中文版 | English
题名

多场景下电动汽车有序充电引导策略的研究

其他题名
RESEARCH ON ORDERLY CHARGING NAVIGATION STRATEGY FOR ELECTRIC VEHICLES IN MULTIPLE SCENARIOS
姓名
姓名拼音
SUN Yantao
学号
12132142
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
嘉有为
导师单位
电子与电气工程系
外机构导师
李勋
外机构导师单位
南方电网电动汽车服务有限公司
论文答辩日期
2023-05-18
论文提交日期
2023-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

电动汽车作为一种新型交通工具,凭借其低碳、低排放与能源可持续性,逐 渐成为新型交通工具。随着电动汽车渗透率逐年增高,其无序充电势必会对电力系统、充电站运营商和电动汽车用户带来诸多负面影响。为了减轻这些不利影响,就应该对用户的充电行为进行合理的引导和调度。同时,作为零散、随机,且具有储能-移动特性的负荷资源,对电动汽车进行有效组织与能量管理,可以为充电场站聚合资源参与电力市场提供可控的负荷基础。因此,本文对不同类型的车 辆,在不同场景下有序充电展开研究,主要研究工作为:针对运营车辆,本文旨在最小化电动汽车用户的充电成本和时间成本,通过综合考虑交通流时变特性和充电站动态排队特性,提出一种基于动态交通流和排 队信息的运营车辆快充引导策略。本文提出的随机交通流模型,表征了道路交通 流对电动汽车电机效率和行驶阻力的影响;利用预约-等待双层队列来捕捉充电 站动态排队特征。仿真结果表明,所提出的充电策略可以降低用户的充电成本,均衡各个充电站的设备利用率。

针对私家车辆,本文旨在最小化充电场站的运营成本和电网负荷偏差,实现 对电动汽车能量的有序管理。考虑到私家车出行链单一且充电行为固定,本文提出一种基于电动汽车充电行为的多阶段充电引导策略。基于用户订单数据,为特定场站下的电动汽车制定核心用户信息标签。日前阶段,向场站核心用户发送充电邀约信息,在日内引导阶段,实时调整,减少实际充电负荷与期望购负荷的偏差。仿真结果验证了所提出的多阶段充电引导框架可以有效减小充电站的运营成本。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] AFRIDI K. The future of electric vehicle charging infrastructure comment[J]. Nature Electronics, 2022, 5(2): 62-64.
[2] 保罗·罗伯茨, 奚翔光, 张建芹, et al. 全球石油[J]. 世界环境, 2010(6): 52-53.
[3] YANG W, WANG H, WANG Z, et al. Optimization Strategy of Electric Vehicles Charging Path Based on "Traffic-Price-Distribution" Mode[J]. Energies, 2020, 13(12)
[4] SHI X, XU Y, GUO Q, et al. A Distributed EV Navigation Strategy Considering the Interaction Between Power System and Traffic Network[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3545-3557.
[5] 刘志强, 张谦, 朱熠, et al. 计及车-路-站-网融合的电动汽车充电负荷时空分布预测[J]. 电力系统自动化, 2022, 46(12): 36-45.
[6] ZHANG Y, YOU P, CAI L. Optimal Charging Scheduling by Pricing for EV Charging Station With Dual Charging Modes[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(9): 3386-3396.
[7] 欧盟以最严法规加速汽车电动化[J]. 质量与认证, 2018, 0(1): 20-20.
[8] 中华人民共和国中央人民政府. 国务院关于印发节能与新能源汽车产业发展规划( 2012 ― 2020 年)的通知 [EB/OL].(2012-07-09)[http://www.gov.cn/zwgk/2012-07/09/content_2179032.htm
[9] 中华人民共和国中央人民政府. 国务院办公厅关于加快新能源汽车推广应用的指导意见[EB/OL].(2014-07-14)[http://www.gov.cn/zhengce/content/2014-07/21/content_8936.htm
[10] 中华人民共和国中央人民政府. 国务院办公厅关于印发新能源汽车产业发展规划( 2021 — 2035 年 ) 的 通 知 [EB/OL].(http://www.gov.cn/zhengce/content/2020-11/02/content_5556716.htm
[11] 中华人民共和国中央人民政府. 国务院办公厅关于加快电动汽车充电基础设施建设的指导意见 [EB/OL].(2015-09-29)[http://www.gov.cn/zhengce/content/2015-10/09/content_10214.htm
[12] YU J-L, JIA Q, HU H-Q. Charging infrastructure construction from the perspective of new infrastructure[J]. Energy Reports, 2021, 7: 224-229.
