中文版 | English
题名

两种低维有机-无机杂化金属卤化物光学性质的高压调控研究

其他题名
PRESSURE-REGULATED PHOTOLUMINESCENCE PROPERTIES IN TWO LOW-DIMENSIONAL ORGANIC-INORGANIC HYBRID METAL HALIDES
姓名
姓名拼音
CHEN Yulin
学号
12032086
学位类型
硕士
学位专业
070301 无机化学
学科门类/专业学位类别
07 理学
导师
罗志山
导师单位
前沿与交叉科学研究院
论文答辩日期
2023-05-29
论文提交日期
2023-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

低维有机-无机杂化金属卤化物(HMH)是由有机阳离子和无机阴离子 组成的材料,因其独特的“主-客体”结构和自陷态激子发光在固态照明、分子传感、辐射探测等领域有着广泛的应用。低维 HMH 的光学性质由激子跃迁决定,包括激子形成、自俘获、系间窜越以及内部转换等步骤。目前,对 HMH 中的激子跃迁行为的研究仍处在初步阶段,这限制了低维 HMH 的发展。而高压光学实验方法可以深入研究低维 HMH 的发光性质和探究其结构-性质之间的关系。因此,本文利用高压光学实验方法实现了低维 HMH光学性质调节,揭示了结构和组分因素对材料光学性质的影响。主要研究内容如下:

在零维(C4N3H16)SbCl6 材料的研究中,本文利用高压实现了发光强度的显著增强,并揭示了高压下结构与材料发光强度增强之间的关系。在 3.8GPa 以上时,(C4N3H16)SbCl6 高压相的陷阱能级深度相较于其常压相有所减小,导致载流子脱俘获能垒减小。这样的变化增加了载流子脱俘获回迁到发光能级的概率,进而发生辐射复合产生了缺陷相关的发光,因此增强了发光强度。 在一维(C8NH12)PbX3X=BrI)材料的研究中,本文通过压力调节材料的激子跃迁行为实现了材料发光能量的变化。(C8NH12)PbBr3 8.1 GPa下出现新的高能单线态发光,从而实现其发光能量的大范围调节,发光颜色由橙色转变为蓝色。而(C8NH12)PbI3 在压力下没有明显的发光能量变化。比较其结构因素可知(C8NH12)PbBr3 (C8NH12)PbI3 具有更小的结构刚性,因此更易于实现激子跃迁的调节。

总之,利用高压光学实验方法能够有效调节低维有机-无机杂化金属卤化物的激子跃迁过程,探究其结构-光学性质关系,这对于该材料的应用具有重要意义。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] GRäTZEL M. The light and shade of perovskite solar cells[J]. Nature Materials, 2014, 13: 838-842.
[2] LI M Z, ZHOU J, ZHOU G J, et al. Hybrid metal halides with multiple photoluminescence Centers[J]. Angewandte Chemie International Edition, 2019, 58: 18670-18675.
[3] LI C, LUO Z, LIU Y, et al. Self‐trapped exciton emission with high thermal stability in antimony‐doped hybrid manganese chloride[J]. Advanced Optical Materials, 2022, 10: 2102746.
[4] JIN X L, JIN L S, SONG L X, et al. Multicomponent organic metal halide hybrid with white emissions[J]. Angewandte Chemie International Edition, 2020, 59: 14120 -14123.
[5] LI Y, SHI Z F, LIANG W Q, et al. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites[J]. Materials Horizons, 2020, 7: 530-540.
[6] LIU T J, TANG W D, SALLY L, et al. High charge carrier mobility in solution processed one-dimensional lead halide perovskite single crystals and their applica tion as photodetectors[J]. Nanoscale, 2020, 12: 9688-9695.
[7] HSIAO Y W, SONG J Y, WU H T, et al. Properties of halide perovskite photodetectors with little rubidium incorporation[J]. Nanomaterials, 2022, 12: 157-166.
[8] WANG Y, LI X M, ZHAO X, et al. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J]. Nano Letters, 2016, 16: 448-453.
[9] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible light sensitizers for photovoltaic cells[J]. Journal of American Chemical Society, 2009, 131: 6050-6051.
[10] WANG Y R, ZHANG M, XIAO K, et al. Recent progress in developing efficient monolithic all-perovskite tandem solar cells[J]. Journal of Semiconductors, 2020, 41: 051201-051212.
