[1]TANG C, YU J, CHEN W, et al. Relationship oriented semantic scene understanding for dailymanipulation tasks[C/OL]//2022 IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS). 2022: 9926-9933. DOI: 10.1109/IROS47612.2022.9981960.
[2]ZHANG F, DEMIRIS Y. Learning garment manipulation policies toward robot-assisted dress-ing[J/OL]. Science Robotics, 2022, 7(65): eabm6010. https://www.science.org/doi/abs/10.1126/scirobotics.abm6010.
[3]XIAO A, TONG W, YANG L, et al. Robotic guide dog: leading a human with leash-guidedhybrid physical interaction[C/OL]//2021 IEEE International Conference on Robotics and Au-tomation (ICRA). 2021: 11470-11476. DOI: 10.1109/ICRA48506.2021.9561786.
[4]IKEDA H, TOYAMA T, MAKI D, et al. Cooperative step-climbing strategy using an au-tonomous wheelchair and a robot[J/OL]. Robotics and Autonomous Systems, 2021, 135:103670. DOI: https://doi.org/10.1016/j.robot.2020.103670.
[5]CAMISA A, TESTA A, NOTARSTEFANO G. Multi-robot pickup and delivery via distributedresource allocation[J/OL]. IEEE Transactions on Robotics, 2022: 1-13. DOI: 10.1109/TRO.2022.3216801.
[6] 梁爽. 智慧工厂中多移动机器人路径规划研究[D]. 上海交通大学, 2017.
[7] WANG J, MENG M Q H. Real-time decision making and path planning for robotic autonomousluggage trolley collection at airports[J/OL]. IEEE Transactions on Systems, Man, and Cyber-netics: Systems, 2022, 52(4): 2174-2183. DOI: 10.1109/TSMC.2020.3048984.
[8]XIAO A, LUAN H, ZHAO Z, et al. Robotic autonomous trolley collection with progressiveperception and nonlinear model predictive control[C/OL]//2022 International Conference onRobotics and Automation (ICRA). 2022: 4480-4486. DOI: 10.1109/ICRA46639.2022.9812455.
[9]PAN J, MAI X, WANG C, et al. A searching space constrained partial to full registration ap-proach with applications in airport trolley deployment robot[J/OL]. IEEE Sensors Journal, 2021,21(10): 11946-11960. DOI: 10.1109/JSEN.2020.3042665.
[10]VERMA J K, RANGA V. Multi-robot coordination analysis, taxonomy, challenges and futurescope[J]. Journal of intelligent & robotic systems, 2021, 102: 1-36.
[11]ALAMI R, FLEURY S, HERRB M, et al. Multi-robot cooperation in the MARTHA project[J/OL]. IEEE Robotics and Automation Magazine, 1998, 5(1): 36-47. DOI: 10.1109/100.667325.
[12]MARCOTTE R J, WANG X, MEHTA D, et al. Optimizing multi-robot communication underbandwidth constraints[J]. Autonomous Robots, 2020, 44(1): 43-55.
[13]曾潼辉. 多机器人协作区域覆盖关键技术研究[D]. 电子科技大学, 2022.
[14]YAN L, YANG Y, XU W, et al. Dual-arm coordinated motion planning and compliancecontrol for capturing moving objects with large momentum[C/OL]//2018 IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems (IROS).2018: 7137-7144.DOI:10.1109/IROS.2018.8593853.
[15]ZHOU X, WEN X, WANG Z, et al. Swarm of micro flying robots in the wild[J/OL]. ScienceRobotics, 2022, 7(66): eabm5954. https://www.science.org/doi/abs/10.1126/scirobotics.abm5954.
[16] 潘建龙. 多机器人协作系统运动规划及位置力协调控制研究[D]. 东南大学, 2018.
[17] FENG Z, HU G, SUN Y, et al. An overview of collaborative robotic manipulation in multi-robotsystems[J/OL]. Annual Reviews in Control, 2020, 49: 113-127. DOI: https://doi.org/10.1016/j.arcontrol.2020.02.002.
