[1] DANEMAN R, PRAT A. The blood-brain barrier [J]. Cold Spring Harbor Perspectives in Biology, 2015, 7(1): a020412.
[2] ABBOTT N J, RONNBACK L, HANSSON E. Astrocyte-endothelial interactions at the blood-brain barrier [J]. Nature Reviews: Neuroscience, 2006, 7(1): 41-53.
[3] KEANEY J, CAMPBELL M. The dynamic blood–brain barrier [J]. The FEBS Journal, 2015, 282(21): 4067-79.
[4] ZHAO Z, NELSON A R, BETSHOLTZ C, et al. Establishment and dysfunction of the blood-brain barrier [J]. Cell, 2015, 163(5): 1064-78.
[5] ARMULIK A, GENOVé G, MäE M, et al. Pericytes regulate the blood–brain barrier [J]. Nature, 2010, 468(7323): 557-61.
[6] DEL ZOPPO G, MILNER R, MABUCHI T, et al. Vascular matrix adhesion and the blood–brain barrier [J]. Biochemical Society Transactions, 2006, 34(6): 1261-6.
[7] NISCHWITZ V, BERTHELE A, MICHALKE B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: An approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier [J]. Analytica Chimica Acta, 2008, 627(2): 258-69.
[8] LIM D A, HUANG Y-C, ALVAREZ-BUYLLA A. The adult neural stem cell niche: lessons for future neural cell replacement strategies [J]. Neurosurgery Clinics, 2007, 18(1): 81-92.
[9] ABBOTT N J, PATABENDIGE A A, DOLMAN D E, et al. Structure and function of the blood-brain barrier [J]. Neurobiology of Disease, 2010, 37(1): 13-25.
[10] BERNACKI J, DOBROWOLSKA A, NIERWIñSKA K, et al. Physiology and pharmacological role of the blood-brain barrier [J]. Pharmacological Reports, 2008, 60(5): 600-22.
[11] WOLBURG H, NOELL S, MACK A, et al. Brain endothelial cells and the glio-vascular complex [J]. Cell and Tissue Research, 2009, 335(1): 75-96.
[12] DANEMAN R. The blood-brain barrier in health and disease [J]. Annals of Neurology, 2012, 72(5): 648-72.
[13] CHODOBSKI A, ZINK B J, SZMYDYNGER-CHODOBSKA J. Blood-brain barrier pathophysiology in traumatic brain injury [J]. Translational Stroke Research, 2011, 2(4): 492-516.
[14] GURSOY-OZDEMIR Y, YEMISCI M, DALKARA T. Microvascular protection is essential for successful neuroprotection in stroke [J]. Journal of Neurochemistry, 2012, 123 (2): 2-11.
[15] JANIGRO D. Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood-brain barrier [J]. Epilepsia, 2012, 53 (1): 26-34.
[16] LU M, HU G. Targeting metabolic inflammation in Parkinson's disease: implications for prospective therapeutic strategies [J]. Clinical and Experimental Pharmacology and Physiology, 2012, 39(6): 577-85.
[17] SAGARE A P, BELL R D, ZLOKOVIC B V. Neurovascular dysfunction and faulty amyloid beta-peptide clearance in Alzheimer disease [J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(10).
[18] TIWARY S, MORALES J E, KWIATKOWSKI S C, et al. Metastatic brain tumors disrupt the blood-brain barrier and alter lipid metabolism by inhibiting expression of the endothelial cell fatty acid transporter Mfsd2a [J]. Scientific Reports, 2018, 8(1): 8267.
[19] SWEENEY M D, ZHAO Z, MONTAGNE A, et al. Blood-brain barrier: from physiology to disease and back [J]. Physiological Reviews, 2018.
[20] LEWANDOWSKI M. Zur lehre von der cerebrospinalflüssigkeit [J]. Zentralblatt Klein Forschung, 1900, 40: 480-94.
