中文版 | English
题名

MBH加合物的合成与应用

其他题名
SYNTHESIS AND APPLICATION OF MBH ADDUCTS
姓名
姓名拼音
WANG Tao
学号
12032089
学位类型
硕士
学位专业
070303 有机化学
学科门类/专业学位类别
07 理学
导师
李鹏飞
导师单位
化学系
论文答辩日期
2023-05-26
论文提交日期
2023-06-24
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

不对称有机催化是有机化学的一个重要的研究领域,其催化的反应具有反
应条件较为温和、催化剂廉价易得、无金属残留等诸多优势,这些优势使得有
机不对称催化在近些年来得到了迅速地发展,并在有机化学反应中被广泛应用。
MBH 反应是直接生成叔碳原子或季碳原子的较少的有机人名反应之一,
MBH 加合物也是有机合成中常用的合成子。目前经典的MBH 加合物有两种,
分别以醛和靛红为底物经过MBH 反应衍生而来,而这两类经典的MBH 加合物
一般用做C1 合成子或C3 合成子参与反应,这些反应经过诸多研究报道后已经
形成了较为完整的体系。但是遗憾的是,关于被用做C4, C6 等其他合成子的新
型MBH 加合物的开发,以及MBH 加合物的其他催化模式等方面的研究却颇为
罕见,需要深入研究以拓宽MBH加合物的应用。故此,本文研究内容旨在开发
新型的MBH 加合物并探索其在有机化学反应中的应用,详情如下:
MBH 加合物的一锅法合成。由MBH 醇为底物,DABCO 为催化剂,通过
“一锅法”高效合成得到了苯并噁嗪,目标产物产率63-98%。 同时,将
DABCO 催化剂通过调整变为NaOH/TBAB,同样通过“一锅法”高效得到了二
氢喹啉,目标产物产率35-95%。
苯并噁嗪参与的不对称[4+2]环加成反应。以苯并噁嗪和缺电子化合物为底
物,奎尼丁为催化剂,高效地以苯并噁嗪为C4 合成子得到了手性四氢喹啉,目
标产物产率47-95%,对映选择性80-93%,非对应选择性>20:1。
苯并噁嗪合成二氢喹啉。以苯并噁嗪和硫叶立德为底物,硫叶立德利用自
身的碱性催化苯并噁嗪开环重排,节约了催化剂的损耗,高效地得到了一系列
二氢喹啉化合物,目标产物产率55-95%。
 

其他摘要

Asymmetric organic catalysis is an important research field in organic chemistry. It has
many advantages, such as mild reaction conditions, cheap catalyst, no metal residue,
etc., which makes the rapid development of organic asymmetric catalysis in recent
years. It is also widely used in the organic chemical reactions.
The MBH reaction is one of the fewer organic human name reactions that directly form
tertiary carbon atoms or quaternary carbon atoms, and MBH adducts are also used in
organic synthesis. At present, there are two classic MBH adducts, respectively,
aldehydes and isatin as substrates derived from MBH reactions, and these two types of
classic MBH adducts are generally used as C1 synthons or C3 synths to participate in
the reaction, and these reactions have formed a relatively complete system after many
research reports. Unfortunately, research reports on novel MBH adducts, and novel
asymmetric catalytic modes of MBH adducts are rare, which is needed to broaden the
application of MBH adducts. Therefore, the research content of this thesis aims to
develop new MBH adducts and explore their application. Details are as follows:
One-pot synthesis of MBH adducts. Using MBH alcohol as substrate and
triethylenediamine as catalyst, benzoxazine was obtained by efficient synthesis by the
"one-pot method", and the target product yield was 63-98%. At the same time, the
DABCO catalyst was adjusted to NaOH/TBAB, and dihydroquinoline was also
efficiently obtained by the "one-pot method", with a target product yield of 35-95%.