[18]TUCI E, ALKILABI M H, AKANYETI O. Cooperative object transport in multi-robot systems:A review of the state-of-the-art[J]. Frontiers in Robotics and AI, 2018, 5: 59.
[19]WANG Y, DE SILVA C W. Sequential Q-learning with Kalman filtering for multirobot cooper-ative transportation[J/OL]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 261-268.DOI: 10.1109/TMECH.2009.2024681.
[20]ALONSO-MORA J, BAKER S, RUS D. Multi-robot formation control and object transport indynamic environments via constrained optimization[J]. The International Journal of RoboticsResearch, 2017, 36(9): 1000-1021.
[21]RUS D, DONALD B, JENNINGS J. Moving furniture with teams of autonomous robots[C/OL]//Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Sys-tems. Human Robot Interaction and Cooperative Robots: volume 1. 1995: 235-242 vol.1. DOI:10.1109/IROS.1995.525802.
[22]SUGAR T, KUMAR V.Decentralized control of cooperating mobile manipulators[C/OL]//Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.No.98CH36146): volume 4. 1998: 2916-2921 vol.4. DOI: 10.1109/ROBOT.1998.680672.
[23]LI Z, TAO P Y, GE S S, et al. Robust adaptive control of cooperating mobile manipulators withrelative motion[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-netics), 2009, 39(1): 103-116. DOI: 10.1109/TSMCB.2008.2002853.
[24]YANG C, SUE G N, LI Z, et al. Collaborative navigation and manipulation of a cable-towedload by multiple quadrupedal robots[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(4): 10041-10048. DOI: 10.1109/LRA.2022.3191170.
[25]WANG Z, SINGH S, PAVONE M, et al. Cooperative object transport in 3D with multi-ple quadrotors using no peer communication[C/OL]//2018 IEEE International Conference onRobotics and Automation (ICRA). 2018: 1064-1071. DOI: 10.1109/ICRA.2018.8460742.
[26]HU J, LIU W, ZHANG H, et al. Multi-robot object transport motion planning with a deformablesheet[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(4): 9350-9357. DOI: 10.1109/LRA.2022.3191190.
[27]LYNCH K, PARK F. Modern robotics: Mechanics, planning, and control[M]. CambridgeUniveristy Press, 2017.
[28]SNAPE J, VAN DEN BERG J, GUY S J, et al. Smooth and collision-free navigation for multiplerobots under differential-drive constraints[C/OL]//2010 IEEE/RSJ International Conference onIntelligent Robots and Systems. 2010: 4584-4589. DOI: 10.1109/IROS.2010.5652073.
[29]HOANG V, PHUNG M, DINH T, et al. Angle-encoded swarm optimization for UAV forma-tion path planning[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS). 2018: 5239-5244. DOI: 10.1109/IROS.2018.8593930.
[30]JOSE K, PRATIHAR D K. Task allocation and collision-free path planning of centralizedmulti-robots system for industrial plant inspection using heuristic methods[J/OL]. Robotics andAutonomous Systems, 2016, 80: 34-42. DOI: https://doi.org/10.1016/j.robot.2016.02.003.
[31]YAN Z, JOUANDEAU N, CHERIF A A. A survey and analysis of multi-robot coordination[J].International Journal of Advanced Robotic Systems, 2013, 10(12): 399.
[32]CHEN Y, CUTLER M, HOW J P. Decoupled multiagent path planning via incremental se-quential convex programming[C/OL]//2015 IEEE International Conference on Robotics andAutomation (ICRA). 2015: 5954-5961. DOI: 10.1109/ICRA.2015.7140034.
[33]LUIS C E, VUKOSAVLJEV M, SCHOELLIG A P. Online trajectory generation with dis-tributed model predictive control for multi-robot motion planning[J/OL]. IEEE Robotics andAutomation Letters, 2020, 5(2): 604-611. DOI: 10.1109/LRA.2020.2964159.
