中文版 | English
题名

AT14A 蛋白调控拟南芥干旱胁迫应答的功能研究

其他题名
THE FUNCTION OF AT14A PROTEIN IN REGULATING THE RESPONSES OF ARABIDOPSIS TO DROUGHT STRESS
姓名
姓名拼音
ZHANG Dong
学号
12032128
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
梁建生
导师单位
生命科学学院
论文答辩日期
2023-05-16
论文提交日期
2023-06-23
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
干旱是影响农作物生长和作物产量的重要环境胁迫因素之一。对植物干旱 信号响应机制的研究是挖掘抗性基因,培育抗旱作物的重要途径。 AT14A 蛋白是拟南芥中的一个类整合素(integrin-like)蛋白,其氨基酸序 列中有一段与动物整合素蛋白相似的保守序列。有研究表明,类整合素蛋白
AT14A,在拟南芥抗旱响应中发挥重要功能。
本研究以拟南芥为实验材料,利用分子生物学、生物化学、细胞生物学等 技术,来研究 AT14A 在干旱胁迫响应中的功能。主要结果如下:
利用 CRISPR-Cas9 技术构建了 at14a 突变体的转基因材料 at14a-1 at14a2;通过 Gateway 方法,构建了 AT14A-GFP 的过表达材料 AT14A-GFP 3#AT14A-GFP 5#AT14A-GFP 8#;材料的构建为后续对 AT14A 功能的研究奠定 了基础。
采用烟草原生质体瞬时表达和农杆菌注射烟草转化技术,证明了 AT14A 主 要位于细胞质膜。选取野生型材料和 at14a 突变体材料进行种子萌发表型分析, 结果表明 AT14A 在种子萌发过程中发挥的功能比较小或不影响种子的萌发。进 行土壤干旱处理对 Col-0at14a AT14A-GFP 三种基因型表型影响研究,对照 组两组,干旱处理组设置六组,结果表明 AT14A-GFP 材料表现出耐旱表型, at14a 突变体材料表现出不耐旱的表型。对 Col-0at14aAT14A-GFP 基因型材 料的气孔特性分析研究,每种基因型取六片大小均匀的莲座叶进行叶片失水速 率统计分析,发现与野生型相比,at14a 突变体材料表现出叶片失水速率快;每 种基因型取 15 个视野进行叶片气孔密度统计分析,发现 at14a 突变体材料叶片 气孔密度大。用微管稳定剂紫杉醇(Taxol)和微管阻聚剂黄草硝(oryzalin)分 别与 ABA 或甘露醇联合处理,每种基因型取 40 个气孔进行气孔开度统计分析, 发现 at14a 突变体材料气孔开度对 ABA 或甘露醇的敏感性发生显著下降。进一 步通过双分子荧光互补等方法进行蛋白互作筛选,发现 AT14A 与保卫细胞中调 控微管微丝的蛋白 ROP2 存在相互作用。
以上结果表明,拟南芥 AT14A 蛋白参与了气孔发育的调节,也通过影响保 卫细胞中微管的动态平衡参与了气孔运动对渗透胁迫和 ABA 的应答,进而参与 调控拟南芥对干旱胁迫的响应。
 
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[Chen Y, Vogel A, Wagg C, et al. Drought-exposure history increases complementarity between plant species in response to a subsequent drought[J]. Nature Communications, 2022, 13(1): 3217.
[2] Brodribb1 T J, J P, H C, et al. Hanging by a thread? Forests and drought[J]. Science, 2019, 368: 261–266.
[3] Wang B, Chen M, Lin L, et al. Signal Pathways and Related Transcription Factors of Drought Stress in Plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792-1806.
[4] 杜建斌. 旱灾对我国粮食主产省粮食产量的影响及抗旱对策研究[D]. 中国农业科学院, 2020.
[5] 周菲. 高温干旱对我国粮食安全的影响分析[J]. 农业发展与金融, 2022, 10: 55-58.