Asymmetric [4+2] cycloaddition reaction involving benzoxazine. Chiral
tetrahydroquinoline was obtained by using benzoxazine and electron-deficient adducts
as substrates and quinidine as catalysts, with benzoxazine as C4 synthesizers efficiently
obtaining chiral tetrahydroquinoline, with a target product yield of 47-95%,
enantioselectivity of 80-93%, and non-corresponding selectivity >of 20:1.
Dihydroquinoline was synthesized from benzoxazine. Using benzoxazine and sulfur
ylide as substrates, sulfur ylide used its own basic catalytic benzoxazine ring
rearrangement, which saved the loss of catalyst and efficiently obtained a series of
dihydroquinoline compounds with a target product yield of 55-95%.
 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-07
参考文献列表

[1] HAYS S J, CAPRATHE B W, GILMORE J L, et al. 2-Amino-4H-3,1-benzoxazin-4-ones asinhibitors of C1r serine protease[J]. Journal of Medicinal Chemistry. 1998, 41(7): 1060-1067.
[2] KRANTZ A, SPENCER R W, TAM T F, et al. Design and synthesis of 4H-3,1-benzoxazin-4-onesas potent alternate substrate inhibitors of human leukocyte elastase[J]. Journal of MedicinalChemistry. 1990, 33(2): 464-479.
[3] TAKAHASHI H B Y, CAPOLINO A J, GILMORE T, et al. Discovery and SAR study of noveldihydroquinoline-containing glucocorticoid receptor agonists[J]. Bioorganic and MedicinalChemistry Letters. 2007, 17(18): 5091-5095.
[4] GIRARD C, LIU S, CADEPOND F, et al. Etifoxine improves peripheral nerve regeneration andfunctional recovery[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica. 2008, 105(51): 20505-20510
[5] KOPELMAN P, BRYSON A, HICKLING R, et al. Cetilistat (ATL-962), a novel lipase inhibitor: a12-week randomized, placebo-controlled study of weight reduction in obese patients[J].International Journal of Obesity. 2007, 31(3): 494-499.
[6] REID, C S, PATRICK, D A., HE, S, et al. Synthesis and antitrypanosomal evaluation of derivativesof N-benzyl-1,2-dihydroquinolin-6-ols: Effect of core substitutions and salt formation[J].Bioorganic & Medicinal Chemistry. 2011, 19(1): 513-523.
[7] SHRESTHA S, WU B J, GUINEY L, et al. Cholesteryl ester transfer protein and its inhibitors[J].Journal of Lipid Research. 2018, 59(5): 772-783.
[8] ESCRIBANO A, MATEO A I, MARTIN D L N, et al. Design and synthesis of newtetrahydroquinolines derivatives as CETP inhibitors[J]. Bioorganic & Medicinal Chemistry Letters.2012, 22(11): 3671-3675.
[9] WILLIAMSON N M, MARCH D R, DAVID W A. An improved synthesis of 2,2-disubstituted-1,2-dihydroquinolines and their conversion to 3-chloro-2,2-disubstituted-tetrahydroquinolines[J].Tetrahedron Letters. 1995, 36(42): 7721-7724.
[10] ANTOSZCZAK M, STEVERDING D, SULIK M, et al. Anti-trypanosomal activity of doublymodified salinomycin derivatives[J]. European Journal of Medicinal Chemistry. 2019, 173: 90-98.
[11] DU Y, HAN X, LU X. Alkaloids-catalyzed regio- and enantioselective allylic nucleophilicsubstitution of tert-butyl carbonate of the Morita–Baylis–Hillman products[J]. Tetrahedron Letters.2004, 45(25): 4967-4971.
[12] KIM J N, LEE H J, GONG J H. Synthesis of enantiomerically enriched Baylis–Hillman alcoholsfrom their acetates: combination of kinetic resolution during the salt formation with (DHQD)2PHALand following asymmetric induction during hydrolysis with NaHCO3 as a water surrogate[J].Tetrahedron Letters. 2002, 43(50): 9141-9146.
[13] PENG J, HUANG X, CUI H L, et al. Organocatalytic and electrophilic approach to oxindoles withC3-quaternary stereocenters[J]. Organic Letters. 2010, 12(19): 4260-4263.