[13] 韩天轮. 考虑电动汽车负荷影响的配电网规划及运行研究[D]. 北京:华北电力大学(北京), 2019.
[14] VON BONIN M, DOERRE E, AL-KHZOUZ H, et al. Impact of Dynamic Electricity Tariff and Home PV System Incentives on Electric Vehicle Charging Behavior: Study on Potential Grid Implications and Economic Effects for Households[J]. Energies, 2022, 15(3)
[15] YU Y, REIHS D, WAGH S, et al. Data-Driven Study of Low Voltage Distribution Grid Behaviour With Increasing Electric Vehicle Penetration[J]. IEEE Access, 2022, 10: 6053-6070.
[16] LI G, SUN Q, BOUKHATEM L, et al. Intelligent Vehicle-to-Vehicle Charging Navigation for Mobile Electric Vehicles via VANET-Based Communication[J]. IEEE Access, 2019, 7:
[17] YIN W, MING Z. Study on optimal scheduling strategy of electric vehicles clusters in distribution power grid[J]. Optimal Control Applications & Methods, 2022
[18] 陈养华. 考虑典型场景下的电动汽车充电负荷控制策略及实现[D]. 广州:华南理工大学, 2021.
[19] 武小梅. 考虑交通网和光储系统的电动汽车充电站规划与运营研究[D]. 广州:广东工业大学, 2021.
[20] WANG X, YUEN C, HASSAN N U, et al. Electric Vehicle Charging Station Placement for Urban Public Bus Systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(1): 128-139.
[21] XYLIA M, LEDUC S, PATRIZIO P, et al. Locating charging infrastructure for electric buses in Stockholm[J]. Transportation Research Part C: Emerging Technologies, 2017, 78: 183-200.
[22] ROGGE M, VAN DER HURK E, LARSEN A, et al. Electric bus fleet size and mix problem with optimization of charging infrastructure[J]. Applied Energy, 2018, 211: 282-295.
[23] 葛少云, 朱林伟, 刘洪, et al. 基于动态交通仿真的高速公路电动汽车充电站规划[J]. 电工技术学报, 2018, 33(13): 2991-3001.
[24] 王华莹, 李勇, 朱辉, et al. 考虑配电网负荷的电动汽车充电站规划[J]. 电力系统及其自动化学报, 2022, 34(11): 134-141.
[25] ZHANG Y, WANG Y, LI F, et al. Efficient Deployment of Electric Vehicle Charging Infrastructure: Simultaneous Optimization of Charging Station Placement and Charging Pile Assignment[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6654-6659.
[26] 艾欣, 李一铮, 王坤宇, et al. 基于混沌模拟退火粒子群优化算法的电动汽车充电站选址与定容[J]. 电力自动化设备, 2018, 38(09): 9-14.
[27] PAN L, YAO E, YANG Y, et al. A location model for electric vehicle (EV) public charging stations based on drivers? existing activities[J]. Sustainable Cities and Society, 2020, 59
[28] ALHAZMI Y A, MOSTAFA H A, SALAMA M M A. Optimal allocation for electric vehicle charging stations using Trip Success Ratio[J]. International Journal of Electrical Power & Energy Systems, 2017, 91: 101-116.
[29] LIU J Y, LIN G, HUANG S H, et al. Collaborative EV Routing and Charging Scheduling With Power Distribution and Traffic Networks Interaction[J]. IEEE Transactions on Power Systems, 2022, 37(5): 3923-3936.
[30] LU H, SHAO C Z, HU B, et al. En-Route Electric Vehicles Charging Navigation Considering the Traffic-Flow-Dependent Energy Consumption[J]. IEEE Transactions on Industrial Informatics, 2022, 18(11): 8160-8171.