[21] WUNDER A, SCHOKNECHT K, STANIMIROVIC D B, et al. Imaging blood-brain barrier dysfunction in animal disease models [J]. Epilepsia, 2012, 53 (6): 14-21.
[22] SWASTIKA, CHATURVEDI S, KAUL A, et al. Evaluation of BBB permeable nucleolipid (NL(DPU)): A di-C15-ketalised palmitone appended uridine as neuro-tracer for SPECT [J]. International Journal of Pharmaceutics, 2019, 565: 269-82.
[23] MOSSEL P, GARCIA VARELA L, ARIF W M, et al. Evaluation of P-glycoprotein function at the blood-brain barrier using [(18)F]MC225-PET [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48(12): 4105-6.
[24] RINGUETTE D, JEFFREY M A, DUFOUR S, et al. Continuous multi-modality brain imaging reveals modified neurovascular seizure response after intervention [J]. Biomedical Optics Express, 2017, 8(2): 873-89.
[25] LEE S, KANG B M, KIM J H, et al. Real-time in vivo two-photon imaging study reveals decreased cerebro-vascular volume and increased blood-brain barrier permeability in chronically stressed mice [J]. Scientific Reports, 2018, 8(1): 13064.
[26] GUO B, FENG Z, HU D, et al. Precise deciphering of brain vasculatures and microscopic tumors with dual nir-ii fluorescence and photoacoustic imaging [J]. Advanced Materials, 2019, 31(30): e1902504.
[27] MARCON J, GAGLIARDI B, BALOSSO S, et al. Age-dependent vascular changes induced by status epilepticus in rat forebrain: implications for epileptogenesis [J]. Neurobiology of Disease, 2009, 34(1): 121-32.
[28] KAYA M, AHISHALI B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase [J]. Methods in Molecular Biology, 2011, 763: 369-82.
[29] NAGARAJA T N, KEENAN K A, FENSTERMACHER J D, et al. Acute leakage patterns of fluorescent plasma flow markers after transient focal cerebral ischemia suggest large openings in blood-brain barrier [J]. Microcirculation, 2008, 15(1): 1-14.
[30] HOFFMANN A, BREDNO J, WENDLAND M, et al. High and low molecular weight fluorescein isothiocyanate (fitc)-dextrans to assess blood-brain barrier disruption: technical considerations [J]. Translational Stroke Research, 2011, 2(1): 106-11.
[31] SCHOKNECHT K, SHALEV H. Blood-brain barrier dysfunction in brain diseases: clinical experience [J]. Epilepsia, 2012, 53 (6): 7-13.
[32] RAJA R, ROSENBERG G A, CAPRIHAN A. MRI measurements of blood-brain barrier function in dementia: a review of recent studies [J]. Neuropharmacology, 2018, 134: 259-71.
[33] KNIGHT R A, NAGARAJA T N, EWING J R, et al. Quantitation and localization of blood-to-brain influx by magnetic resonance imaging and quantitative autoradiography in a model of transient focal ischemia [J]. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 2005, 54(4): 813-21.
[34] JELESCU I, LEPPERT I, NARAYANAN S, et al. Dual-temporal resolution dynamic contrast-enhanced MRI protocol for blood–brain barrier permeability measurement in enhancing multiple sclerosis lesions [J]. Journal of Magnetic Resonance Imaging, 2011, 33(6): 1291-300.
[35] SKOTLAND T. Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use [J]. Contrast Media & Molecular Imaging, 2012, 7(1): 1-6.
[36] YANG F, WANG H, LIN G, et al. Micro-SPECT/CT-based pharmacokinetic analysis of 99mTc-diethylenetriaminepentaacetic acid in rats with blood–brain barrier disruption induced by focused ultrasound [J]. Journal of Nuclear Medicine, 2011, 52(3): 478-84.
[37] NISHIMURA N, SCHAFFER C B, FRIEDMAN B, et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke [J]. Nature Methods, 2006, 3(2): 99-108.