[11] BRYANT D, ARISTIDOU N, PONT S, et al. Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells[J]. Energy & Environmental Science, 2016, 9: 1655-1660.
[12] SZAFRAŃSKI M, KATRUSIAK A. Photovoltaic hybrid perovskites under pressure[J]. The Journal of Physical Chemistry Letters, 2017, 8: 2496-2506.
[13] POSTORINO P, MALAVASI L. Pressure-induced effects in organic–inorganic hybrid perovskites[J]. The Journal of Physical Chemistry Letters, 2017, 8: 2613-2622.
[14] Lü X J, YANG W G, JIA Q X, et al. Pressure-induced dramatic changes in organic–inorganic halide perovskites[J]. Chemical Science, 2017, 8: 6764-6776.
[15] LIU G, KONG L P, YANG W G, et al. Pressure engineering of photovoltaic perovskites[J]. Materials Today, 2019, 27: 91-106.
[16] STOUMPOS C C, KANATZIDIS M G. The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 2015, 48: 2791-2802.
[17] MISRA R K, COHEN B E, IAGHER L, et al. Low‐dimensional organic–inorganic halide perovskite: structure, properties, and applications[J]. Chemistry Sustainability Energy Materials, 2017, 10: 3712-3721.
[18] LUO Z S, LIU Y J, LIU Y L, et al. Integrated afterglow and self‐trapped exciton emissions in hybrid metal halides for anti‐counterfeiting applications[J]. Advanced Materials, 2022, 34: 2200607.
[19] WEI Y, LI C, LI Y W, et al. Circularly Polarized luminescence from zero‐dimensional hybrid lead‐tin bromide with near‐unity photoluminescence quantum yield[J]. Angewandte Chemie International Edition, 2022, 61: e202212685.
[20] LI Q, ZHANG L M, CHEN Z W, et al. Metal halide perovskites under compression[J]. Journal of Materials Chemistry A, 2019, 7: 16089-16108.
[21] DOHNER E R, HOKE E T, KARUNADASA H I. Self-assembly of broadband white￾light emitters[J]. Journal of the American Chemical Society, 2014, 136: 1718-1721.
[22] YUAN Z, ZHOU C K, YU T, et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission[J]. Nature Communications, 2017, 8: 14051-14057.
[23] ZHOU C K, MICHAEL W, JENNIFER N, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency[J]. Chemistry of Materials, 2018, 30: 2374-2378.
[24] ZHAO Y M, LUNT R R. Transparent luminescent solar concentrators for large ‐area solar windows enabled by massive stokes‐shift nanocluster phosphors[J]. Advanced Energy Materials, 2013, 3: 1143-1148.
[25] ZHOU C K, TIAN Y, WANG M C, et al. Low‐dimensional organic tin bromide perovskites and their photoinduced structural transformation[J]. Angewandte Chemie International Edition, 2017, 56: 9018-9022.
[26] MANSER J S, CHRISTIANS J A, KAMAT P V. Intriguing optoelectronic properties of metal halide perovskites [J]. Chemical Reviews, 2016, 116(21): 12956-3008.
[27] ROPP R C. Luminescence and the solid state [M]. elsevier, 2013.
[28] LIANG W Y. Excitons[J]. Physics Education, 1970, 5: 226.
[29] PETER Y, CARDONA M. Fundamentals of semiconductors: physics and materials properties [M]. Springer Science & Business Media, 2010.
[30] ZHAO Y, ZHOU C K, JOSHUA M, et al. A microscale perovskite as single component broadband phosphor for downconversion white-light-emitting devices[J]. Advanced Optical Materials, 2016, 4: 2009-2015.
[31] SMITH M D, KARUNADASA H I. White-light emission from layered halide perovskites[J]. Accounts of Chemical Research, 2018, 51: 619-627.
[32] MAO L L, GUO P J, KEPENEKIAN M L, et al. Structural diversity in white -light￾emitting hybrid lead bromide perovskites[J]. Journal of the American Chemical Society, 2018, 140: 13078-13088.
[33] WU X X, TRINH M T, ZHU X Y. Excitonic many-body interactions in two-dimensional lead iodide perovskite quantum wells[J]. The Journal of Physical Chemistry C, 2015, 119: 14714-14721.
