[1] HSIANG E L, HE Z Q, HUANG Y G, et al. Improving the power efficiency of Micro-LED displays with optimized LED chip sizes[J]. Crystals, 2020, 10(6): 494.
[2] CHENG L W, MA J, CAO C R, et al. Improved carrier injection and confinement in InGaN light-emitting diodes containing GaN/AlGaN/GaN triangular barriers[J]. Chinese Physics B, 2018, 27(8): 088504.
[3] PARANJPE A, MONTGOMERY J, LEE S M, et al. 45‐2: Invited paper: Micro‐LED displays: Key manufacturing challenges and solutions[J/OL]. SID International Symposium Digest of technical papers, 2018, 49(1): 597-600.
[4] WU T Z, SHER C W, LIN Y, et al. Mini-LED and Micro-LED: Promising candidates for the next generation display technology[J]. Applied Sciences-Basel, 2018, 8(9): 1557.
[5] LIU Z, ZHANG K, LIU Y, et al. Fully Multi-Functional GaN-based Micro-LEDs for 2500 PPI Micro-displays, temperature sensing, light energy harvesting, and light detection[M]. Institute of Electrical and Electronics Engineers Inc., 2018.
[6] HSIANG E L, YANG Z Y, YANG Q, et al. Prospects and challenges of mini-LED, OLED, and Micro-LED displays[J]. Journal of the Society for Information Display, 2021, 29(6): 446-465.
[7] JAMES SINGH K, HUANG Y-M, AHMED T, et al. Micro-LED as a promising candidate for high-speed visible light communication[J]. Applied Sciences, 2020, 10(20): 7384.
[8] HUANG Y, HSIANG E L, DENG M Y, et al. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives[J]. Light Sci Appl, 2020, 9(1): 105.
[9] NABAT V, DE LA O RODRIGUEZ M, COMPANY O, et al. Par4: Very high speed parallel robot for pick-and-place[C]. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005: 553-558.
[10] IWAYA M, TAKEUCHI T, YAMAGUCHI S, et al. Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN[J]. Japanese Journal of Applied Physics Part 2-Letters, 1998, 37(3b): L316-L318.
[11] LEI T, LUDWIG K F, MOUSTAKAS T D. Heteroepitaxy, polymorphism, and faulting in GaN thin-films on silicon and sapphire substrates[J]. Journal of Applied Physics, 1993, 74(7): 4430-4437.
[12] REEBER R R, WANG K. Lattice parameters and thermal expansion of important semiconductors and their substrates[J]. MRS Online Proceedings Library (OPL), 2000, 622: T6. 35.1.
[13] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5): 353-355.
[14] PENG R S, MENG X J, XU S R, et al. Study on dislocation annihilation mechanism of the high-quality GaN grown on sputtered AlN/PSS and its application in green light-emitting diodes[J]. Ieee Transactions on Electron Devices, 2019, 66(5): 2243-2248.
[15] LEE S, KIM J, OH J, et al. A discrete core-shell-like micro-light-emitting diode array grown on sapphire nano-membranes[J]. Sci Rep, 2020, 10(1): 7506.
[16] LABOUTIN O, LO C F, KAO C K, et al. MOCVD of GaN-based HEMT structures on 8 inch silicon substrates[J]. MRS Online Proceedings Library (OPL), 2015, 1736: mrsf14-1736-t01-06.
[17] 刘传标, 赵强, 刘晓锋. LED显示器件封装现状及发展趋势[J/OL]. 中国照明电器, 2017(7): 31-35.
[18] LEE D S, HAN J H. Micro-LED technology for display applications[J]. Advanced Display Technology: Next Generation Self-Emitting Displays, 2021: 271-305.
[19] BIBL A, HIGGINSON J A, LAW H F S, et al. Method of transferring a micro device: U.S. Patent 8, 333, 860[P]. 2012-12-18.
[20] FAN S D, VU Q A, TRAN M D, et al. Transfer assembly for two-dimensional van der Waals heterostructures[J]. 2D Materials, 2020, 7(2): 022005.
[21] CHOI M, JANG B, LEE W, et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing[J]. Advanced Functional Materials, 2017, 27(11): 1606005.
[22] BAI D, LIU X, ZHANG H, et al. Laser release technology for wafer level packaging[C]. 2018 China Semiconductor Technology International Conference (CSTIC). IEEE, 2018: 1-3.
[23] BISWAS S, MOZAFARI M, STAUDEN T, et al. Surface tension directed fluidic self-assembly of semiconductor chips across length scales and material boundaries[J]. Micromachines, 2016, 7(4): 54.
[24] LI J, LUO B, LIU Z. Micro-LED mass transfer technologies[C]. 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2020: 1-3.