[38] PRAGER O, CHASSIDIM Y, KLEIN C, et al. Dynamic in vivo imaging of cerebral blood flow and blood–brain barrier permeability [J]. NeuroImage, 2010, 49(1): 337-44.
[39] IADECOLA C, NEDERGAARD M. Glial regulation of the cerebral microvasculature [J]. Nature Neuroscience, 2007, 10(11): 1369-76.
[40] PIPER S, BAHMANI P, KLOHS J, et al. Non-invasive surface-stripping for epifluorescence small animal imaging [J]. Biomedical Optics Express, 2010, 1(1): 97-105.
[41] WANG L V, GAO L. Photoacoustic microscopy and computed tomography: from bench to bedside [J]. Annual Review of Biomedical Engineering, 2014, 16: 155-85.
[42] YAO J, WANG L V. Photoacoustic microscopy [J]. Laser & Photonics Reviews, 2013, 7(5): 758-78.
[43] WANG L V, YAO J. A practical guide to photoacoustic tomography in the life sciences [J]. Nature Methods, 2016, 13(8): 627-38.
[44] OMAR M, AGUIRRE J, NTZIACHRISTOS V. Optoacoustic mesoscopy for biomedicine [J]. Nature Biomedical Engineering, 2019, 3(5): 354-70.
[45] TARUTTIS A, NTZIACHRISTOS V. Advances in real-time multispectral optoacoustic imaging and its applications [J]. Nature Photonics, 2015, 9(4): 219-27.
[46] BEARD P. Biomedical photoacoustic imaging [J]. Interface Focus, 2011, 1(4): 602-31.
[47] XI L, JIANG H. Integrated photoacoustic and diffuse optical tomography system for imaging of human finger joints in vivo [J]. Journal of Biophotonics, 2016, 9(3): 213-7.
[48] IMAI T, SHI J, WONG T T, et al. High-throughput ultraviolet photoacoustic microscopy with multifocal excitation [J]. Journal of Biomedical Optics, 2018, 23(3): 036007-.
[49] YAO D-K, CHEN R, MASLOV K, et al. Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei [J]. Journal of Biomedical Optics, 2012, 17(5): 056004-.
[50] GUO H, SONG C, XIE H, et al. Photoacoustic endomicroscopy based on a MEMS scanning mirror [J]. Optics Letters, 2017, 42(22): 4615-8.
[51] QIN W, CHEN Q, XI L. A handheld microscope integrating photoacoustic microscopy and optical coherence tomography [J]. Biomedical Optics Express, 2018, 9(5): 2205-13.
[52] QIN W, JIN T, GUO H, et al. Large-field-of-view optical resolution photoacoustic microscopy [J]. Optics Express, 2018, 26(4): 4271-8.
[53] ZHANG Z, XU W, KANG M, et al. An all-round athlete on the track of phototheranostics: subtly regulating the balance between radiative and nonradiative decays for multimodal imaging‐guided synergistic therapy [J]. Advanced Materials, 2020, 32(36): 2003210.
[54] HUANG N, GUO H, QI W, et al. Whole-body multispectral photoacoustic imaging of adult zebrafish [J]. Biomedical Optics Express, 2016, 7(9): 3543-50.
[55] SHI J, WONG T T W, HE Y, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy [J]. Nature Photonics, 2019, 13: 609-15.
[56] JIN T, GUO H, JIANG H, et al. Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging [J]. Optics Letters, 2017, 42(21): 4434-7.
[57] HUANG N, HE M, SHI H, et al. Curved-array-based multispectral photoacoustic imaging of human finger joints [J]. IEEE Transactions on Biomedical Engineering, 2017, 65(7): 1452-9.
[58] BELL A G. On the production and reproduction of sound by light [J]. American Journal of Science, 1880, 3(118): 305-24.