[34] DOU L, WONG A B, YU Y, et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites[J]. Science, 2015, 345: 1518-1521.
[35] ZHOU C K, LIN H R, TIAN Y, et al. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency[J]. Chemical Science, 2018, 9: 586-593.
[36] ZHOU C K, MICHAEL W, JENNIFER N, et al. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency[J]. Chemistry of Materials, 2018, 30: 2374-2378.
[37] ZHANG X Y, LI L N, SUN Z H, et al. Rational chemical doping of metal halide perovskites[J]. Chemical Society Reviews, 2019, 48: 517-539.
[38] LI C, LUO Z S, LIU Y L, et al. Self‐trapped exciton emission with high thermal stability in antimony‐doped hybrid manganese chloride[J]. Advanced Optical Materials, 2022, 10: 1-9.
[39] MCCALL K M, MORAD V, BENIN B M, et al. Efficient Lone -Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s 2 Metal Halides[J]. ACS Material Letter, 2020, 2: 1218-1232.
[40] LI S R, LUO J J, LIU J, et al. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications[J]. The Journal of Physical Chemistry Letters, 2019, 10: 1999-2007.
[41] SU B B, XIA Z G. Research progresses of photoluminescence and application for emerging zero-dimensional metal halides luminescence materials[J]. Chinese Journal of Luminescence, 2021, 42: 734-754.
[42] JING Y Y, LIU Y, JIANG X X, et al. Sb3+ Dopant and halogen substitution triggered highly efficient and tunable emission in lead-free metal halide single crystals[J]. Chemistry of Materials 2020, 32: 5327-5334.
[43] LI M Z, XIA Z G. Recent progress of zero-dimensional luminescent metal halides[J]. Chemical Society Reviews 2021, 50(4): 2626-2662.
[44] ZHANG B B, JIA KAI CHEN, MA J P, et al. Antithermal quenching of luminescence in zero-dimensional hybrid metal halide solids[J]. The Journal of Physical Chemistry Letters, 2020, 11: 2902-2909.
[45] MAO L L, WU Y, STOUMPOS C C, et al. Tunable white-light emission in single￾cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10–xClx[J]. Journal of the American Chemical Society, 2017, 139: 11956-11963.
[46] GAUTIER R, PARIS M, MASSUYEAU F. Exciton self-trapping in hybrid lead halides: role of halogen[J]. Journal of the American Chemical Society, 2019, 141: 12619-12623.
[47] PAREJA R C, MORáN M J A, GÓMORA F A P, et al. Optimizing broadband emission in 2D halide perovskites[J]. Chemistry of Materials, 2022, 34: 9344-9349.
[48] HAN Y, YIN J, CAO G Y, et al. Exciton self-trapping for white emission in 100-oriented two-dimensional perovskites via halogen substitution[J]. ACS Energy Letters, 2021, 7: 453-460.
[49] LUO J J, WANG X M, LI S R, et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563: 541-545.
[50] YU J C, KONG J T, HAO W, et al. Broadband extrinsic self‐trapped exciton emission in Sn‐doped 2D lead‐halide perovskites[J]. Advanced Materials, 2019, 31: 1806385.
[51] LI Z Y, LI Y, LIANG P, et al. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency[J]. Chemistry of Materials, 2019, 31: 9363-9371.
[52] WANG Z P, WANG J Y, LI J R, et al. [Bmim]2SbCl5: a main group metal-containing ionic liquid exhibiting tunable photoluminescence and white -light emission[J]. Chemical Communications, 2015, 51: 3094-3097.
[53] ZHA C S, LIU Z X, HEMLEY R J. Synchrotron infrared measurements of dense hydrogen to 360 GPa[J]. Physical Review Letters, 2012, 108: 146402.
[54] MAO H-K, DING Y, HU Q Y, et al. The deep earth engine driving major surface events[J]. Acta Geologica Sinica‐English Edition, 2021, S1: 68-69.
[55]STöFFLER D. Minerals in the deep earth: a message from the Asteroid Belt[J]. Science, 1997, 5434: 1576-1577.
[56] LANDENBERGER K B, MATZGER A J. Cocrystal engineering of a prototype energetic material: supramolecular chemistry of 2, 4, 6-trinitrotoluene[J]. Crystal Growth & Design, 2010, 10: 5341-5347.