[25] LIU X, TONG C, LUO X, et al. P‐6.8: Study of mass transfer for Micro-LED Manufacturing[J/OL]. SID International Symposium Digest of technical papers, 2019, 50(S1): 775-778.
[26] LINGHU C, ZHANG S, WANG C, et al. Mass transfer for Micro-LED display: Transfer printing techniques[M]. Semiconductors and Semimetals. Elsevier. 2021: 253-280.
[27] OU F, CHONG W C, XU Q, et al. P‐125: Monochromatic active matrix Micro‐LED micro‐displays with >5,000 dpi pixel density fabricated using aonolithic hybrid integration process[J/OL]. SID Symposium Digest of Technical Papers. 2018, 49(1): 1677-1680.
[28] WANG M, GAO W, WANG Z, et al. P‐5.6: 5um Micro‐LED display adopting mass transfer technology and characteristics of GaN Micro‐LED on it[J/OL]. SID Symposium Digest of Technical Papers. 2021, 52: 535-539.
[29] KIM D H, VIVENTI J, AMSDEN J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nat Mater, 2010, 9(6): 511-517.
[30] CHO S, KIM N, SONG K, et al. Adhesiveless transfer printing of ultrathin microscale semiconductor materials by controlling the bending radius of an elastomeric stamp[J]. Langmuir, 2016, 32(31): 7951-7957.
[31] KIM S, CARLSON A, CHENG H Y, et al. Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing[J]. Applied Physics Letters, 2012, 100(17): 171909.
[32] BARTLETT M D, CROLL A B, CROSBY A J. Designing bio-inspired adhesives for shear loading: from Simple structures to complex patterns[J]. Advanced Functional Materials, 2012, 22(23): 4985-4992.
[33] CARLSON A, KIMLEE H J, WU J, et al. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly[J]. Applied Physics Letters, 2011, 98(26): 264104.
[34] DELAMARCHE E, SCHMID H, MICHEL B, et al. Stability of molded polydimethylsiloxane microstructures[J]. Advanced Materials, 1997, 9(9): 741-746.
[35] CSUCS G, KUNZLER T, FELDMAN K, et al. Microcontact printing of macromolecules with submicrometer resolution by means of polyolefin stamps[J]. Langmuir, 2003, 19(15): 6104-6109.
[36] KANG D, PANG C, KIM S M, et al. Shape-controllable microlens arrays via direct transfer of photocurable polymer droplets[J]. Adv Mater, 2012, 24(13): 1709-1715.
[37] LI J H, XU L S, KIM S, et al. Urethane-acrylate polymers in high-resolution contact printing[J]. Journal of Materials Chemistry C, 2016, 4(19): 4155-4165.
[38] SADHU V B, PERL A, PETER M, et al. Surface modification of elastomeric stamps for microcontact printing of polar inks[J]. Langmuir, 2007, 23(12): 6850-6855.
[39] KUNCOVáKALLIO J, KALLIO P J. PDMS and its suitability for analytical microfluidic devices[C]. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006: 2486-2489.
[40] ZHANG S, LUO H Y, WANG S H, et al. A thermal actuated switchable dry adhesive with high reversibility for transfer printing[J]. International Journal of Extreme Manufacturing, 2021, 3(3): 035103.
[41] PENG P, WU K, LV L X, et al. One-Step Selective Adhesive Transfer Printing for Scalable Fabrication of Stretchable Electronics[J]. Advanced Materials Technologies, 2018, 3(3): 1700264.
[42] JEHN J, OSER P, COURRAU M A M, et al. Fully inkjet-printed carbon nanotube-PDMS-based strain sensor: Temperature response, compressive and tensile bending properties, and fatigue investigations[J]. Ieee Access, 2021, 9: 72207-72216.
[43] GRAUDEJUS O, GORRN P, WAGNER S. Controlling the morphology of gold films on poly (dimethylsiloxane)[J]. ACS Appl Mater Interfaces, 2010, 2(7): 1927-1933.
[44] ZHAO J H, RYAN T, HO P S, et al. Measurement of elastic modulus, Poisson ratio, and coefficient of thermal expansion of on-wafer submicron films[J]. Journal of Applied Physics, 1999, 85(9): 6421-6424.
[45] THANGAWNG A L, SWARTZ M A, GLUCKSBERG M R, et al. Bond-detach lithography: A method for micro/nanolithography by precision PDMS patterning[J]. Small, 2007, 3(1): 132-138.
[46] LINGHU C H, WANG C J, CEN N, et al. Rapidly tunable and highly reversible bio-inspired dry adhesion for transfer printing in air and a vacuum[J]. Soft Matter, 2019, 15(1): 30-37.
