‐Wave Absorption [J]. Advanced Functional Materials, 2022, 32(16):2109544.
[54] LV H, YANG Z, XU H, et al. An Electrical Switch‐Driven Flexible Electromagnetic Absorber [J]. Advanced Functional Materials, 2019, 30(4):1907251.
[55] CHENG Z, CAO Y, WANG R, et al. Hierarchical Surface Engineering of Carbon Fiber for Enhanced Composites Interfacial Properties and Microwave Absorption Performance [J]. Carbon, 2021, 185:669-80.
[56] LIANG L, LI Q, YAN X, et al. Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance [J]. ACS Nano, 2021, 15(4):6622-32.
[57] YU R, WEN X, LIU J, et al. A Green and High-yield Route to Recycle Waste Masks into CNTs/Ni Hybrids Via Catalytic Carbonization and their Application for Superior Microwave Absorption [J]. Applied Catalysis B: Environmental, 2021, 298:120544.
[58] ZHANG F, REN D, ZHANG Y, et al. Production of Highly oriented Graphite Monoliths with High Thermal Conductivity [J]. Chemical Engineering Journal, 2022, 431:134102.
[59] GAO J, YAN Q, LV L, et al. Lightweight Thermal Interface Materials Based on Hierarchically Structured Graphene Paper with Superior Through-Plane Thermal Conductivity [J]. Chemical Engineering Journal, 2021, 419:129609.
[60] YAO Y, ZHU X, ZENG X, et al. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites [J]. ACS Applied Materials & Interfaces, 2018, 10(11):9669-78.
[61] HAN J, DU G, GAO W, et al. An AnisotropicaLly High Thermal Conductive Boron Nitride/Epoxy Composite Based on Nacre‐Mimetic 3D Network [J]. Advanced Functional Materials, 2019, 29(13):1900412.
[62] QIAN Y, LUO Y, HARUNA A Y, et al. Multifunctional Epoxy‐Based Electronic Packaging Material MDCF@LDH/EP for Electromagnetic Wave Absorption, Thermal Management, and Flame Retardancy [J]. Small, 2022, 18(46):2204303.
[63] WANG L, HUANG M, QIAN X, et al. Confined Magnetic‐Dielectric Balance Boosted Electromagnetic Wave Absorption [J]. Small, 2021, 17(30):2100970.
[64] LIANG H, ZHANG L, WU H. Exploration of Twin‐Modified Grain Boundary Engineering in Metallic Copper Predominated Electromagnetic Wave Absorber [J]. Small, 2022, 18(38):2203620.
[65] LING M, WU F, LIU P, et al. Fabrication of Graphdiyne/Graphene Composite Microsphere with Wrinkled Surface via Ultrasonic Spray Compounding and its Microwave Absorption Properties [J]. Small, 2023, 19(7):2205925.
[66] YAO L, ZHOU S, PAN L, et al. Multifunctional Metamaterial Microwave Blackbody with High‐Frequency Compatibility, Temperature Insensitivity, and Structural Scalability [J]. Advanced Functional Materials, 2023, 33(5):2209340.
[67] LI B, MA Z, ZHANG X, et al. NiO/Ni Heterojunction on N‐Doped Hollow Carbon Sphere with Balanced Dielectric Loss for Efficient Microwave Absorption [J]. Small, 2023, 19(12):2207197.
[68] LIU M, ZHAO B, PEI K, et al. An Ion‐Engineering Strategy to Design Hollow FeCo/CoFe2O4 Microspheres for High‐Performance Microwave Absorption [J]. Small, 2023:2300363.
[69] 王振宇. 超分子作用力调控聚硫辛酸基界面材料的导热系数和柔顺性. [D] 中国科学院大学, 2022.
[70] WEI J, LIAO M, MA A, et al. Enhanced Thermal Conductivity of Polydimethylsiloxane Composites with Carbon Fiber [J]. Composites Communications, 2020, 17:141-6.
[71] GUO L, ZHANG Z, LI M, et al. Extremely High Thermal Conductivity of Carbon Fiber/Epoxy with Synergistic Effect of MXenes by Freeze-Drying [J]. Composites Communications, 2020, 19:134-41.
[72] LI X, LI C, ZHANG X, et al. Simultaneously Enhanced Thermal Conductivity and Mechanical Properties of PP/BN Composites Via Constructing Reinforced Segregated Structure with a Trace Amount of BN Wrapped PP Fiber [J]. Chemical Engineering Journal, 2020, 390:124563.
[73] LIU J, LI W, GUO Y, et al. Improved Thermal Conductivity of Thermoplastic Polyurethane Via Aligned Boron Nitride Platelets Assisted by 3D Printing [J]. Composites Part A: Applied Science and Manufacturing, 2019, 120:140-6.
