中文版 | English
题名

多机器人协作运输行李车系统中的运动规划研究

其他题名
RESEARCH ON MOTION PLANNING OF MULTI-ROBOT COLLABORATIVE TROLLEY TRANSPORTATION SYSTEM
姓名
姓名拼音
XIA Bingyi
学号
12032204
学位类型
硕士
学位专业
080902 电路与系统
学科门类/专业学位类别
08 工学
导师
孟庆虎
导师单位
电子与电气工程系
论文答辩日期
2023-05-16
论文提交日期
2023-06-21
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

机器人作为多功能的自动化设备具备操作和运输物体的能力,其应用范围广泛,包括工业生产、物流派送、户外救援等。在许多情况下,机器人自主移动大型物体依赖多机器人的协作,以增强动力或机动性。应用多机器人协作技术以实现机器人自主地在国际机场等复杂而行人密集的环境中运输一整列行李车存在巨大的实际价值。这项任务极具挑战性,涉及机械设计、感知与定位和运动规划等多方面的机器人技术,具体原因包括: (1)机器人每次工作必须运输着多节行李车排列而成的队列。(2)工作环境可能是行人密集的大厅或杂乱的狭窄角落,要求机器人需要具备一定的适应性。(3)多台机器人必须精确地协调地规划运动,维持行李车队列的完整性和可控性以保证运输安全有效。
为了解决前文所述的难点,本文主要研究以下三个方面:(1)研究多移动机器人的协作运输,设计轻量化的低成本的移动机器人,搭载了专用的操作机构,并使用两台机器人组成编队来完成这项运输任务。(2)设计一种实用的机器人自主决策框架,将定位、感知和运动规划的功能分模块实现,以完成在复杂动态环境中的行李车运输任务。(3)研究多机器人协作运动规划方法,以实时地处理非完整性约束、队形约束等多种复杂约束。本文提出了一种分层级的规划方法,由行为
选择器、全局路径规划器和协作运动规划器三部分组成。
本文中设计了仿真和实物实验,验证了提出的分层级的运动规划方法满足该运输任务要求的实时性、准确性和安全性;并且在真实的运输场景中对所提出的的多机器人协作运输系统进行了验证,实验结果表明了该系统在复杂动态环境下的有效性和可靠性。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1]TANG C, YU J, CHEN W, et al. Relationship oriented semantic scene understanding for dailymanipulation tasks[C/OL]//2022 IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS). 2022: 9926-9933. DOI: 10.1109/IROS47612.2022.9981960.
[2]ZHANG F, DEMIRIS Y. Learning garment manipulation policies toward robot-assisted dress-ing[J/OL]. Science Robotics, 2022, 7(65): eabm6010. https://www.science.org/doi/abs/10.1126/scirobotics.abm6010.
[3]XIAO A, TONG W, YANG L, et al. Robotic guide dog: leading a human with leash-guidedhybrid physical interaction[C/OL]//2021 IEEE International Conference on Robotics and Au-tomation (ICRA). 2021: 11470-11476. DOI: 10.1109/ICRA48506.2021.9561786.
[4]IKEDA H, TOYAMA T, MAKI D, et al. Cooperative step-climbing strategy using an au-tonomous wheelchair and a robot[J/OL]. Robotics and Autonomous Systems, 2021, 135:103670. DOI: https://doi.org/10.1016/j.robot.2020.103670.
[5]CAMISA A, TESTA A, NOTARSTEFANO G. Multi-robot pickup and delivery via distributedresource allocation[J/OL]. IEEE Transactions on Robotics, 2022: 1-13. DOI: 10.1109/TRO.2022.3216801.
[6] 梁爽. 智慧工厂中多移动机器人路径规划研究[D]. 上海交通大学, 2017.
[7] WANG J, MENG M Q H. Real-time decision making and path planning for robotic autonomousluggage trolley collection at airports[J/OL]. IEEE Transactions on Systems, Man, and Cyber-netics: Systems, 2022, 52(4): 2174-2183. DOI: 10.1109/TSMC.2020.3048984.
[8]XIAO A, LUAN H, ZHAO Z, et al. Robotic autonomous trolley collection with progressiveperception and nonlinear model predictive control[C/OL]//2022 International Conference onRobotics and Automation (ICRA). 2022: 4480-4486. DOI: 10.1109/ICRA46639.2022.9812455.
[9]PAN J, MAI X, WANG C, et al. A searching space constrained partial to full registration ap-proach with applications in airport trolley deployment robot[J/OL]. IEEE Sensors Journal, 2021,21(10): 11946-11960. DOI: 10.1109/JSEN.2020.3042665.
[10]VERMA J K, RANGA V. Multi-robot coordination analysis, taxonomy, challenges and futurescope[J]. Journal of intelligent & robotic systems, 2021, 102: 1-36.