[47] YUNAS J, MULYANTI B, HAMIDAH I, et al. Polymer-based MEMS electromagnetic actuator for biomedical application: A review[J]. Polymers, 2020, 12(5): 1184.
[48] HONG I Y, LEE J H, CHO S M, et al. Impact of hydrothermally grown ZnO nanorods on external quantum efficiency of 32×32 pixelated InGaN/GaN Micro-LED array[J]. IEEE Transactions on Nanotechnology, 2018, 18: 160-166.
[49] ZHOU X J, TIAN P F, SHER C W, et al. Growth, transfer printing and colour conversion techniques towards full-colour Micro-LED display[J]. Progress in Quantum Electronics, 2020, 71: 100263.
[50] SASAKI K, SCHUELE P J, ULMER K, et al. System and method for the fluidic assembly of emissive displays: U.S. Patent 10, 418, 527[P]. 2019-9-17.
[51] LUO H, WANG C, LINGHU C, et al. Laser-driven programmable non-contact transfer printing of objects onto arbitrary receivers via an active elastomeric microstructured stamp[J]. Natl Sci Rev, 2020, 7(2): 296-304.
[52] MARINOV V R. 52‐4: Laser‐enabled extremely‐high rate technology for µLED assembly[J/OL]. SID Symposium Digest of Technical Papers. 2018, 49(1): 692-695.
[53] LENG J S, LAN X, LIU Y J, et al. Shape-memory polymers and their composites: Stimulus methods and applications[J]. Progress in Materials Science, 2011, 56(7): 1077-1135.
[54] LIU T Z, ZHOU T Y, YAO Y T, et al. Stimulus methods of multi-functional shape memory polymer nanocomposites: A review[J]. Composites Part a-Applied Science and Manufacturing, 2017, 100: 20-30.
[55] KIM S, LIU N, SHESTOPALOV A A. Contact printing of multilayered thin films with shape memory polymers[J]. ACS Nano, 2022, 16(4): 6134-6144.
[56] LINGHU C, ZHANG S, WANG C, et al. Universal SMP gripper with massive and selective capabilities for multiscaled, arbitrarily shaped objects[J]. Sci Adv, 2020, 6(7): eaay5120.
[57] XUE Y G, ZHANG Y H, FENG X, et al. A theoretical model of reversible adhesion in shape memory surface relief structures and its application in transfer printing[J]. Journal of the Mechanics and Physics of Solids, 2015, 77: 27-42.
[58] KIM T H, CHO K S, LEE E K, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nature Photonics, 2011, 5(3): 176-182.
[59] KIM M, KIM D J, HA D, et al. Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications[J]. Nanoscale, 2016, 8(18): 9461-9479.
[60] LEE H, KOH D, XU L, et al. A simple method for fabrication of microstructures using a PDMS stamp[J]. Micromachines, 2016, 7(10): 173.
[61] KIM T K, KIM J K, JEONG O C. Measurement of nonlinear mechanical properties of PDMS elastomer[J]. Microelectronic Engineering, 2011, 88(8): 1982-1985.
[62] ZHANG G G, SUN Y L, QIAN B K, et al. Experimental study on mechanical performance of polydimethylsiloxane (PDMS) at various temperatures[J]. Polymer Testing, 2020, 90: 106670.
[63] SEGHIR R, ARSCOTT S. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces[J]. Sci Rep, 2015, 5(1): 14787.
[64] WANG L, DUAN J, ZHANG B, et al. Variable-focus liquid lens integrated with a planar electromagnetic actuator[J]. Micromachines, 2016, 7(10): 190.
[65] ABDELAZIEZ Y A. Fabrication of micron-sized mirror/cantilever silicon devices for crosspoint switching arrays[M]. New Jersey Institute of Technology, 1993.
[66] KURIHARA M, HATAKEYAMA S, YOSHIDA K, et al. Surface energy control techniques for photomask fabrication and their characterizations with scanning probe microscopy[C]. Photomask and Next-Generation Lithography Mask Technology XV. SPIE, 2008, 7028: 833-839.
[67] CHEN T C, LIAO G W, CHANG Y W. Predictive formulae for OPC with applications to lithography-friendly routing[C]. Proceedings of the 45th annual Design Automation Conference. 2008: 510-515.
[68] REBIGAN R, DINESCU A, KUSKO C, et al. Process development for micro—nano patterning of metallic layers with applications in photonics[C]. 2009 International Semiconductor Conference. IEEE, 2009, 1: 193-196
[69] TRIPATHY S, RAMAM A, CHUA S, et al. Characterization of inductively coupled plasma etched surface of GaN using Cl 2/BCl 3 chemistry[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001, 19(5): 2522-2532.