[74] GONG S, LI X, SHENG M, et al. High Thermal Conductivity and Mechanical Strength Phase Change Composite with Double Supporting Skeletons for Industrial Waste Heat Recovery [J]. ACS Applied Materials & Interfaces, 2021, 13(39):47174-84.
[75] CHEN X, LIM JSK, YAN W, et al. Salt Template Assisted BN Scaffold Fabrication toward Highly Thermally Conductive Epoxy Composites [J]. ACS Applied Materials & Interfaces, 2020, 12(14):16987-96.
[76] GUO H, ZHAO H, NIU H, et al. Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications [J]. ACS Nano, 2021, 15(4):6917-28.
[77] WANG Y, TANG B, GAO Y, et al. Epoxy Composites with High Thermal Conductivity by Constructing Three-Dimensional Carbon Fiber/Carbon/Nickel Networks Using an Electroplating Method [J]. ACS Omega, 2021, 6(29):19238-51.
[78] LI M, ALI Z, WEI X, et al. Stress Induced Carbon Fiber Orientation for Enhanced Thermal Conductivity of Epoxy Composites [J]. Composites Part B: Engineering, 2021, 208:108599.
[79] LI M, ZHU W, LI X, et al. Ti3C2Tx/MoS2 Self‐Rolling Rod‐Based Foam Boosts Interfacial Polarization for Electromagnetic Wave Absorption [J]. Advanced Science, 2022, 9(16):2201118.
[80] QIN M, ZHANG L, ZHAO X, et al. Defect Induced Polarization Loss in Multi‐Shelled Spinel Hollow Spheres for Electromagnetic Wave Absorption Application [J]. Advanced Science, 2021, 8(8):2004640.
[81] YANG J, WANG J, LI H, et al. MoS2/MXene Aerogel with Conformal Heterogeneous Interfaces Tailored by Atomic Layer Deposition for Tunable Microwave Absorption [J]. Advanced Science, 2022, 9(7):2101988.
[82] JIANG H, YANG K, YE P, et al. Optimized NiCo2O4/rGO Hybrid Nanostructures On Carbon Fiber as an Electrode for Asymmetric Supercapacitors [J]. RSC Advances, 2018, 8(65):37550-6.
[83] GAO X, JIA Z, WANG B, et al. Synthesis of NiCo-LDH/MXene Hybrids with Abundant Heterojunction Surfaces as a Lightweight Electromagnetic Wave Absorber [J]. Chemical Engineering Journal, 2021, 419:130019.
[84] WEN C, LI X, ZHANG R, et al. High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres [J]. ACS Nano, 2022, 16(1):1150-9.
[85] WANG Y, DI X, CHEN J, et al. Multi-Dimensional C@NiCo-LDHs@Ni Aerogel: Structural and Componential Engineering Towards Efficient Microwave Absorption, Anti-Corrosion and Thermal-Insulation [J]. Carbon, 2022, 191:625-35.
[86] WU Z, CHENG HW, JIN C, et al. Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption [J]. Advanced Materials, 2022, 34(11):2107538.
[87] CHEN W, GUI X, LIANG B, et al. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface [J]. ACS Applied Materials & Interfaces, 2016, 8(17):10977-84.
[88] WU P, CHENG S, YAO M, et al. A Low-Cost, Self-Standing NiCo2O4 @CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-State Supercapacitors [J]. Advanced Functional Materials, 2017, 27(34):1702160.
[89] GONG Y, YANG Z, LIN Y, et al. Hierarchical Heterostructure NiCo2O4@CoMoO4/NF as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting [J]. Journal of Materials Chemistry a, 2018, 6(35):16950-8.
[90] LUI CH, LIU L, MAK KF, et al. Ultraflat Graphene [J]. Nature, 2009, 462(7271):339-41.
[91] CHENG L, WANG H, CAI H, et al. Iron-Catalyzed Arene C−H Hydroxylation [J]. Science, 2021, 374:77-81.
[92] VOIRY D, YANG J, KUPFERBERG J, et al. High-Quality Graphene Via Microwave Reduction of Solution-Exfoliated Graphene Oxide [J]. Science, 2016, 353(6306):1413-6.
[93] DONG L, YANG J, CHHOWALLA M, et al. Synthesis and Reduction of Large Sized Graphene Oxide Sheets [J]. Chemical Society Reviews, 2017, 46(23):7306-16.
[94] ABED J, AHMADI S, LAVERDURE L, et al. In Situ Formation of Nano Ni–Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities [J]. Advanced Materials, 2021, 33(45):2103812.