[57] DONG X, OGANOV A R, GONCHAROV A F, et al. A stable compound of helium and sodium at high pressure[J]. Nature Chemistry, 2017, 9: 440-445.
[58] BASSETT W A. Diamond anvil cell, 50th birthday[J]. High pressure research, 2009, 29: 163-186.
[59] JAYARAMAN A. Diamond anvil cell and high-pressure physical investigations[J]. Reviews of Modern Physics, 1983, 55: 65-108.
[60] PIERMARINI G J, BLOCK S, BARNETT J D. Hydrostatic limits in liquids and solids to 100 kbar[J]. Journal of Applied Physics, 1973, 44: 5377.
[61] LESAR R, EKBERG S A, JONES L H, et al. Raman spectroscopy of solid nitrogen up to 374 kbar[J]. Solid State Communications, 1979, 32: 131-134.
[62] MAO H-K, BELL P M, SHANER J W, et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics, 1978, 49: 3276-3283.
[63] YIN T T, LIU B, YAN J X, et al. Pressure-engineered structural and optical properties of two-dimensional (C4H9NH3)2PbI4 perovskite exfoliated nm-thin flakes[J]. Journal of American Chemical Society, 2019, 141: 1235-1241.
[64] YUAN Y, LIU X F, MA X D, et al. Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure[J]. Advanced Science, 2019, 6: 1900240.
[65] GUO S H, ZHAO Y S, BU K J, et al. Pressure‐suppressed carrier trapping leads to enhanced emission in two‐dimensional perovskite (HA)2(GA)Pb2I7[J]. Angewandte Chemie International Edition, 2020, 132: 17686-17692.
[66] LI Q, YIN L X, CHEN Z W, et al. High pressure structural and optical properties of two-dimensional hybrid halide perovskite (CH3NH3)3Bi2Br9[J]. Inorganic Chemistry, 2019, 58: 1621-1626.
[67] SHI Y, MA Z W, ZHAO D L, et al. Pressure-Induced Emission (PIE) of One￾Dimensional Organic Tin Bromide Perovskites[J]. Journal of American Chemical Society, 2019, 141: 6504-6508.
[68] FU R J, ZHAO W Y, WANG L R, et al. Pressure‐induced emission toward harvesting cold white light from warm white light[J]. Angewandte Chemie International Edition, 2021, 60: 10082-10088.
[69] WANG Y Q, GUO S H, LUO H, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss[J]. Journal of the American Chemical Society, 2020, 142: 16001-16006.
[70] LUO H, GUO S H, ZHANG Y B, et al. Regulating exciton-phonon coupling to achieve a near-unity photoluminescence quantum yield in one-dimensional hybrid metal halides[J]. Advanced Science 2021, 8: 2100786.
[71] LI Q, CHEN Z W, LI M Z, et al. Pressure‐engineered photoluminescence tuning in zero‐dimensional lead bromide trimer clusters[J]. Angewandte Chemie International Edition, 2021, 133: 2615-2619.
[72] LI Q, XU B, CHEN Z W, et al. Excitation‐dependent emission color tuning of 0D Cs2InBr5·H2O at high pressure[J]. Advanced Functional Materials, 2021, 31: 2104923.
[73] ZHANG L, LIU C M, LIN Y, et al. Tuning optical and electronic properties in low￾toxicity organic-inorganic hybrid (CH3NH3)3Bi2I9 under high pressure[J]. The Journal of Physical Chemistry Letters, 2019, 10: 1676-1683.
[74] HUANG T, WEI Q L, LIN W C, et al. High-efficient yellow-green emission in (TDMP)MnBr4 single crystal with modulation of spin-phonon-charge interactions[J]. Materials Today Physics, 2022, 25: 100703.
[75] HUANG T, PENG H, WEI Q L, et al. Magnetic polaronic and bipolaronic excitons in Mn(II) doped (TDMP)PbBr4 and their high emission[J]. Nano Energy, 2022, 93: 106863.
[76] SONG T B, YUAN Z H, BABBE F, et al. Dynamics of antisolvent processed hybrid metal halide perovskites studied by in situ photoluminescence and its influence on optoelectronic properties[J]. ACS Applied Energy Materials, 2020, 3: 2386 -2393.
[77] MA J P, CHEN Y M, ZHANG L M, et al. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3perovskite nanocrystals[J]. Journal of Materials Chemistry C, 2019, 7: 3037 -3048.