[59] GUO H, WANG Q, QI W, et al. Assessing the development and treatment of rheumatoid arthritis using multiparametric photoacoustic and ultrasound imaging [J]. Journal of Biophotonics, 2019, 12(11): e201900127.
[60] 郭恒. 基于多波长光声效应的肿瘤诊断与治疗研究 [D]; 电子科技大学, 2022.
[61] KRUGER R A. Photoacoustic ultrasound [J]. Medical Physics, 1994, 21(1): 127-31.
[62] WANG X, PANG Y, KU G, et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain [J]. Nature Biotechnology, 2003, 21(7): 803-6.
[63] 王永超. 适用于高分辨率光声显微成像的长期颅窗 [D]; 电子科技大学, 2021.
[64] KRUGER R A, LAM R B, REINECKE D R, et al. Photoacoustic angiography of the breast [J]. Medical Physics, 2010, 37(11): 6096-100.
[65] LIN L, HU P, SHI J, et al. Single-breath-hold photoacoustic computed tomography of the breast [J]. Nature Communications, 2018, 9(1): 2352.
[66] WANG Y, LIM R S A, ZHANG H, et al. Optimizing the light delivery of linear-array-based photoacoustic systems by double acoustic reflectors [J]. Scientific Reports, 2018, 8(1): 13004.
[67] KOLKMAN R G M, HONDEBRINK E, STEENBERGEN W, et al. In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 343-6.
[68] ZHANG H F, MASLOV K, STOICA G, et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging [J]. Nature Biotechnology, 2006, 24(7): 848-51.
[69] CHEN Q, JIN T, QI W, et al. Dual-model wearable photoacoustic microscopy and electroencephalograph: study of neurovascular coupling in anesthetized and freely moving rats [J]. Biomedical Optics Express, 2021, 12(10): 6614-28.
[70] HU S, YAN P, MASLOV K, et al. Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy [J]. Optics Letters, 2009, 34(24): 3899-901.
[71] HU S, MASLOV K, WANG L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed [J]. Optics Letters, 2011, 36(7): 1134-6.
[72] JIN T, GUO H, YAO L, et al. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms [J]. Journal of Biophotonics, 2018, 11(4): e201700250.
[73] CHEN Q, JIN T, QI W, et al. Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish [J]. Biomedical Optics Express, 2017, 8(4): 2359-67.
[74] WANG L, MASLOV K, XING W, et al. Video-rate functional photoacoustic microscopy at depths [J]. Journal of Biomedical Optics, 2012, 17(10): 106007-.
[75] SUN A, JI Y, LI Y, et al. Multicolor photoacoustic volumetric imaging of subcellular structures [J]. ACS Nano, 2022, 16(2): 3231-8.
[76] JIN T, ZHANG C, LIU F, et al. On-chip multicolor photoacoustic imaging flow cytometry [J]. Analytical Chemistry, 2021, 93(23): 8134-42.
[77] SUN A, LI T, JIN T, et al. Acoustic standing wave aided multiparametric photoacoustic imaging flow cytometry [J]. Analytical Chemistry, 2021, 93(44): 14820-7.
[78] JIN T, QI W, LIANG X, et al. Photoacoustic imaging of brain functions: wide filed-of-view functional imaging with high spatiotemporal resolution [J]. Laser & Photonics Reviews, 2022, 16(2): 2100304.
[79] QI W, LIANG X, JI Y, et al. Optical resolution photoacoustic computed microscopy [J]. Optics Letters, 2021, 46(2): 372-5.
[80] QI W, LI T, ZHANG C, et al. Light-controlled precise delivery of nir-responsive semiconducting polymer nanoparticles with promoted vascular permeability [J]. Advanced Healthcare Materials, 2021, 10(19): e2100569.
[81] YIN C, WEN G, LIU C, et al. Organic semiconducting polymer nanoparticles for photoacoustic labeling and tracking of stem cells in the second near-infrared window [J]. ACS Nano, 2018, 12(12): 12201-11.