[11]ALAMI R, FLEURY S, HERRB M, et al. Multi-robot cooperation in the MARTHA project[J/OL]. IEEE Robotics and Automation Magazine, 1998, 5(1): 36-47. DOI: 10.1109/100.667325.
[12]MARCOTTE R J, WANG X, MEHTA D, et al. Optimizing multi-robot communication underbandwidth constraints[J]. Autonomous Robots, 2020, 44(1): 43-55.
[13]曾潼辉. 多机器人协作区域覆盖关键技术研究[D]. 电子科技大学, 2022.
[14]YAN L, YANG Y, XU W, et al. Dual-arm coordinated motion planning and compliancecontrol for capturing moving objects with large momentum[C/OL]//2018 IEEE/RSJ Interna-tional Conference on Intelligent Robots and Systems (IROS).2018: 7137-7144.DOI:10.1109/IROS.2018.8593853.
[15]ZHOU X, WEN X, WANG Z, et al. Swarm of micro flying robots in the wild[J/OL]. ScienceRobotics, 2022, 7(66): eabm5954. https://www.science.org/doi/abs/10.1126/scirobotics.abm5954.
[16] 潘建龙. 多机器人协作系统运动规划及位置力协调控制研究[D]. 东南大学, 2018.
[17] FENG Z, HU G, SUN Y, et al. An overview of collaborative robotic manipulation in multi-robotsystems[J/OL]. Annual Reviews in Control, 2020, 49: 113-127. DOI: https://doi.org/10.1016/j.arcontrol.2020.02.002.
[18]TUCI E, ALKILABI M H, AKANYETI O. Cooperative object transport in multi-robot systems:A review of the state-of-the-art[J]. Frontiers in Robotics and AI, 2018, 5: 59.
[19]WANG Y, DE SILVA C W. Sequential Q-learning with Kalman filtering for multirobot cooper-ative transportation[J/OL]. IEEE/ASME Transactions on Mechatronics, 2010, 15(2): 261-268.DOI: 10.1109/TMECH.2009.2024681.
[20]ALONSO-MORA J, BAKER S, RUS D. Multi-robot formation control and object transport indynamic environments via constrained optimization[J]. The International Journal of RoboticsResearch, 2017, 36(9): 1000-1021.
[21]RUS D, DONALD B, JENNINGS J. Moving furniture with teams of autonomous robots[C/OL]//Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Sys-tems. Human Robot Interaction and Cooperative Robots: volume 1. 1995: 235-242 vol.1. DOI:10.1109/IROS.1995.525802.
[22]SUGAR T, KUMAR V.Decentralized control of cooperating mobile manipulators[C/OL]//Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.No.98CH36146): volume 4. 1998: 2916-2921 vol.4. DOI: 10.1109/ROBOT.1998.680672.
[23]LI Z, TAO P Y, GE S S, et al. Robust adaptive control of cooperating mobile manipulators withrelative motion[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-netics), 2009, 39(1): 103-116. DOI: 10.1109/TSMCB.2008.2002853.
[24]YANG C, SUE G N, LI Z, et al. Collaborative navigation and manipulation of a cable-towedload by multiple quadrupedal robots[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(4): 10041-10048. DOI: 10.1109/LRA.2022.3191170.
[25]WANG Z, SINGH S, PAVONE M, et al. Cooperative object transport in 3D with multi-ple quadrotors using no peer communication[C/OL]//2018 IEEE International Conference onRobotics and Automation (ICRA). 2018: 1064-1071. DOI: 10.1109/ICRA.2018.8460742.
[26]HU J, LIU W, ZHANG H, et al. Multi-robot object transport motion planning with a deformablesheet[J/OL]. IEEE Robotics and Automation Letters, 2022, 7(4): 9350-9357. DOI: 10.1109/LRA.2022.3191190.
[27]LYNCH K, PARK F. Modern robotics: Mechanics, planning, and control[M]. CambridgeUniveristy Press, 2017.
[28]SNAPE J, VAN DEN BERG J, GUY S J, et al. Smooth and collision-free navigation for multiplerobots under differential-drive constraints[C/OL]//2010 IEEE/RSJ International Conference onIntelligent Robots and Systems. 2010: 4584-4589. DOI: 10.1109/IROS.2010.5652073.
[29]HOANG V, PHUNG M, DINH T, et al. Angle-encoded swarm optimization for UAV forma-tion path planning[C/OL]//2018 IEEE/RSJ International Conference on Intelligent Robots andSystems (IROS). 2018: 5239-5244. DOI: 10.1109/IROS.2018.8593930.
[30]JOSE K, PRATIHAR D K. Task allocation and collision-free path planning of centralizedmulti-robots system for industrial plant inspection using heuristic methods[J/OL]. Robotics andAutonomous Systems, 2016, 80: 34-42. DOI: https://doi.org/10.1016/j.robot.2016.02.003.
