[1]Kojima A, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of the American Chemical Society 2009, 131(17):6050-6051.
[2]Kim M, Jeong J, Lu H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science 2022, 375(6578):302-306.
[3]Best research cell efficiencies[EB/OL].
[2022-08-01]. https://www.nrel.gov/pv/cell-efficiency.html
[4]Shockley W, Queisser H J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells[J]. Journal of Applied Physics 1961, 32:510-519.
[5]Solar Spectra[EB/OL].
[2023-04-07]. https://www.nrel.gov/grid/solar-resource/spectra.html
[6]Breakdown of the causes for the Shockley–Queisser limit[EB/OL].
[2023-04-07]. https://en.wikipedia.org/wiki/Shockley-Queisser_limit
[7]LI M J, FU J H, XU Q, et al. Slow Hot-Carrier Cooling in Halide Perovskites: Prospects for Hot-Carrier Solar Cells[J]. Advanced Materials 2019, 31:1802486-1802502.
[8]Ross R T, Nozik A J. Efficiency of Hot-Carrier Solar Energy Converters[J]. Journal of Applied Physics 1982, 53:3813-3818.
[9]Turner J A, Nozik A J. Evidence for Hot-Electron Injection Across p-GaP/Electrolyte Junctions[J]. Applied Physics Letters 1982, 41:101-103.
[10]Nozik A J. Utilizing hot electrons[J]. Nature Energy 2018, 3:170-171.
[11]Pötz W. Hot-phonon effects in bulk GaAs[J]. Physical Review B 1987, 36:5016-5019.
[12]Esmaielpour H, Dorman K R, Ferry D K, et al. Exploiting intervalley scattering to harness hot carriers in III-V solar cells[J]. Nature Energy 2020, 5:336-343.
[13]Joshi R P, Ferry D K. Hot-phonon effects and interband relaxation processes in photoexcited GaAs quantum wells[J]. Physical Review B 1989, 39:1180-1187.
[14]XING G C, MATHEWS N, SUN S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science 2013, 342(6156):344-347.
[15]SUM T C, MATHEWS N, XING G C, et al. Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations[J]. Accounts of Chemical Research 2016, 49:294-302.
[16]GRANCINI G, MAIURI M, FAZZI D, et al. Hot exciton dissociation in polymer solar cells[J]. Nature Materials 2013, 12(1):29-33.
[17]AILAUBEKOV A E, WILLARD A P, TRITSCH J R, et al. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J]. Nature Materials 2013, 12:66-73.
[18]ROSS R T, NOZIK A J. Efficiency of hot-carrier solar energy converters Phys[J]. Journal of Applied Physics 1982, 53:3813-3818.
[19]SUM T C, MATHEWS N. Advancements in perovskite solar cells: photophysics behind the photovoltaics[J]. Energy & Environmental Science 2014, 7:2518-2534.
[20]CHEN K, BARKER A J, MORGAN F L C, et al. Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites[J]. Journal of Physical Chemistry Letters 2015, 6:153-158.
[21]Yang Y, Ostrowski D P, France R M, et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites[J]. Nature Photonics 2016, 10:53-59.
[22]Li M, Bhaumik S, Goh T, et al. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals[J]. Nature Communications 2017, 8:14350-14359.
[23]Guo Z, Wan Y, Yang M, et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy[J]. Science 2017, 356(6333):59-62.
[24]Verkamp M, Leveillee J, Sharma A, et al. Carrier-Specific Hot Phonon Bottleneck in CH3NH3PbI3 Revealed by Femtosecond XUV Absorption[J]. Journal of the American Chemical Society 2021, 143(48):20176-20182.
[25]方红华, 黎潇泽, 周沄科, 等.钙钛矿中热载流子的超快光谱探测[J]. 光学学报, 2021, 41(8):0823009.
[26]RICHTER J M, BRANCHI F, DE ALMEIDA CAMARGO F V, et al. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy[J]. Nature Communications 2017, 8:376-382.
[27]FU J H, XU Q, HAN G F, et al. Hot carrier cooling mechanisms in halide perovskites[J]. Nature Communications 2017, 8:1300-1308.
[28]YANG J F, WEN X M, XIA H Z, et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites[J]. Nature Communications 2017, 8:14120-14128.
[29]ZHU H M, MIYATA K, FU Y P, et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites[J]. Science 2016, 353:1409-1413.
[30]KAWAI H, GIORGI G, MARINI A, et al. The Mechanism of Slow Hot-Hole Cooling in Lead-Iodide Perovskite: First-Principles Calculation on Carrier Lifetime from Electron–Phonon Interaction[J]. Nano Letters 2015, 15(5):3103-3108.
[31]SHEN Q, RIPOLLES T S, EVEN J, et al. Ultrafast selective extraction of hot holes from cesium lead iodide perovskite films[J]. Journal of Energy Chemistry 2018, 27:1170-1174.
[32]BRAUER J C, LEE Y J, NAZEERUDDIN M K, et al. Ultrafast charge carrier dynamics in CH3NH3PbI3: evidence for hot hole injection into spiro-OMeTAD[J]. Journal of Materials Chemistry C 2016, 4:5922-5931.