[6] 石媛媛. 民勤荒漠绿洲干旱影响因子及驱动机制研究[J]. 水生态学杂志, 2021, 42(4): 18-25.
[7] Toscano S, Romano D, Tribulato A, et al. Effects of drought stress on seed germination of ornamental sunflowers[J]. Acta Physiologiae Plantarum, 2017, 39(8) :184.
[8] Su Z, Ma X, Guo H, et al. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis[J]. Plant Cell, 2013, 25(10): 3785-3807.
[9] Fanizza G a L R. Influence of drought stress on shoot, leaf growth, leaf water potential, stomatal resistance in wine grape genotypes [J]. Vitis: Journal of Grapevine Research, 2015, 29: 371.
[10] Caser M, D'angiolillo F, Chitarra W, et al. Water deficit regimes trigger changes in valuable physiological and phytochemical parameters in Helichrysum petiolare Hilliard & B.L. Burtt[J]. Industrial Crops and Products, 2016, 83: 680-692.
[11] Ilyas M, Nisar M, Khan N, et al. Drought Tolerance Strategies in Plants: A Mechanistic Approach[J]. Journal of Plant Growth Regulation, 2020, 40(3): 926-944.
[12] Sheela Reuben,Elvagris Segovia Estrada H P. Effect of Drought on Microbial Growth in Plant Rhizospheres [J]. Journal of Microbiology Research, 2013, 3(2): 83-86
[13] Shan Z, Luo X, Wei M, et al. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz)[J]. Scientific Reports, 2018, 8(1): 17982.
[14] 郑清岭. 沙芥属植物干旱胁迫响应机制[D]. 内蒙古农业大学, 2018.
[15] Comas L H, Becker S R, Cruz V M, et al. Root traits contributing to plant productivity under drought[J]. Frontiers in Plant Science, 2013, 4: 442. 参考文献 66
[16] Janiak A, Kwasniewski M, Szarejko I. Gene expression regulation in roots under drought[J]. Journal of Experimental Botany, 2016, 67(4): 1003-14.
[17] Yi X P, Zhang Y L, Yao H S, et al. Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems[J]. Journal of Plant Physiology, 2016, 194: 23-34.
[18] Abid M, Ali S, Qi L K, et al. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.)[J]. Scientific Reports, 2018, 8(1): 4615.
[19] Men Y, Wang D, Li B, et al. Effects of drought stress on the antioxidant system, osmolytes and secondary metabolites of Saposhnikovia divaricata seedlings[J]. Acta Physiologiae Plantarum, 2018, 40(11) :191.
[20] Muhammad Aslam M, Waseem M, Jakada B H, et al. Mechanisms of Abscisic Acid-Mediated Drought Stress Responses in Plants[J]. International Journal of Molecular Sciences, 2022, 23(3) :1084.
[21] Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca2+-mediated stomatal regulation in response to drought stress[J]. Plant Physiology, 2010, 154(3): 1232-43.
[22] Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J]. Current Biology, 2005, 15(13): 1196-200.
[23] Kim J M, To T K, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2008, 49(10): 1580-8.
[24] Shah S M S, Ullah F. A comprehensive overview of miRNA targeting drought stress resistance in plants[J]. Brazilin Journal of Biology, 2021, 83: e242708.
[25] 王琳. AT14A 在拟南芥响应 PEG 模拟干旱胁迫中的功能分析[D]. 扬州大学, 2016.
[26] 任慧波, 范意娟, 魏开发, et al. NCED3 基因的持续诱导及 ABA 合成与代谢的协同调控在拟南芥 ABA 信号积累中的作用 [J]. 科学通报, 2007(01): 59-66.
[27] Cutler S R, Rodriguez P L, Finkelstein R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61: 651-79.
[28] Ullah A, Sun H, Yang X, et al. Drought coping strategies in cotton: increased crop per drop[J]. Plant Biotechnol J, 2017, 15(3): 271-284.
[29] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15(1): 63-78.