[82] FESSI H, PUISIEUX F, DEVISSAGUET J P, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement [J]. International Journal of Pharmaceutics, 1989, 55(1): R1-R4.
[83] MARTINEZ RIVAS C J, TARHINI M, BADRI W, et al. Nanoprecipitation process: From encapsulation to drug delivery [J]. International Journal of Pharmaceutics, 2017, 532(1): 66-81.
[84] ILBAY G, SAHIN D, ATES N. Changes in blood-brain barrier permeability during hot water-induced seizures in rats [J]. Neurological Sciences, 2003, 24(4): 232-5.
[85] ULLAL G R, SATISHCHANDRA P, SHANKAR S K. Hyperthermic seizures: an animal model for hot-water epilepsy [J]. Seizure, 1996, 5(3): 221-8.
[86] WIJSMAN J A, SHIVERS R R. Heat stress affects blood-brain barrier permeability to horseradish peroxidase in mice [J]. Acta Neuropathologica, 1993, 86(1): 49-54.
[87] SAHIN D, ILBAY G, ATES N. Changes in the blood–brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazole-induced seizures in rats [J]. Pharmacological Research, 2003, 48(1): 69-73.
[88] MARCHI N, TENG Q, GHOSH C, et al. Blood-brain barrier damage, but not parenchymal white blood cells, is a hallmark of seizure activity [J]. Brain Research, 2010, 1353: 176-86.
[89] OBERMEIER B, VERMA A, RANSOHOFF R M. The blood–brain barrier [J]. Handbook of Clinical Neurology, 2016, 133: 39-59.
[90] TERSTAPPEN G C, MEYER A H, BELL R D, et al. Strategies for delivering therapeutics across the blood–brain barrier [J]. Nature Reviews Drug Discovery, 2021, 20(5): 362-83.
[91] ARVANITIS C D, FERRARO G B, JAIN R K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases [J]. Nature Reviews Cancer, 2020, 20(1): 26-41.
[92] KROLL R A, NEUWELT E A. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means [J]. Neurosurgery, 1998, 42(5): 1083-99; discussion 99-100.
[93] MARCHI N, BETTO G, FAZIO V, et al. Blood-brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema [J]. Epilepsia, 2009, 50(4): 664-77.
[94] KANG E J, MAJOR S, JORKS D, et al. Blood-brain barrier opening to large molecules does not imply blood-brain barrier opening to small ions [J]. Neurobiology of Disease, 2013, 52: 204-18.
[95] INOUE T, FUKUI M, NISHIO S, et al. Hyperosmotic blood-brain barrier disruption in brains of rats with an intracerebrally transplanted RG-C6 tumor [J]. Journal of Neurosurgery, 1987, 66(2): 256-63.
[96] ROBINSON P J, RAPOPORT S I. Size selectivity of blood-brain barrier permeability at various times after osmotic opening [J]. Amrican Journal of Physiol, 1987, 253(3): R459-66.
[97] KINGWELL K. Drug delivery: New targets for drug delivery across the BBB [J]. Nature Reviews: Drug Discovery, 2016, 15(2): 84-5.
[98] XIE J, SHEN Z, ANRAKU Y, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies [J]. Biomaterials, 2019, 224: 119491.
[99] MADSEN S J, HIRSCHBERG H. Site-specific opening of the blood-brain barrier [J]. Journal of Biophotonics, 2010, 3(5-6): 356-67.
[100]SOSIC L, SELBO P K, KOTKOWSKA Z K, et al. Photochemical internalization: light paves way for new cancer chemotherapies and vaccines [J]. Cancers (Basel), 2020, 12(1).
[101]ENGLANDER Z K, WEI H J, POULIOPOULOS A N, et al. Focused ultrasound mediated blood-brain barrier opening is safe and feasible in a murine pontine glioma model [J]. Scientific Reports, 2021, 11(1): 6521.
修改评论