[Chen Y, Vogel A, Wagg C, et al. Drought-exposure history increases complementarity between plant species in response to a subsequent drought[J]. Nature Communications, 2022, 13(1): 3217.
[2] Brodribb1 T J, J P, H C, et al. Hanging by a thread? Forests and drought[J]. Science, 2019, 368: 261–266.
[3] Wang B, Chen M, Lin L, et al. Signal Pathways and Related Transcription Factors of Drought Stress in Plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792-1806.
[4] 杜建斌. 旱灾对我国粮食主产省粮食产量的影响及抗旱对策研究[D]. 中国农业科学院, 2020.
[5] 周菲. 高温干旱对我国粮食安全的影响分析[J]. 农业发展与金融, 2022, 10: 55-58.
[6] 石媛媛. 民勤荒漠绿洲干旱影响因子及驱动机制研究[J]. 水生态学杂志, 2021, 42(4): 18-25.
[7] Toscano S, Romano D, Tribulato A, et al. Effects of drought stress on seed germination of ornamental sunflowers[J]. Acta Physiologiae Plantarum, 2017, 39(8) :184.
[8] Su Z, Ma X, Guo H, et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis[J]. Plant Cell, 2013, 25(10): 3785-3807.
[9] Fanizza G a L R. Influence of drought stress on shoot, leaf growth, leaf water potential, stomatal resistance in wine grape genotypes [J]. Vitis: Journal of Grapevine Research, 2015, 29: 371.
[10] Caser M, D'angiolillo F, Chitarra W, et al. Water deficit regimes trigger changes in valuable physiological and phytochemical parameters in Helichrysum petiolare Hilliard & B.L. Burtt[J]. Industrial Crops and Products, 2016, 83: 680-692.
[11] Ilyas M, Nisar M, Khan N, et al. Drought Tolerance Strategies in Plants: A Mechanistic Approach[J]. Journal of Plant Growth Regulation, 2020, 40(3): 926-944.
[12] Sheela Reuben,Elvagris Segovia Estrada H P. Effect of Drought on Microbial Growth in Plant Rhizospheres [J]. Journal of Microbiology Research, 2013, 3(2): 83-86
[13] Shan Z, Luo X, Wei M, et al. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz)[J]. Scientific Reports, 2018, 8(1): 17982.
[14] 郑清岭. 沙芥属植物干旱胁迫响应机制[D]. 内蒙古农业大学, 2018.
[15] Comas L H, Becker S R, Cruz V M, et al. Root traits contributing to plant productivity under drought[J]. Frontiers in Plant Science, 2013, 4: 442. 参考文献 66
[16] Janiak A, Kwasniewski M, Szarejko I. Gene expression regulation in roots under drought[J]. Journal of Experimental Botany, 2016, 67(4): 1003-14.
[17] Yi X P, Zhang Y L, Yao H S, et al. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems[J]. Journal of Plant Physiology, 2016, 194: 23-34.
[18] Abid M, Ali S, Qi L K, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.)[J]. Scientific Reports, 2018, 8(1): 4615.
[19] Men Y, Wang D, Li B, et al. Effects of drought stress on the antioxidant system, osmolytes and secondary metabolites of Saposhnikovia divaricata seedlings[J]. Acta Physiologiae Plantarum, 2018, 40(11) :191.
[20] Muhammad Aslam M, Waseem M, Jakada B H, et al. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants[J]. International Journal of Molecular Sciences, 2022, 23(3) :1084.
[21] Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress[J]. Plant Physiology, 2010, 154(3): 1232-43.
[22] Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J]. Current Biology, 2005, 15(13): 1196-200.
[23] Kim J M, To T K, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2008, 49(10): 1580-8.
[24] Shah S M S, Ullah F. A comprehensive overview of miRNA targeting drought stress resistance in plants[J]. Brazilin Journal of Biology, 2021, 83: e242708.