[31]YAN Z, JOUANDEAU N, CHERIF A A. A survey and analysis of multi-robot coordination[J].International Journal of Advanced Robotic Systems, 2013, 10(12): 399.
[32]CHEN Y, CUTLER M, HOW J P. Decoupled multiagent path planning via incremental se-quential convex programming[C/OL]//2015 IEEE International Conference on Robotics andAutomation (ICRA). 2015: 5954-5961. DOI: 10.1109/ICRA.2015.7140034.
[33]LUIS C E, VUKOSAVLJEV M, SCHOELLIG A P. Online trajectory generation with dis-tributed model predictive control for multi-robot motion planning[J/OL]. IEEE Robotics andAutomation Letters, 2020, 5(2): 604-611. DOI: 10.1109/LRA.2020.2964159.
[34]ZHU H, ALONSO-MORA J. Chance-constrained collision avoidance for MAVs in dynamicenvironments[J/OL]. IEEE Robotics and Automation Letters, 2019, 4(2): 776-783. DOI: 10.1109/LRA.2019.2893494.
[35]STANDLEY T. Finding optimal solutions to cooperative pathfinding problems[C]//Proceedingsof the AAAI Conference on Artificial Intelligence: volume 24. 2010: 173-178.
[36]KAMIO S, IBA H. Random sampling algorithm for multi-agent cooperation planning[C/OL]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2005: 1265-1270.DOI: 10.1109/IROS.2005.1545219.
[37]XIAN Z, LERTKULTANON P, PHAM Q C. Closed-chain manipulation of large objects bymulti-arm robotic systems[J/OL]. IEEE Robotics and Automation Letters, 2017, 2(4): 1832-1839. DOI: 10.1109/LRA.2017.2708134.
[38]ZHANG X, YAN L, LAM T L, et al. Task-space decomposed motion planning framework formulti-robot loco-manipulation[C/OL]//2021 IEEE International Conference on Robotics andAutomation (ICRA). 2021: 8158-8164. DOI: 10.1109/ICRA48506.2021.9560902.
[39]WANG B, LIU Z, LI Q, et al. Mobile robot path planning in dynamic environments throughglobally guided reinforcement learning[J/OL]. IEEE Robotics and Automation Letters, 2020, 5(4): 6932-6939. DOI: 10.1109/LRA.2020.3026638.
[40]HA H, XU J, SONG S. Learning a decentralized multi-arm motion planner[C]//Conference onRobot Learning. PMLR, 2021: 103-114.
[41]WANG Y, WANG D, YANG S, et al. A Practical leader – follower tracking control scheme formultiple nonholonomic mobile robots in unknown obstacle environments[J/OL]. IEEE Trans-actions on Control Systems Technology, 2019, 27(4): 1685-1693. DOI: 10.1109/TCST.2018.2825943.
[42]YU X, LIU L. Distributed formation control of nonholonomic vehicles subject to velocityconstraints[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1289-1298.
[43]LIN J, MIAO Z, ZHONG H, et al. Adaptive image-based leader-follower formation control ofmobile robots with visibility constraints[J]. IEEE Transactions on Industrial Electronics, 2020,68(7): 6010-6019.
[44]ALONSO-MORA J, KNEPPER R, SIEGWART R, et al. Local motion planning for collabora-tive multi-robot manipulation of deformable objects[C/OL]//2015 IEEE International Confer-ence on Robotics and Automation (ICRA). 2015: 5495-5502. DOI: 10.1109/ICRA.2015.7139967.
[45]EBEL H, LUO W, YU F, et al. Design and experimental validation of a distributed coopera-tive transportation scheme[J/OL]. IEEE Transactions on Automation Science and Engineering,2021, 18(3): 1157-1169. DOI: 10.1109/TASE.2020.2997411.
[46]YUFKA A, OZKAN M. Formation-based control scheme for cooperative transportation bymultiple mobile robots[J/OL]. International Journal of Advanced Robotic Systems, 2015, 12(9): 120. DOI: 10.5772/60972.
[47] KALMAN R E. A new approach to linear filtering and prediction problems[Z]. 1960.
[48] JOCHER G. YOLOv5 by Ultralytics[CP/OL]. 2020. https://github.com/ultralytics/yolov5.DOI: 10.5281/zenodo.3908559.
[49]BENZERROUK A, ADOUANE L, LEQUIEVRE L, et al. Navigation of multi-robot formationin unstructured environment using dynamical virtual structures[C/OL]//2010 IEEE/RSJ Inter-national Conference on Intelligent Robots and Systems. 2010: 5589-5594. DOI: 10.1109/IROS.2010.5651103.