[14] 张鹏飞. MBH 醇衍生物的不对称环化反应研究 [D]; 哈尔滨工业大学, 2019.
[15] CHO C W, KRISCHE M J. Regio- and stereoselective construction of γ-Butenolides throughphosphine-catalyzed substitution of Morita–Baylis–Hillman acetates: An organocatalytic allylicalkylation[J]. Angewandte Chemie International Edition. 2004, 43(48): 6689-6691.
[16] ZHANG T Z, DAI L X, HOU, X L. Enantioselective allylic substitution of Morita–Baylis–Hillmanadducts catalyzed by planar chiral
[2.2]paracyclophane monophosphines[J]. Tetrahedron:Asymmetry. 2007, 18(16): 1990-1994.60
[17] ZHONG F, LUO J, CHEN G Y, et al. Highly enantioselective regiodivergent allylic alkylations ofMBH carbonates with phthalides[J]. Journal of the American Chemical Society. 2012, 134(24):10222-10227.
[18] MENG L, CHANG X, LIN Z, et al. Metal-free access to 3-allyl-2-alkoxychromanones viaphosphine-catalyzed alkoxy allylation of chromones with MBH carbonates and alcohols[J]. Organic& Biomolcular Chemistry. 2021, 19(12): 2663-2667.
[19] SUN F, LU F, SONG X, et al. A combined experimental and computational study of NHC-catalyzedallylation of allenoate with MBH esters: new regiospecific and stereoselective access to 1,5-enyne[J].Organic Chemistry Frontiers. 2022, 9(1): 51-57.
[20] CHEN G Z, LU Y X, et al. Asymmetric allylic alkylation of isatin-derived Morita-Baylis-Hillmancarbonates with nitroalkanes[J]. Organic Letters. 2012, 14(15): 3955-3957.
[21] CHEN L, LI P F. Organocatalytic Regio- and enantioselective allylic alkylation of indolin-2-imineswith MBH carbonates toward 3-allylindoles[J]. Journal of Organic Chemistry. 2023.
[22] WANG Q G, ZHU S F, YE L W, et al. Catalytic asymmetric intramolecular cascade reaction for theconstruction of functionalized benzobicyclo
[4.3.0] skeletons. Remote control ofenantioselectivity[J]. Advanced Synthesis & Catalysis. 2010, 352(11‐12): 1914-1919.
[23] CAI W, HE Y, ZHOU Y, et al. Catalyst-controlled divergent intramolecular cyclizations of Morita-Baylis-Hillman carbonates[J]. Journal of Organic Chemistry. 2021, 86(17): 12267-12276.
[24] DU Y, LU X, ZHANG C. A Catalytic carbon–phosphorus ylide reaction: Phosphane-catalyzedannulation of allylic compounds with electron-deficient alkenes[J]. Angewandte ChemieInternational Edition. 2003, 42(9): 1035-1037.
[25] WANG Q G, ZHU S F, YE L W, et al. Catalytic asymmetric intramolecular cascade reaction for theconstruction of functionalized benzobicyclo
[4.3.0] skeletons. Remote control ofenantioselectivity[J]. Advanced Synthesis & Catalysis. 2010, 352(11-12): 1914-1919.
[26] TAN B, CANDEIAS N R, BARBAS C F III. Core-structure-motivated design of a phosphinecatalyzed
[3+2] cycloaddition reaction: Enantioselective syntheses ofspirocyclopenteneoxindoles[J]. Journal of the American Chemical Society. 2011, 133(13): 4672-4675.
[27] ZHONG F, HAN X, WANG Y, et al. Highly enantioselective
[3+2] annulation of Morita-Baylis-Hillman adducts mediated by L-threonine-derived phosphines: synthesis of 3-spirocyclopentene-2-oxindoles having two contiguous quaternary centers[J]. Angewandte Chemie International Edition.2011, 50(34): 7837-7841.