[31] 吴芮, 周良松, 姚占东. 基于实时电价的电动汽车智能充电导航[J]. 中国电力, 2020, 53(04): 131-138+146.
[32] QIAN T, SHAO C C, WANG X L, et al. Deep Reinforcement Learning for EV Charging Navigation by Coordinating Smart Grid and Intelligent Transportation System[J]. IEEE Transactions on Smart Grid, 2020, 11(2): 1714-1723.62
[33] SHI X Y, XU Y L, GUO Q L, et al. A Distributed EV Navigation Strategy Considering the Interaction Between Power System and Traffic Network[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3545-3557.
[34] 邵尹池, 穆云飞, 林佳颖, et al. “车—站—网”多元需求下的电动汽车快速充电引导策略[J]. 电力系统自动化, 2019, 43(18): 60-66+101.
[35] 邢强, 陈中, 冷钊莹, et al. 基于实时交通信息的电动汽车路径规划和充电导航策略[J]. 中国电机工程学报, 2020, 40(02): 534-550.
[36] ZHONG J Q, YANG N, ZHANG X H, et al. A fast-charging navigation strategy for electric vehicles considering user time utility differences[J]. Sustainable Energy Grids & Networks, 2022, 30
[37] 李鹏程, 丛中笑, 杨婧. 一种电动汽车智能充电最优引导优化模型[J]. 电器与能效管理技术, 2018(18): 63-69+78.
[38] ZHANG C, LIU Y A, WU F, et al. Effective Charging Planning Based on Deep Reinforcement Learning for Electric Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 542-554.
[39] CAO Y, JIANG T, KAIWARTYA O, et al. Toward Pre-Empted EV Charging Recommendation Through V2V-Based Reservation System[J]. IEEE Transactions on Systems Man Cybernetics￾Systems, 2021, 51(5): 3026-3039.
[40] SHI X Y, XU Y L, GUO Q L, et al. Optimal Dispatch Based on Aggregated Operation Region of EV Considering Spatio-Temporal Distribution[J]. IEEE Transactions on Sustainable Energy, 2022, 13(2): 715-731.
[41] 李航, 李国杰, 汪可友. 基于深度强化学习的电动汽车实时调度策略[J]. 电力系统自动化, 2020, 44(22): 161-167.
[42] 王敏, 吕林, 向月. 计及 V2G 价格激励的电动汽车削峰协同调度策略[J]. 电力自动化设备, 2022, 42(04): 27-33+85.
[43] LI X C, XIANG Y, LYU L, et al. Price Incentive-Based Charging Navigation Strategy for Electric Vehicles[J]. IEEE Transactions on Industry Applications, 2020, 56(5): 5762-5774.
[44] 程杉, 王贤宁, 冯毅煁. 电动汽车充电站有序充电调度的分散式优化[J]. 电力系统自动化, 2018, 42(01): 39-46.
[45] HUANG J, WANG X, WANG Y, et al. Charging Navigation Strategy of Electric Vehicles Considering Time-of-Use Pricing[Z]. 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE). 2021: 715-720.10.1109/acpee51499.2021.9436864
[46] TAN J, WANG L. Real-Time Charging Navigation of Electric Vehicles to Fast Charging Stations: A Hierarchical Game Approach[J]. IEEE Transactions on Smart Grid, 2015: 1-1.
[47] GUO Q, XIN S, SUN H, et al. Rapid-Charging Navigation of Electric Vehicles Based on Real￾Time Power Systems and Traffic Data[J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1969-1979.
[48] 苏粟, 杨恬恬, 李玉璟, et al. 考虑实时动态能耗的电动汽车充电路径规划[J]. 电力系统自动化, 2019, 43(7): 136-143.
[49] 苏粟, 刘紫琦, 王世丹, et al. 基于用户驾驶行为特性的电动汽车有序充电策略[J]. 电力自动化设备, 2018, 38(3): 63-71.
[50] ZHOU N, XIONG X, WANG Q. Probability Model and Simulation Method of Electric Vehicle Charging Load on Distribution Network[J]. Electric Power Components and Systems, 2014, 42(9): 879-888.