[78] FAN X T, CHEN W B, XIN S Y, et al. Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps[J]. Journal of Materials Chemistry C, 2018, 6: 2978-2982.
[79] MCCALL K M, STOUMPOS C C, KOSTINA S S, et al. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A= Cs, Rb; M= Bi, Sb)[J]. Chemistry of Materials, 2017, 29: 4129-4145.
[80] SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near￾band-edge photoluminescence of semiconductors[J]. Physical Review B, 1992, 45: 8989-8994.
[81] GENG T, SHI Y, LIU Z, et al. Pressure-induced emission from all-inorganic two￾dimensional vacancy-ordered lead-free metal halide perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2022, 13: 11837-11843.
[82] GUO Q X, ZHAO X, SONG B X, et al. Light emission of self‐trapped excitons in inorganic metal halides for optoelectronic applications[J]. Advanced Materials, 2022, 2201008.
[83] LI Q, CHEN Z W, YANG B, et al. Pressure-induced remarkable enhancement of self￾trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units[J]. Journal of the American Chemical Society, 2020, 142: 1786-1791.
[84] WANG Y G, LÜ X J, YANG W G, et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite[J]. Journal of the American Chemical Society, 2015, 137: 11144 -11149.
[85] YING CHEN PENG, JIN J C, GU Q, et al. Selective Luminescence response of a zero￾dimensional hybrid antimony(III) halide to solvent molecules: size -effect and supramolecular interactions[J]. Inorganic Chemistry, 2021, 60: 17837-17845.
[86] LIN F, WANG H, LIU W, et al. Zero-dimensional ionic antimony halide inorganic–organic hybrid with strong greenish yellow emission[J]. Journal of Materials Chemistry C, 2020, 8: 7300-7303.
[87] HERZ L M. Charge-carrier dynamics in organic-inorganic metal halide perovskites[J]. Annual Review of Physical Chemistry 2016, 67: 65-89.
[88] SHIBATA H. Negative thermal quenching curves in photoluminescence of solids[J]. Japanese Journal of Applied Physics, 1998, 37: 550-553.
[89] ROCCANOVA R, YANGUI A, SEO G, et al. Bright luminescence from nontoxic CsCu2X3 (X= Cl, Br, I)[J]. ACS Materials Letters, 2019, 1: 459-465.
[90] GENG T, MA Z W, CHEN Y P, et al. Bandgap engineering in two-dimensional halide perovskite Cs3Sb2I9 nanocrystals under pressure[J]. Nanoscale, 2020, 12: 1425-1431.
[91] MORAD V, SHYNKARENKO Y, YAKUNIN S, et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation[J]. Journal of the American Chemical Society, 2019, 141: 9764-9768.
[92] VOGLER A, NIKOL H. The structures of s2 metal complexes in the ground and sp excited states[J]. Comments on Inorganic Chemistry: A Journal of Critical Discussion of the Current Literature, 1993, 14: 245-261.
[93] CHEN L, LUO A Q, ZHANG Y, et al. The site-selective excitation and the dynamical electron–lattice interaction on the luminescence of YBO3: Sb3+[J]. Journal of Solid State Chemistry, 2013, 201: 229-236.
[94] OOMEN E, SMIT W, BLASSE G. Jahn-Teller effect in the Sb3+ emission in zircon structured phosphates[J]. Chemical physics letters, 1984, 112: 547-550.
[95] LU X J, STOUMPOS C, HU Q Y, et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites[J]. National Science Review, 2021, 8: nwaa288.
[96] NIEMANN R G, KONTOS A G, PALLES D, et al. Halogen effects on ordering and bonding of CH3NH3+ in CH3NH3PbX3 (X = Cl, Br, I) hybrid perovskites: a vibrational spectroscopic study[J]. The Journal of Physical Chemistry C, 2016, 120: 2509-2519.

所在学位评定分委会
化学
国内图书分类号
O521
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543902
专题理学院_化学系
推荐引用方式
GB/T 7714
陈昱霖. 两种低维有机-无机杂化金属卤化物光学性质的高压调控研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032086-陈昱霖-化学系.pdf(6234KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈昱霖]的文章
百度学术
百度学术中相似的文章
[陈昱霖]的文章
必应学术
必应学术中相似的文章
[陈昱霖]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。