[33]BRETSCHNEIDER S A, LAQUAI F, BONN M. Trap-Free Hot Carrier Relaxation in Lead−Halide Perovskite Films[J]. Journal of Physical Chemistry C 2017, 121:11201-11206.
[34]CHANG A Y,CHO Y J, CHEN K C, et al. Slow Organic-to-Inorganic Sub-Lattice Thermalization in Methylammonium Lead Halide Perovskites Observed by Ultrafast Photoluminescence[J]. Advanced Energy Materials 2016, 6(15):1600422-1600430.
[35]MIYATA K, MEGGIOLARO D, TRINH M T, et al. Large polarons in lead halide perovskites[J]. Science Advances 2017, 3:e1701217-e1701225.
[36]FANG H H, ADJOKATSE S, SHAO S, et al. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites[J]. Nature Communications 2018, 9:243-250.
[37]SHEN Q, RIPOLLES T S, EVEN J, et al. Slow hot carrier cooling in cesium lead iodide perovskites[J]. Applied Physics Letters 2017, 111(15):153903-153907.
[38]TALBERT E M, ZARICK H F, BOULESBA A, et al. Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films[J]. Nanoscale 2017, 9(33):12005-12013.
[39]PRICE M B, BUTKUS J, JELLICOE T C, et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites[J]. Nature Communications 2015, 6:8420-8427.
[40]PAPAGIORGIS P, PROTESESCU L, KOVALENKO M V, et al. Long-Lived Hot Carriers in Formamidinium Lead Iodide Nanocrystals[J]. Journal of Physical Chemistry C 2017, 121:12434-12440.
[41]BUTKUS J, VASHISHTHA P, CHEN K, et al. The Evolution of Quantum Confinement in CsPbBr3 Perovskite Nanocrystals[J]. Chemistry of Materials 2017, 29:3644-3652.
[42]PRABHU S S, VENGURLEKAR A S. Hot-carrier energy-loss rates in alloy semiconductors[J]. Physical Review B 1996, 53(12):7815-7818.
[43]PRABHU S S, VENGURLEKAR A S, ROY S K, et al. Nonequilibrium dynamics of hot carriers and hot phonons in CdSe and GaAs[J]. Physical Review B 1995, 51(20):14233-14246.
[44]CHOI C K, KWON Y H, KRASINSKI J S, et al. Ultrafast carrier dynamics in a highly excited GaN epilayer[J]. Physical Review B 2001, 63:115315-115320.
[45]ACHERMANN M, BARTKO A P, HOLLINGSWORTH J A, et al. The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods[J]. Nature Physics 2006, 2:557-561.
[46]DOWNER M C, SHANK C V. Ultrafast Heating of Silicon on Sapphire by Femtosecond Optical Pulses[J]. Physical Review Letters 1986, 56(7):761-764.
[47]SAVENIJE T J, PONSECA C S, KUNNEMAN L, et al. Thermally Activated Exciton Dissociation and Recombination Control the Carrier Dynamics in Organometal Halide Perovskite[J]. Journal of Physical Chemistry Letters 2014, 5:2189-2194.
[48]YI H T, WU X X, ZHU X Y, et al. Intrinsic Charge Transport across Phase Transitions in Hybrid Organo-Inorganic Perovskites[J]. Advanced Materials 2016, 28:6509-6514.
[49]NOZIK A J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots[J]. Annual Review of Physical Chemistry 2001, 52:193-231.
[50]BOCKELMANN U, BASTARD G. Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases[J]. Physical Review B 1990, 42:8947-8951.
[51]WANG Z P, LIN Q Q, WENGER B, et al. High irradiance performance of metal halide perovskites for concentrator photovoltaics[J]. Nature Energy 2018, 3:855-861.
[52]WANG T, JIN L R, HIDALGO J, et al. Protecting hot carriers by tuning hybrid perovskite structures with alkali cations[J]. Science Advances 2020, 6:eabb1336-eabb1343.
[53]Chen J, Messing M E, Zheng K, et al. Cation-Dependent Hot Carrier Cooling in Halide Perovskite Nanocrystals[J]. Journal of the American Chemical Society 2019, 141(8):3532-3540.
[54]Xue J J, Wang R, Chen X H, et al. Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations[J]. Science 2021, 371(6529):636-640.
[55]LAI R C, YANG Z Q, ZHI C Y, et al. Transient Suppression of Carrier Mobility Due to Hot Optical Phonons in Lead Bromide Perovskites[J]. Journal of Physical Chemistry Letters 2022, 13(13):5488−5494.
[56]MUSCARELLA L A, HUTTER E M, FROST J M, et al. Accelerated Hot-Carrier Cooling in MAPbI3 Perovskite by Pressure-Induced Lattice Compression[J]. Journal of Physical Chemistry Letters 2021, 12:4118-4124.
[57]LI H, IKEDA M, SUZUKI A, et al. Pressure dependence of superconductivity in alkali-Bi compounds KBi2 and RbBi2[J]. Physical Chemistry Chemical Physics 2022, 24(12):7185-7194.
[58]ZHU X Y, PODZOROV V. Charge Carriers in Hybrid Organic-Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons[J]. Journal of Physical Chemistry Letters 2015, 6:4758-4761.
修改评论