[30] Verma D, Bhagat P K, Sinha A K. MKK3-MPK6-MYC2 module positively regulates ABA biosynthesis and signalling in Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology, 2020, 29(4): 785-795.
[31] Xu Z Y, Kim D H, Hwang I. ABA homeostasis and signaling involving multiple subcellular compartments and multiple receptors[J]. Plant Cell Reports, 2013, 32(6): 807-13. 参考文献 67
[32] Haworth M, Marino G, Cosentino S L, et al. Increased free abscisic acid during drought enhances stomatal sensitivity and modifies stomatal behaviour in fast growing giant reed (Arundo donax L.)[J]. Environmental and Experimental Botany, 2018, 147: 116-124.
[33] 张岁岐 周, 慕自新,山仑,刘小芳. 不同灌溉制度对玉米根系生长及水分利用效率的影响[J]. 农业工程学报, 2001, 25(10): 1-6.
[34] 孙歆. 干旱下植物气孔运动调控机制研究进展_[J]. 生物学教学, 2021, 46(7) :24-25.
[35] Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
[36] Dou L, He K, Peng J, et al. The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA[J]. Nature Communications, 2021, 12(1): 2181.
[37] Liu S, Jobert F, Rahneshan Z, et al. Solving the Puzzle of Shape Regulation in Plant Epidermal Pavement Cells[J]. Annual Review of Plant Biology, 2021, 72: 525-550.
[38] 张之为,赵 君,樊明寿,赵 燕.植物小 G 蛋白的研究进展[J]. 西北植物学报, 2009, 29(3) :622-628.
[39] Muschietti J, Mccormick S. Abscisic acid (ABA) receptors: light at the end of the tunnel[J]. F1000 biology reports, 2010, 2: 15.
[40] Schweighofer A, Hirt H, Meskiene L. Plant PP2C phosphatases: emerging functions in stress signaling[J]. Trends in Plant Science, 2004, 9(5): 236-243.
[41] Kudla J, Becker D, Grill E, et al. Advances and current challenges in calcium signaling[J]. New Phytologist, 2018, 218(2): 414-431.
[42] Li Y, Zhang X, Yu L, et al. Structural characteristics of mapk cascade kinase and the function of signal transduction pathway in adversity stress of horticultural crop[J]. Plant Physiology Journal, 2018, 54(8): 1305-1315.
[43] Bigeard J, Hirt H. Nuclear Signaling of Plant MAPKs[J]. Frontiers in Plant Science, 2018, 9:469.
[44] Galvez-Valdivieso G, Mullineaux P M. The role of reactive oxygen species in signalling from chloroplasts to the nucleus[J]. Physiologia Plantarum, 2010, 138(4): 430-439.
[45] Munemasa S, Hauser F, Park J, et al. Mechanisms of abscisic acid-mediated control of stomata! aperture[J]. Current Opinion in Plant Biology, 2015, 28: 154-162.
[46] Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. The EMBO Journal, 2003, 22(11): 2623-2633.
[47] Nongpiur R C, Singla-Pareek S L, Pareek A. The quest for osmosensors in plants[J]. Journal of Experimental Botany, 2020, 71(2): 595-607.
[48] Weinl S, Held K, Schluecking K, et al. A plastid protein crucial for Ca2+-regulated stomatal responses[J]. New Phytologist, 2008, 179(3): 675-686. 参考文献 68
[49] Wang L, He J, Ding H, et al. Overexpression of AT14A confers tolerance to drought stress-induced oxidative damage in suspension cultured cells of Arabidopsis thaliana[J]. Protoplasma, 2015, 252(4): 1111-1120.
[50] Bouti P, Webbers S D S, Fagerholm S C, et al. beta 2 Integrin Signaling Cascade in Neutrophils: More Than a Single Function[J]. Frontiers in Immunology, 2021, 11:619925.
[51] Xu S H, Zhang T W, Cao Z G, et al. Integrin-alpha 9 beta 1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights[J]. Frontiers in Immunology, 2021, 12:638400.