[51] 李海斌. 基于需求响应的电动汽车有序充电策略研究[D]. 镇江:江苏大学, 2021.
[52] DURU K K, KARRA C, VENKATACHALAM P, et al. Critical Insights Into Fast Charging Techniques for Lithium-Ion Batteries in Electric Vehicles[J]. Ieee Transactions on Device and Materials Reliability, 2021, 21(1): 137-152.
[53] 冯仕杰. 考虑时空分布特性的电动汽车充电优化策略研究[D]. 南昌:南昌大学, 2021.
[54] 新能源汽车国家监测与管理中心[EB/OL].(https://www.evsmc.cn/
[55] CHANG X, SONG Z, WANG J. Electric Vehicle Charging Load Prediction and System Development Based on Monte Carlo Algorithm[J]. High Voltage Apparatus, 2020, 56(8): 1-5.
[56] CONWAY T. On the Effects of a Routing and Reservation System on the Electric Vehicle Public Charging Network[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2311-2318.
[57] 徐步尘, 练海晴, 张维忠, et al. 5G 移动通信技术在电力通信系统的应用前瞻[J]. 数码设计, 2022(9): 34-36.
[58] QI L. Research on Intelligent Transportation System Technologies and Applications; proceedings of the Workshop on Power Electronics and Intelligent Transportation System, Guangzhou, PEOPLES R CHINA, F 2008Aug 04-05, 2008 [C]. 2008.
[59] 于奇玉. 基于特征与广义拓扑描述的城市道路建模方法研究与实现[D]. 沈阳:东北大学, 2015.
[60] WANG H, ZHANG R, CHENG X, et al. Hierarchical Traffic Flow Prediction Based on Spatial￾Temporal Graph Convolutional Network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 16137-16147.
[61] 赵佳伟, 胡明辉, 荣正璧, et al. 驾驶风格对纯电动汽车能耗的影响[J]. 重庆大学学报, 2021, 45(12): 103-115.
[62] BOZORGI A M, FARASAT M, MAHMOUD A. A Time and Energy Efficient Routing Algorithm for Electric Vehicles Based on Historical Driving Data[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(4): 308-320.
[63] MORLOCK F, ROLLE B, BAUER M, et al. Time Optimal Routing of Electric Vehicles Under Consideration of Available Charging Infrastructure and a Detailed Consumption Model[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(12): 5123-5135.
[64] 叶兴涛. 基于排队论的城市电动汽车充电设施的规划研究[D]. 杭州:浙江理工大学, 2020.
[65] 张维戈, 陈连福, 黄彧, et al. M/G/k 排队模型在电动出租汽车充电站排队系统中的应用[J]. 电网技术, 2015, 39(3): 724-729.
[66] XIANG Y, YANG J, LI X, et al. Routing Optimization of Electric Vehicles for Charging With Event-Driven Pricing Strategy[J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(1): 7-20.
[67] SUN X, QIU J. Hierarchical Voltage Control Strategy in Distribution Networks Considering Customized Charging Navigation of Electric Vehicles[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 4752-4764.
[68] ZHU J, YANG Z, MOURSHED M, et al. Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches[J]. Energies, 2019, 12(14)
[69] 刘亚丽, 李国栋, 刘云, et al. 基于随机森林的电动汽车充电行为聚类技术研究[J]. 电力工程技术, 2019, 38(6): 115-121.
[70] MA J. Electric vehicle drive power allocation strategy based on K-means algorithm[J]. Chinese Journal of Power Sources, 2018, 42(5): 713-715.
[71] SINAGA K P, YANG M-S. Unsupervised K-Means Clustering Algorithm[J]. IEEE Access, 2020, 8: 80716-80727.

所在学位评定分委会
材料与化工
国内图书分类号
TM73
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543899
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
孙岩涛. 多场景下电动汽车有序充电引导策略的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132142-孙岩涛-电子与电气工程(4365KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙岩涛]的文章
百度学术
百度学术中相似的文章
[孙岩涛]的文章
必应学术
必应学术中相似的文章
[孙岩涛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。