[70] QIU R F, LU H, CHEN D J, et al. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis[J]. Applied Surface Science, 2011, 257(7): 2700-2706.
[71] TAHHAN M, NEDY J, CHAN S H, et al. Optimization of a chlorine-based deep vertical etch of GaN demonstrating low damage and low roughness[J]. Journal of Vacuum Science & Technology A, 2016, 34(3): 031303.
[72] MEYER T, PETITETIENNE C, PARGON E. Influence of the carrier wafer during GaN etching in Cl2 plasma[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2022, 40(2): 023202.
[73] KIM T H, CARLSON A, AHN J H, et al. Kinetically controlled, adhesiveless transfer printing using microstructured stamps[J]. Applied Physics Letters, 2009, 94(11): 113502.
[74] MOCHIZUKI K, MISHIMA T, TERANO A, et al. Numerical analysis of forward-current/voltage characteristics of vertical GaN Schottky-barrier diodes and pn diodes on free-standing GaN substrates[J]. IEEE Transactions on Electron Devices, 2011, 58(7): 1979-1985.
[75] KIM D W, SUNG Y J, PARK J W, et al. A study of transparent indium tin oxide (ITO) contact to p-GaN[J]. Thin Solid Films, 2001, 398: 87-92.
[76] ADIVARAHAN V, LUNEV A, KHAN M A, et al. Very-low-specific-resistance Pd/Ag/Au/Ti/Au alloyed ohmic contact to p GaN for high-current devices[J]. Applied Physics Letters, 2001, 78(18): 2781-2783.
[77] CHEN S W H, HUANG Y M, SINGH K J, et al. Full-color Micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist[J]. Photonics Research, 2020, 8(5): 630-636.
[78] TAKEUCHI T, WETZEL C, YAMAGUCHI S, et al. Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect[J]. Applied Physics Letters, 1998, 73(12): 1691-1693.
[79] HUANG Y, LIN C, YE Z H, et al. Reflow flip-chip bonding technology for infrared detectors[J]. Journal of Micromechanics and Microengineering, 2015, 25(8): 085009.
[80] UM J G, JEONG D Y, JUNG Y, et al. Active‐matrix GaN µ‐LED display using oxide thin‐film transistor backplane and flip chip LED bonding[J]. Advanced Electronic Materials, 2019, 5(3): 1800617.
[81] LIU Z, LIN C H, HYUN B R, et al. Micro-light-emitting diodes with quantum dots in display technology[J]. Light: Science & Applications, 2020, 9(1): 83.
[82] COOMBES C. The melting of small particles of lead and indium[J]. Journal of Physics F: Metal Physics, 1972, 2(3): 441.
[83] LIU Z J, CHONG W C, WONG K M, et al. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays[J]. Journal of Display Technology, 2013, 9(8): 678-682.
[84] 王婷, 郭霞, 刘斌, 等. 基于有限元分析法的激光剥离技术中GaN材料瞬态温度场研究[J]. 中国激光, 2005, 32(9): 1295-1299.
[85] 方圆, 郭霞, 王婷, 等. 激光剥离技术实现GaN薄膜从蓝宝石衬底移至Cu衬底[J]. 激光与红外, 2007, 37(1): 62-65.
[86] 王仙翅, 潘章旭, 刘久澄, 等. 蓝光GaN基Micro-LED芯片制备及激光剥离工艺研究[J]. 半导体光电, 2020, 41(2): 211-216.
[87] KIM J, KIM J H. Laser lift-off (LLO) process for Micro-LED fabrication[J]. Micro Light Emitting Diode: Fabrication and Devices: Micro-LED Technology, 2021: 33-53.
[88] TIAN W Y, WU Y S, WU T X, et al. Mechanisms and performance analysis of GaN-based Micro-LED grown on pattern sapphire substrate by Laser lift-off process[J]. Ecs Journal of Solid State Science and Technology, 2022, 11(4): 046001.
[89] CHEONG J, GOYAL A, TADIGADAPA S, et al. Reliable bonding using indium-based solders[C]. Reliability, Testing, and Characterization of MEMS/MOEMS III. SPIE, 2003, 5343: 114-120.
[90] BOWER C A, MEITL M, KNEEBURG D. Micro-transfer-printing: heterogeneous integration of microscale semiconductor devices using elastomer stamps[C]. IEEE SENSORS 2014 Proceedings. IEEE, 2014: 2111-2113.
[91] WEI F, LI S, LU T, et al. P‐9.12: hybrid full color Micro‐LED displays with quantum dots[J/OL]. SID International Symposium Digest of technical papers, 2018, 49(S1): 697-699.
修改评论