[28] ZHONG F, CHEN G Y, HAN X, et al. Asymmetric construction of functionalized bicyclic imidesvia
[3+2] annulation of MBH Carbonates Catalyzed by dipeptide-based phosphines[J]. OrganicLetters. 2012, 14(14): 3764-3767.
[29] ZHANG L, LIU H, QIAO G, et al. Phosphine-catalyzed highly enantioselective
[3+3] cycloadditionof Morita-Baylis-Hillman carbonates with C,N-cyclic azomethine imines[J]. Journal of theAmerican Chemical Society. 2015, 137(13): 4316-4319.
[30] WANG Y, LIU L, ZHANG T, et al. Diastereo- and Enantioselective
[3+2] Cycloaddition Reactionof Morita–Baylis–Hillman Carbonates of Isatins with N-Phenylmaleimide Catalyzed by Me-DuPhos[J]. The Journal of Organic Chemistry. 2012, 77(8): 4143-4147.
[31] Hu H, Yu S, Zhu L, et al. Chiral Bifunctional Ferrocenylphosphine Catalyzed HighlyEnantioselective
[3+2] Cycloaddition Reaction[J] . Organic & Biomolecular Chemistry, 2016, 14(2):752-760.
[32] Zhan G, Shi M L, He Q, et al. Catalyst-Controlled switch in chemo- and diastereoselectivities :annulations of Morita-Baylis-Hillman carbonates from isatins[J]. Angewandte ChemieInternational Edition, 2016, 55(6): 2147-2151.
[33] ZHANG X N, DENG H P, HUANG L, et al. Phosphine-catalyzed asymmetric
[4+1] annulation ofMorita-Baylis-Hillman carbonates with dicyano-2-methylenebut-3-enoates[J]. ChemicalCommunications. 2012, 48(69): 8664-8666.61
[34] Hu F L, Wei Y, Shi M. Phosphine-Catalyzed Asymmetric
[4+1] Annulation of Activated Alpha,Beta-Unsaturated Ketones with Morita-Baylis-Hillman Carbonates: Enantioselective Synthesis ofSpirooxindoles Containing Two Adjacent Quaternary Stereocenters[J]. Chemical Communications,2014, 50(64): 8912-8914.
[35] Lei Y, Zhang X N, Yang X Y, et al. Regio- and Diastereoselective Construction of 1',2'-(Dihydrospirolndoline-3,3'-Pyrrol-2'-Yl)Acrylates through Phosphine- Catalyzed
[4+1] Annulationof Morita-Baylis-Hillman Carbonates with Oxindole-Derived Alpha, Beta-Unsaturated Imines[J].Rsc Advances, 2015, 5(61): 49657-49661.
[36] CHENG Y Y, HAN, Y Z, LI P F. Organocatalytic enantioselective
[1+4] annulation of Morita–Baylis–Hillman carbonates with electron-deficient olefins: Access to chiral 2,3-dihydrofuranderivatives[J]. Organic Letters. 2017, 19(18): 4774-4777.
[37] WANG T, ZHANG P F, LI W, et al. Phosphine-mediated enantioselective
[1+4]-annulation ofMorita–Baylis–Hillman carbonates with 2-enoylpyridines[J]. Royal Society Chemistry Advances.2018, 8(72): 41620-41623.
[38] ZHANG P, GUO X, LIU C, et al. Enantioselective construction of pyridine N-Oxides featuring 2,3-dihydrofuran motifs via phosphine-catalyzed
[4+1]-annulation of 2-enoylpyridine N-Oxides withMorita–Baylis–Hillman carbonates[J]. Organic Letters. 2019, 21(1): 152-155.
[39] CHENG Y, FANG Z, LI W, et al. Phosphine-mediated enantioselective
[4+1] annulations betweenortho-quinone methides and Morita–Baylis–Hillman carbonates[J]. Organic Chemistry Frontiers.2018, 5(18): 2728-2733.
[40] GUO X, SHEN B, LIU C, et al. Rational design and organocatalytic enantioselective
[1+4]-annulations of MBH carbonates with modified enones[J]. Organic Chemistry Frontiers. 2023, 10(1):150-156.