[95] SHIMAZAKI Y, HOJO F, TAKEZAWA Y. Preparation and Characterization of Thermoconductive Polymer Nanocomposite with Branched Alumina Nanofiber [J]. Applied Physics Letters, 2008, 92(13):133309.
[96] AGARI Y, UNO T. Estimation on Thermal Conductivities of Filled Polymers [J]. Journal of Applied Polymer Science, 1986, 32(7):5705-12.
[97] AGARI Y, UEDA A, NAGAI S. Thermal Conductivity of a Polyethylene Filled with Disoriented Short-Cut Carbon Fibers [J]. Journal of Applied Polymer Science, 1991, 43(6):1117-24.
[98] LIANG L, GU W, WU Y, et al. Heterointerface Engineering in Electromagnetic Absorbers: New Insights and Opportunities [J]. Advanced Materials, 2022, 34(4):2106195.
[99] WANG S, LI D, ZHOU Y, et al. Hierarchical Ti3C2Tx MXene/Ni Chain/ZnO Array Hybrid Nanostructures on Cotton Fabric for Durable Self-Cleaning and Enhanced Microwave Absorption [J]. ACS Nano, 2020, 14(7):8634-45.
[100] WANG J, LIU L, JIAO S, et al. Hierarchical Carbon Fiber@MXene@MoS2 Core‐sheath Synergistic Microstructure for Tunable and Efficient Microwave Absorption [J]. Advanced Functional Materials, 2020, 30(45):2002595.
[101] FANG Y, WANG W, WANG S, et al. A Quantitative Permittivity Model for Designing Electromagnetic Wave Absorption Materials with Conduction Loss: A Case Study with Microwave-Reduced Graphene Oxide [J]. Chemical Engineering Journal, 2022, 439:135672.
[102] ZHANG Y, WANG P, WANG Y, et al. Synthesis and Excellent Electromagnetic Wave Absorption Properties of Parallel Aligned FeCo@C Core-Shell Nanoflake Composites [J]. Journal of materials chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(41):1813-8.
[103] ZHENG J, HE X, LI Y, et al. Viscoelastic and Magnetically Aligned Flaky Fe-Based Magnetorheological Elastomer Film for Wide-Bandwidth Electromagnetic Wave Absorption [J]. Industrial & Engineering Chemistry Research, 2020, 59(8):3425-37.
[104] CHEN T, JIANG S, LI L, et al. Vertically Aligned MnO2 Nanostructures on Carbon Fibers with Tunable Electromagnetic Wave Absorption Performance [J]. Applied Surface Science, 2022, 589:152858.
[105] NI L, CHEN S, JIANG X, et al. Anisotropic Electromagnetic Wave Absorption Performance of Polyimide/multi-walled Carbon Nanotubes Composite Aerogels with Aligned Slit-Like Channels Structure [J]. Composites Part A: Applied Science and Manufacturing, 2022, 154:106781.
[106] YANG M, YUAN Y, LI Y, et al. Anisotropic Electromagnetic Absorption of Aligned Ti3C2Tx MXene/Gelatin Nanocomposite Aerogels [J]. ACS Applied Materials & Interfaces, 2020, 12(29):33128-38.
[107] SONG Z, SUN X, LI Y, et al. Carbon Fibers Embedded with Aligned Magnetic Particles for Efficient Electromagnetic Energy Absorption and Conversion [J]. ACS Applied Materials & Interfaces, 2021, 13(4):5266-74.
[108] LIU P, HUANG Y, YAN J, et al. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and their Enhanced Microwave Absorption Properties [J]. ACS Applied Materials & Interfaces, 2016, 8(8):5536-46.
[109] SUN H, CHE R, YOU X, et al. Cross-Stacking Aligned Carbon-Nanotube Films to Tune Microwave Absorption Frequencies and Increase Absorption Intensities [J]. Advanced Materials, 2014, 26(48):8120-5.
[110] NING Y, YANG M, ZHAO Z, et al. Anisotropic Electromagnetic Absorption of the Aligned Ti3C2Tx MXene/RGO Nanocomposite Foam [J]. Composites Science and Technology, 2022, 227:109609.
[111] LIU Y, ZHANG Y, ZHANG C, et al. Aligned Fluorinated Single-Walled Carbon Nanotubes as a Transmission Channel Towards Attenuation of Broadband Electromagnetic Waves [J]. Journal of Materials Chemistry C, 2018, 6(35):9399-409.

所在学位评定分委会
材料科学与工程
国内图书分类号
TB333
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543898
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
张震. 取向结构高导热吸波碳纤维复合材料的制备及性能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132604-张震-中国科学院深圳理(7742KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张震]的文章
百度学术
百度学术中相似的文章
[张震]的文章
必应学术
必应学术中相似的文章
[张震]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。