[50]CONSOLINI L, MORBIDI F, PRATTICHIZZO D, et al. Leader–follower formation controlof nonholonomic mobile robots with input constraints[J/OL]. Automatica, 2008, 44(5): 1343-1349. https://www.sciencedirect.com/science/article/pii/S0005109807004578. DOI: https://doi.org/10.1016/j.automatica.2007.09.019.
[51]MACHADO T, MALHEIRO T, MONTEIRO S, et al. Multi-constrained joint transportationtasks by teams of autonomous mobile robots using a dynamical systems approach[C/OL]//2016IEEE International Conference on Robotics and Automation (ICRA). 2016: 3111-3117. DOI:10.1109/ICRA.2016.7487477.
[52]LIU T, JIANG Z P. Distributed formation control of nonholonomic mobile robots without globalposition measurements[J/OL]. Automatica, 2013, 49(2): 592-600. https://www.sciencedirect.com/science/article/pii/S0005109812005675. DOI: https://doi.org/10.1016/j.automatica.2012.11.031.
[53]KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[C/OL]//Proceedings. 1985 IEEE International Conference on Robotics and Automation: volume 2.1985: 500-505. DOI: 10.1109/ROBOT.1985.1087247.
[54]DOLGOV D, THRUN S, MONTEMERLO M, et al. Practical search techniques in path planningfor autonomous driving[J]. ann arbor, 2008.
[55]KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. TheInternational Journal of Robotics Research, 2011, 30(7): 846-894.
[56]CHIANG H T L, HSU J, FISER M, et al. RL-RRT: Kinodynamic motion planning via learningreachability estimators from RL policies[J/OL]. IEEE Robotics and Automation Letters, 2019,4(4): 4298-4305. DOI: 10.1109/LRA.2019.2931199.
[57]MONTEMERLO M, BECKER J, BHAT S, et al. Junior: The stanford entry in the urban chal-lenge[J]. Journal of Field Robotics, 2008, 25(9): 569-597.
[58]PADEN B, ČáP M, YONG S Z, et al. A Survey of motion planning and control techniquesfor self-driving urban vehicles[J/OL]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1):33-55. DOI: 10.1109/TIV.2016.2578706.
[59]YUAN W, LI Z, SU C Y. Multisensor-based navigation and control of a mobile service robot[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(4): 2624-2634. DOI: 10.1109/TSMC.2019.2916932.
[60]XIA B, CHE K, TANG Z, et al. Motion planning for hexapod robots in dynamic rough terrainenvironments[C]//2021 IEEE International Conference on Robotics and Biomimetics (ROBIO).IEEE, 2021: 1611-1616.
[61]REEDS J A, SHEPP R A. Optimal paths for a car that goes both forward and backward[J].Pacific Journal of Mathematics, 1991, 145.
[62] 刘佳易. 移动机器人平滑路径规划与轨迹跟踪研究[D]. 北京交通大学, 2021.
[63] 张震. 非完整约束移动机器人的运动规划与跟踪控制技术研究[D]. 哈尔滨工业大学,2021.
[64]HERMOSILLO J, SEKHAVAT S. Feedback control of a bi-steerable car using flatness ap-plication to trajectory tracking[C/OL]//Proceedings of the 2003 American Control Conference(ACC): volume 4. 2003: 3567-3572 vol.4. DOI: 10.1109/ACC.2003.1244101.
[65]EL MAKRINI I, OMIDI M, FUSARO F, et al. A hierarchical finite-state machine-based taskallocation framework for human-robot collaborative assembly tasks[C/OL]//2022 IEEE/RSJ In-ternational Conference on Intelligent Robots and Systems (IROS). 2022: 10238-10244. DOI:10.1109/IROS47612.2022.9981618.
[66]MARTINENGO A, CAMPANI M, TORRE V. Complex tasks and control strategies of robots[C/OL]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation.1994: 861-866 vol.1. DOI: 10.1109/ROBOT.1994.351381.
[67]GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping withRao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46.
[68]FOX D. KLD-sampling: Adaptive particle filters[C]//Advances in Neural Information Process-ing Systems: volume 14. 2001.
[69]FOX D, BURGARD W, DELLAERT F, et al. Monte Carlo localization: Efficient positionestimation for mobile robots[C]//Proceedings of the Sixteenth National Conference on ArtificialIntelligence. 1999.
[70]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time objectdetection[C/OL]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016: 779-788. DOI: 10.1109/CVPR.2016.91.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP249
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543903
专题工学院_电子与电气工程系
推荐引用方式
GB/T 7714
夏丙一. 多机器人协作运输行李车系统中的运动规划研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032204-夏丙一-电子与电气工程(13248KB)学位论文--限制开放CC BY-NC-SA请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[夏丙一]的文章
百度学术
百度学术中相似的文章
[夏丙一]的文章
必应学术
必应学术中相似的文章
[夏丙一]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。