[41] CHEN X, WANG T, LU Z Y, et al. Organocatalytic enantioselective formal (4+2)-cycloadditions ofphosphine-containing dipoles with isocyanates[J]. Organic Letters. 2022, 24(16): 3102-3106.
[42] ZHOU J, CHEN C, PANG Q, et al. Cooperative photoactivation/lewis base catalyzed
[4+2]annulations of α-diazoketones and ortho-amino MBH carbonates to access dihydroquinolinoneframeworks[J]. Organic Chemistry Frontiers. 2023.
[43] ROGERS D M, JASIM S B, DYER N T, et al. Electronic circular dichroism spectroscopy ofproteins[J]. Chem. 2019, 5(11): 2751-2774.
[44] 周相勇. TDDFT 模拟电子圆二色谱确定分子绝对构型的初步研究 [D]; 山东大学, 2015.
[45] CAI W, ZHOU Y, HE Y, et al. Designing and accurately developing a
[6+2] dipolar cycloadditionfor the synthesis of benzodiazocines[J]. Organic Letters. 2021, 23(14): 5430-5434.
[46] CAI W, HE Y, ZHOU Y, et al. Catalyst-Controlled divergent intramolecular cyclizations of Morita–Baylis–Hillman carbonates[J]. The Journal of Organic Chemistry. 2021, 86(17): 12267-12276.
[47] NAMMALWAR B, BUNCE R A. Recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions[J]. Molecules. 2013, 19(1):204-232.
[48] WALSH C T, HAYNES S W, AMES B D. Aminobenzoates as building blocks for natural productassembly lines[J]. Natural Product Reports. 2012, 29(1): 37-59.
[49] ASOLKAR R N, SCHRöDER D, HECKMANN R, et al. Helquinoline, a new tetrahydroquinolineantibiotic from janibacter limosus Hel 1+[J]. Journal of Antibiotics. 2004, 57(1): 17-23.
[50] SATYANARAYANA G, PFLäSTERER D, HELMCHEN G. Enantioselective syntheses oftetrahydroquinolines based on iridium-catalyzed allylic substitutions: Total syntheses of (+)-angustureine and (–)-cuspareine[J]. European Journal of Organic Chemistry. 2011, 2011(34): 6877-6886.
[51] LEESON P D, CARLING R W, MOORE K W, et al. 4-Amido-2-carboxytetrahydroquinolines.structure-activity relationships for antagonism at the glycine site of the NMDA receptor[J]. Journalof Medicinal Chemistry. 1992, 35(11): 1954-1968.62
[52] PANGALOS M N, FRANCIS P T, FOSTER A C, et al. NMDA receptors assessed byautoradiography with
[3H]L-689,560 are present but not enriched on corticofugal-projectingpyramidal neurones[J]. Brain Research. 1992, 596(1): 223-230.
[53] ZHANG X, YOU S L. THQphos in ir-catalyzed asymmetric allylic substitution reactions[J]. Chimia.2018, 72(9): 589-594.
[54] SRIDHARAN V, SURYAVANSHI P A, MENéNDEZ J C. Advances in the chemistry oftetrahydroquinolines. Chemical Reviews[J]. 2011, 111(11): 7157-7259.
[55] MOYANO A, RIOS R. Asymmetric organocatalytic cyclization and cycloaddition reactions[J].Chemical Reviews. 2011, 111(8): 4703-4832.
[56] TIAN Y, DUAN M, LIU J, et al. Recent advances in metal-catalyzed decarboxylative reactions ofvinyl benzoxazinanones[J]. Advanced Synthesis & Catalysis. 2021, 363(19): 4461-4474.
[57] WANG T, CHEN X, LI P. One‐Pot Divergent Synthesis of Benzoxazines and Dihydroquinolinesfrom Morita‐Baylis‐Hillman Alcohols[J]. European Journal of Organic Chemistry. 2022, 2022(30) .