[34]ZHU H, ALONSO-MORA J. Chance-constrained collision avoidance for MAVs in dynamicenvironments[J/OL]. IEEE Robotics and Automation Letters, 2019, 4(2): 776-783. DOI: 10.1109/LRA.2019.2893494.
[35]STANDLEY T. Finding optimal solutions to cooperative pathfinding problems[C]//Proceedingsof the AAAI Conference on Artificial Intelligence: volume 24. 2010: 173-178.
[36]KAMIO S, IBA H. Random sampling algorithm for multi-agent cooperation planning[C/OL]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005: 1265-1270.DOI: 10.1109/IROS.2005.1545219.
[37]XIAN Z, LERTKULTANON P, PHAM Q C. Closed-chain manipulation of large objects bymulti-arm robotic systems[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(4): 1832-1839. DOI: 10.1109/LRA.2017.2708134.
[38]ZHANG X, YAN L, LAM T L, et al. Task-space decomposed motion planning framework formulti-robot loco-manipulation[C/OL]//2021 IEEE International Conference on Robotics andAutomation (ICRA). 2021: 8158-8164. DOI: 10.1109/ICRA48506.2021.9560902.
[39]WANG B, LIU Z, LI Q, et al. Mobile robot path planning in dynamic environments throughglobally guided reinforcement learning[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(4): 6932-6939. DOI: 10.1109/LRA.2020.3026638.
[40]HA H, XU J, SONG S. Learning a decentralized multi-arm motion planner[C]//Conference onRobot Learning. PMLR, 2021: 103-114.
[41]WANG Y, WANG D, YANG S, et al. A Practical leader – follower tracking control scheme formultiple nonholonomic mobile robots in unknown obstacle environments[J/OL]. IEEE Trans-actions on Control Systems Technology, 2019, 27(4): 1685-1693. DOI: 10.1109/TCST.2018.2825943.
[42]YU X, LIU L. Distributed formation control of nonholonomic vehicles subject to velocityconstraints[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1289-1298.
[43]LIN J, MIAO Z, ZHONG H, et al. Adaptive image-based leader-follower formation control ofmobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 2020,68(7): 6010-6019.
[44]ALONSO-MORA J, KNEPPER R, SIEGWART R, et al. Local motion planning for collabora-tive multi-robot manipulation of deformable objects[C/OL]//2015 IEEE International Confer-ence on Robotics and Automation (ICRA). 2015: 5495-5502. DOI: 10.1109/ICRA.2015.7139967.
[45]EBEL H, LUO W, YU F, et al. Design and experimental validation of a distributed coopera-tive transportation scheme[J/OL]. IEEE Transactions on Automation Science and Engineering,2021, 18(3): 1157-1169. DOI: 10.1109/TASE.2020.2997411.
[46]YUFKA A, OZKAN M. Formation-based control scheme for cooperative transportation bymultiple mobile robots[J/OL]. International Journal of Advanced Robotic Systems, 2015, 12(9): 120. DOI: 10.5772/60972.
[47] KALMAN R E. A new approach to linear filtering and prediction problems[Z]. 1960.
[48] JOCHER G. YOLOv5 by Ultralytics[CP/OL]. 2020. https://github.com/ultralytics/yolov5.DOI: 10.5281/zenodo.3908559.
[49]BENZERROUK A, ADOUANE L, LEQUIEVRE L, et al. Navigation of multi-robot formationin unstructured environment using dynamical virtual structures[C/OL]//2010 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems. 2010: 5589-5594. DOI: 10.1109/IROS.2010.5651103.
[50]CONSOLINI L, MORBIDI F, PRATTICHIZZO D, et al. Leader–follower formation controlof nonholonomic mobile robots with input constraints[J/OL]. Automatica, 2008, 44(5): 1343-1349. https://www.sciencedirect.com/science/article/pii/S0005109807004578. DOI: https://doi.org/10.1016/j.automatica.2007.09.019.