[52] Huang J, Li X, Shi X, et al. Platelet integrin alpha IIb beta 3: signal transduction, regulation, and its therapeutic targeting[J]. Journal of Hematology & Oncology, 2019, 12:26.
[53] He M, Ge Y, Jiao C, et al. Molecular Properties and Functions of Integrin Intracellular Regulatory Proteins[J]. Chinese Journal of Cell Biology, 2020, 42(10): 1806-1812.
[54] 胡静. 拟南芥 AT14A 蛋白的功能研究[D]. 扬州大学, 2012.
[55] Nagpal P, Quatrano R S. Isolation and characterization of a cDNA clone from Arabidopsis thaliana with partial sequence similarity to integrins[J]. Gene, 1999, 230(1): 33-40.
[56] Song G, Luo B-H. Atypical structure and function of integrin alpha(V)beta(8)[J]. Journal of Cellular Physilogy, 2021, 236(7): 4874-4887.
[57] Knepper C, Savory E A, Day B. Arabidopsis NDR1 Is an Integrin-Like Protein with a Role in Fluid Loss and Plasma Membrane-Cell Wall Adhesion[J]. Plant Physiology, 2011, 156(1): 286-300.
[58] Kumar M N, Hsieh Y-F, Verslues P E. At14a-Like1 participates in membraneassociated mechanisms promoting growth during drought in Arabidopsis thaliana[J]. Proceeding of the National Academy of Sciences, 2015, 112(33): 10545-10550.
[59] Kumar M N, Bau Y C, Longkumer T, et al. Low Water Potential and At14aLike1 (AFL1) Effects on Endocytosis and Actin Filament Organization[J]. Plant Physiol, 2019, 179(4): 1594-1607.
[60] Lu B, Chen F, Gong Z-H, et al. Integrin-like protein is involved in the osmotic stress-induced abscisic acid biosynthesis in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2007, 49(4): 540-549.
[61] 吕冰 陈, 龚忠华,梁建生. 玉米根细胞中类整合素蛋白与α-微管蛋白的共定位及其可能的相互作用[J]. 植物生理与分子生物学学报, 2007, 02: 115-122.
[62] Lu B, Wang J, Zhang Y, et al. AT14A mediates the cell wall-plasma membranecytoskeleton continuum in Arabidopsis thaliana cells[J]. Journal of Experimental Botany, 2012, 63(11): 4061-4069.
[63] Lin G, Zhang K, Li J. Application of CRISPR/Cas9 Technology to HBV[J]. International Journal of Molecular Sciences, 2015, 16(11): 26077-86. 参考文献 69
[64] Saraon P, Grozavu I, Lim S H, et al. Detecting Membrane Protein-protein Interactions Using the Mammalian Membrane Two-hybrid (MaMTH) Assay[J]. Current Opinion in Chemical Biology, 2017, 9(1): 38-54.
[65] Pan D, Zhang D, Hao L, et al. Protective effects of soybean protein and egg white protein on the antibacterial activity of nisin in the presence of trypsin[J]. Food Chemistry, 2018, 239: 196-200.
[66] Arnim Pause B P, Gregor Schaffar, Robert Stearman, and Richard D. Klausner. Studying interactions of four proteins in the yeast two-hybrid system: Structural resemblance of the pVHLyelongin BCyhCUL-2 complex with the ubiquitin ligase complex SKP1ycullinyF-box protein[J]. Proceedings of the National Academy of Sciences, 1999, 96:9533-9538.
[67] Fraga D, Meulia T, Fenster S. Real‐Time PCR[J]. Current Protocols Essential Laboratory Techniques, 2014, 8(1).

所在学位评定分委会
生物学
国内图书分类号
Q94
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543909
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
张东. AT14A 蛋白调控拟南芥干旱胁迫应答的功能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032128-张东-生物系.pdf(4961KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张东]的文章
百度学术
百度学术中相似的文章
[张东]的文章
必应学术
必应学术中相似的文章
[张东]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。