[58] GE Y, QIN C, BAI L, et al. A dearomatization/debromination strategy for the
[4+1] spiroannulationof bromophenols with α,β-unsaturated imines[J]. Angewandte Chemie International Edition. 2020,59(43): 18985-18989.
[59] BATISTA G M F, DE CASTRO P P, DOS SANTOS, H F, et al. Electron-Donor–Acceptor complexenabledflow methodology for the hydrotrifluoromethylation of unsaturated β-keto esters[J].Organic Letters. 2020, 22(21): 8598-8602.
[60] KERRU N, GUMMIDI L, MADDILA S, et al. A Review on recent advances in nitrogen-containingmolecules and their biological applications[J]. Molecules. 2020, 25(8): 1909
[61] NATARAJAN P, PRIYA, CHUSKIT D. Persulfate-activated charcoal mixture: an efficient oxidantfor the synthesis of sulfonated benzo[d]
[1,3]oxazines from N-(2-vinylphenyl)amides and thiols inaqueous solution[J]. Royal Society Chmistry Advances. 2021, 11(26): 15573-15580
[62] JI D W, HU Y C, MIN X T, et al. Skeleton-Reorganizing coupling reactions of cycloheptatriene andcycloalkenones with amines[J]. Angewandte Chemie International Edition. 2023, 62(2):e202213074.
[63] REID C S, PATRICK D A, HE S, et al. Synthesis and antitrypanosomal evaluation of derivatives ofN-benzyl-1,2-dihydroquinolin-6-ols: Effect of core substitutions and salt formation[J]. Bioorganicand Medicinal Chemistry. 2011, 19(1): 513-523.
[64] LOCKHART B, BONHOMME N, ROGER A, et al. Protective effect of the antioxidant 6-ethoxy-2,2-pentamethylen-1,2-dihydroquinoline (S 33113) in models of cerebral neurodegeneration[J].European Journal of Pharmacology. 2001, 416(1): 59-68.
[65] CARON C, LESTRAT C, MARSAL S, et al. Functional characterization of ATAD2 as a newcancer/testis factor and a predictor of poor prognosis in breast and lung cancers[J]. Oncogene. 2010,29(37): 5171-5181.
[66] DUAN Z, ZOU J X, YANG P, et al. Developmental and androgenic regulation of chromatinregulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex[J]. TheProstate. 2013, 73(5): 455-466.
[67] BOUSSOUAR F, JAMSHIDIKIA M, MOROZUMI Y, et al. Malignant genome reprogramming byATAD2[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2013, 1829(10):1010-1014.
[68] ZOU J X, REVENKO A S, LI L B, et al. ANCCA, an estrogen-regulated AAA+ ATPase coactivatorfor ERα, is required for coregulator occupancy and chromatin modification[J]. Proceedings of theNational Academy of Sciences. 2007, 104(46): 18067-18072.
[69] DEMONT E H, CHUNG C W, FURZE R C, et al. Fragment-Based discovery of low-micromolarATAD2 bromodomain inhibitors[J]. Journal of Medicinal Chemistry. 2015, 58(14): 5649-5673.
[70] YAR M, FRITZ S P, GATES P J, et al. Synthesis of N-vinyloxazolidinones and morpholines fromamino alcohols and vinylsulfonium salts: Analysis of the outcome's dependence on the N-Protecting63group by nanospray mass spectrometry[J]. European Journal of Organic Chemistry. 2012, 2012(1):160-166.
[71] YU W, TUNG C H, XU Z. Synthesis of benzofurans from sulfur ylides and ortho-hydroxyfunctionalizedalkynes[J]. Advanced Synthesis & Catalysis. 2022, 364(21): 3749-3753.

所在学位评定分委会
化学
国内图书分类号
O626.42
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543910
专题理学院_化学系
推荐引用方式
GB/T 7714
王韬. MBH加合物的合成与应用[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032089-王韬-化学系.pdf(17554KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王韬]的文章
百度学术
百度学术中相似的文章
[王韬]的文章
必应学术
必应学术中相似的文章
[王韬]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。