[51]MACHADO T, MALHEIRO T, MONTEIRO S, et al. Multi-constrained joint transportationtasks by teams of autonomous mobile robots using a dynamical systems approach[C/OL]//2016IEEE International Conference on Robotics and Automation (ICRA). 2016: 3111-3117. DOI:10.1109/ICRA.2016.7487477.
[52]LIU T, JIANG Z P. Distributed formation control of nonholonomic mobile robots without globalposition measurements[J/OL]. Automatica, 2013, 49(2): 592-600. https://www.sciencedirect.com/science/article/pii/S0005109812005675. DOI: https://doi.org/10.1016/j.automatica.2012.11.031.
[53]KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[C/OL]//Proceedings. 1985 IEEE International Conference on Robotics and Automation: volume 2.1985: 500-505. DOI: 10.1109/ROBOT.1985.1087247.
[54]DOLGOV D, THRUN S, MONTEMERLO M, et al. Practical search techniques in path planningfor autonomous driving[J]. ann arbor, 2008.
[55]KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. TheInternational Journal of Robotics Research, 2011, 30(7): 846-894.
[56]CHIANG H T L, HSU J, FISER M, et al. RL-RRT: Kinodynamic motion planning via learningreachability estimators from RL policies[J/OL]. IEEE Robotics and Automation Letters, 2019,4(4): 4298-4305. DOI: 10.1109/LRA.2019.2931199.
[57]MONTEMERLO M, BECKER J, BHAT S, et al. Junior: The stanford entry in the urban chal-lenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597.
[58]PADEN B, ČáP M, YONG S Z, et al. A Survey of motion planning and control techniquesfor self-driving urban vehicles[J/OL]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1):33-55. DOI: 10.1109/TIV.2016.2578706.
[59]YUAN W, LI Z, SU C Y. Multisensor-based navigation and control of a mobile service robot[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(4): 2624-2634. DOI: 10.1109/TSMC.2019.2916932.
[60]XIA B, CHE K, TANG Z, et al. Motion planning for hexapod robots in dynamic rough terrainenvironments[C]//2021 IEEE International Conference on Robotics and Biomimetics (ROBIO).IEEE, 2021: 1611-1616.
[61]REEDS J A, SHEPP R A. Optimal paths for a car that goes both forward and backward[J].Pacific Journal of Mathematics, 1991, 145.
[62] 刘佳易. 移动机器人平滑路径规划与轨迹跟踪研究[D]. 北京交通大学, 2021.
[63] 张震. 非完整约束移动机器人的运动规划与跟踪控制技术研究[D]. 哈尔滨工业大学,2021.
[64]HERMOSILLO J, SEKHAVAT S. Feedback control of a bi-steerable car using flatness ap-plication to trajectory tracking[C/OL]//Proceedings of the 2003 American Control Conference(ACC): volume 4. 2003: 3567-3572 vol.4. DOI: 10.1109/ACC.2003.1244101.
[65]EL MAKRINI I, OMIDI M, FUSARO F, et al. A hierarchical finite-state machine-based taskallocation framework for human-robot collaborative assembly tasks[C/OL]//2022 IEEE/RSJ In-ternational Conference on Intelligent Robots and Systems (IROS). 2022: 10238-10244. DOI:10.1109/IROS47612.2022.9981618.
[66]MARTINENGO A, CAMPANI M, TORRE V. Complex tasks and control strategies of robots[C/OL]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation.1994: 861-866 vol.1. DOI: 10.1109/ROBOT.1994.351381.
[67]GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping withRao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.
[68]FOX D. KLD-sampling: Adaptive particle filters[C]//Advances in Neural Information Process-ing Systems: volume 14. 2001.
[69]FOX D, BURGARD W, DELLAERT F, et al. Monte Carlo localization: Efficient positionestimation for mobile robots[C]//Proceedings of the Sixteenth National Conference on ArtificialIntelligence. 1999.
[70]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time objectdetection[C/OL]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016: 779-788. DOI: 10.1109/CVPR.2016.91.
修改评论