[25] 王琳. AT14A 在拟南芥响应 PEG 模拟干旱胁迫中的功能分析[D]. 扬州大学, 2016.
[26] 任慧波, 范意娟, 魏开发, et al. NCED3 基因的持续诱导及 ABA 合成与代谢的协同调控在拟南芥 ABA 信号积累中的作用 [J]. 科学通报, 2007(01): 59-66.
[27] Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61: 651-79.
[28] Ullah A, Sun H, Yang X, et al. Drought coping strategies in cotton: increased crop per drop[J]. Plant Biotechnol J, 2017, 15(3): 271-284.
[29] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1): 63-78.
[30] Verma D, Bhagat P K, Sinha A K. MKK3-MPK6-MYC2 module positively regulates ABA biosynthesis and signalling in Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(4): 785-795.
[31] Xu Z Y, Kim D H, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors[J]. Plant Cell Reports, 2013, 32(6): 807-13. 参考文献 67
[32] Haworth M, Marino G, Cosentino S L, et al. Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.)[J]. Environmental and Experimental Botany, 2018, 147: 116-124.
[33] 张岁岐 周, 慕自新,山仑,刘小芳. 不同灌溉制度对玉米根系生长及水分利用效率的影响[J]. 农业工程学报, 2001, 25(10): 1-6.
[34] 孙歆. 干旱下植物气孔运动调控机制研究进展_[J]. 生物学教学, 2021, 46(7) :24-25.
[35] Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
[36] Dou L, He K, Peng J, et al. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA[J]. Nature Communications, 2021, 12(1): 2181.
[37] Liu S, Jobert F, Rahneshan Z, et al. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells[J]. Annual Review of Plant Biology, 2021, 72: 525-550.
[38] 张之为,赵 君,樊明寿,赵 燕.植物小 G 蛋白的研究进展[J]. 西北植物学报, 2009, 29(3) :622-628.
[39] Muschietti J, Mccormick S. Abscisic acid (ABA) receptors: light at the end of the tunnel[J]. F1000 biology reports, 2010, 2: 15.
[40] Schweighofer A, Hirt H, Meskiene L. Plant PP2C phosphatases: emerging functions in stress signaling[J]. Trends in Plant Science, 2004, 9(5): 236-243.
[41] Kudla J, Becker D, Grill E, et al. Advances and current challenges in calcium signaling[J]. New Phytologist, 2018, 218(2): 414-431.
[42] Li Y, Zhang X, Yu L, et al. Structural characteristics of mapk cascade kinase and the function of signal transduction pathway in adversity stress of horticultural crop[J]. Plant Physiology Journal, 2018, 54(8): 1305-1315.
[43] Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs[J]. Frontiers in Plant Science, 2018, 9:469.
[44] Galvez-Valdivieso G, Mullineaux P M. The role of reactive oxygen species in signalling from chloroplasts to the nucleus[J]. Physiologia Plantarum, 2010, 138(4): 430-439.
[45] Munemasa S, Hauser F, Park J, et al. Mechanisms of abscisic acid-mediated control of stomata! aperture[J]. Current Opinion in Plant Biology, 2015, 28: 154-162.
[46] Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. The EMBO Journal, 2003, 22(11): 2623-2633.
[47] Nongpiur R C, Singla-Pareek S L, Pareek A. The quest for osmosensors in plants[J]. Journal of Experimental Botany, 2020, 71(2): 595-607.
[48] Weinl S, Held K, Schluecking K, et al. A plastid protein crucial for Ca2+-regulated stomatal responses[J]. New Phytologist, 2008, 179(3): 675-686. 参考文献 68
[49] Wang L, He J, Ding H, et al. Overexpression of AT14A confers tolerance to drought stress-induced oxidative damage in suspension cultured cells of Arabidopsis thaliana[J]. Protoplasma, 2015, 252(4): 1111-1120.
[50] Bouti P, Webbers S D S, Fagerholm S C, et al. beta 2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function[J]. Frontiers in Immunology, 2021, 11:619925.
[51] Xu S H, Zhang T W, Cao Z G, et al. Integrin-alpha 9 beta 1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights[J]. Frontiers in Immunology, 2021, 12:638400.
[52] Huang J, Li X, Shi X, et al. Platelet integrin alpha IIb beta 3: signal transduction, regulation, and its therapeutic targeting[J]. Journal of Hematology & Oncology, 2019, 12:26.
[53] He M, Ge Y, Jiao C, et al. Molecular Properties and Functions of Integrin Intracellular Regulatory Proteins[J]. Chinese Journal of Cell Biology, 2020, 42(10): 1806-1812.
[54] 胡静. 拟南芥 AT14A 蛋白的功能研究[D]. 扬州大学, 2012.
[55] Nagpal P, Quatrano R S. Isolation and characterization of a cDNA clone from Arabidopsis thaliana with partial sequence similarity to integrins[J]. Gene, 1999, 230(1): 33-40.
[56] Song G, Luo B-H. Atypical structure and function of integrin alpha(V)beta(8)[J]. Journal of Cellular Physilogy, 2021, 236(7): 4874-4887.
[57] Knepper C, Savory E A, Day B. Arabidopsis NDR1 Is an Integrin-Like Protein with a Role in Fluid Loss and Plasma Membrane-Cell Wall Adhesion[J]. Plant Physiology, 2011, 156(1): 286-300.
[58] Kumar M N, Hsieh Y-F, Verslues P E. At14a-Like1 participates in membraneassociated mechanisms promoting growth during drought in Arabidopsis thaliana[J]. Proceeding of the National Academy of Sciences, 2015, 112(33): 10545-10550.
[59] Kumar M N, Bau Y C, Longkumer T, et al. Low Water Potential and At14aLike1 (AFL1) Effects on Endocytosis and Actin Filament Organization[J]. Plant Physiol, 2019, 179(4): 1594-1607.
[60] Lu B, Chen F, Gong Z-H, et al. Integrin-like protein is involved in the osmotic stress-induced abscisic acid biosynthesis in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2007, 49(4): 540-549.
[61] 吕冰 陈, 龚忠华,梁建生. 玉米根细胞中类整合素蛋白与α-微管蛋白的共定位及其可能的相互作用[J]. 植物生理与分子生物学学报, 2007, 02: 115-122.
[62] Lu B, Wang J, Zhang Y, et al. AT14A mediates the cell wall-plasma membranecytoskeleton continuum in Arabidopsis thaliana cells[J]. Journal of Experimental Botany, 2012, 63(11): 4061-4069.
[63] Lin G, Zhang K, Li J. Application of CRISPR/Cas9 Technology to HBV[J]. International Journal of Molecular Sciences, 2015, 16(11): 26077-86. 参考文献 69
[64] Saraon P, Grozavu I, Lim S H, et al. Detecting Membrane Protein-protein Interactions Using the Mammalian Membrane Two-hybrid (MaMTH) Assay[J]. Current Opinion in Chemical Biology, 2017, 9(1): 38-54.
[65] Pan D, Zhang D, Hao L, et al. Protective effects of soybean protein and egg white protein on the antibacterial activity of nisin in the presence of trypsin[J]. Food Chemistry, 2018, 239: 196-200.
[66] Arnim Pause B P, Gregor Schaffar, Robert Stearman, and Richard D. Klausner. Studying interactions of four proteins in the yeast two-hybrid system: Structural resemblance of the pVHLyelongin BCyhCUL-2 complex with the ubiquitin ligase complex SKP1ycullinyF-box protein[J]. Proceedings of the National Academy of Sciences, 1999, 96:9533-9538.
[67] Fraga D, Meulia T, Fenster S. Real‐Time PCR[J]. Current Protocols Essential Laboratory Techniques, 2014, 8(1).
修改评论