[1] HAYS S J, CAPRATHE B W, GILMORE J L, et al. 2-Amino-4H-3,1-benzoxazin-4-ones asinhibitors of C1r serine protease[J]. Journal of Medicinal Chemistry. 1998, 41(7): 1060-1067.
[2] KRANTZ A, SPENCER R W, TAM T F, et al. Design and synthesis of 4H-3,1-benzoxazin-4-onesas potent alternate substrate inhibitors of human leukocyte elastase[J]. Journal of MedicinalChemistry. 1990, 33(2): 464-479.
[3] TAKAHASHI H B Y, CAPOLINO A J, GILMORE T, et al. Discovery and SAR study of noveldihydroquinoline-containing glucocorticoid receptor agonists[J]. Bioorganic and MedicinalChemistry Letters. 2007, 17(18): 5091-5095.
[4] GIRARD C, LIU S, CADEPOND F, et al. Etifoxine improves peripheral nerve regeneration andfunctional recovery[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica. 2008, 105(51): 20505-20510
[5] KOPELMAN P, BRYSON A, HICKLING R, et al. Cetilistat (ATL-962), a novel lipase inhibitor: a12-week randomized, placebo-controlled study of weight reduction in obese patients[J].International Journal of Obesity. 2007, 31(3): 494-499.
[6] REID, C S, PATRICK, D A., HE, S, et al. Synthesis and antitrypanosomal evaluation of derivativesof N-benzyl-1,2-dihydroquinolin-6-ols: Effect of core substitutions and salt formation[J].Bioorganic & Medicinal Chemistry. 2011, 19(1): 513-523.
[7] SHRESTHA S, WU B J, GUINEY L, et al. Cholesteryl ester transfer protein and its inhibitors[J].Journal of Lipid Research. 2018, 59(5): 772-783.
[8] ESCRIBANO A, MATEO A I, MARTIN D L N, et al. Design and synthesis of newtetrahydroquinolines derivatives as CETP inhibitors[J]. Bioorganic & Medicinal Chemistry Letters.2012, 22(11): 3671-3675.
[9] WILLIAMSON N M, MARCH D R, DAVID W A. An improved synthesis of 2,2-disubstituted-1,2-dihydroquinolines and their conversion to 3-chloro-2,2-disubstituted-tetrahydroquinolines[J].Tetrahedron Letters. 1995, 36(42): 7721-7724.
[10] ANTOSZCZAK M, STEVERDING D, SULIK M, et al. Anti-trypanosomal activity of doublymodified salinomycin derivatives[J]. European Journal of Medicinal Chemistry. 2019, 173: 90-98.
[11] DU Y, HAN X, LU X. Alkaloids-catalyzed regio- and enantioselective allylic nucleophilicsubstitution of tert-butyl carbonate of the Morita–Baylis–Hillman products[J]. Tetrahedron Letters.2004, 45(25): 4967-4971.
[12] KIM J N, LEE H J, GONG J H. Synthesis of enantiomerically enriched Baylis–Hillman alcoholsfrom their acetates: combination of kinetic resolution during the salt formation with (DHQD)2PHALand following asymmetric induction during hydrolysis with NaHCO3 as a water surrogate[J].Tetrahedron Letters. 2002, 43(50): 9141-9146.
[13] PENG J, HUANG X, CUI H L, et al. Organocatalytic and electrophilic approach to oxindoles withC3-quaternary stereocenters[J]. Organic Letters. 2010, 12(19): 4260-4263.
[14] 张鹏飞. MBH 醇衍生物的不对称环化反应研究 [D]; 哈尔滨工业大学, 2019.
[15] CHO C W, KRISCHE M J. Regio- and stereoselective construction of γ-Butenolides throughphosphine-catalyzed substitution of Morita–Baylis–Hillman acetates: An organocatalytic allylicalkylation[J]. Angewandte Chemie International Edition. 2004, 43(48): 6689-6691.
[16] ZHANG T Z, DAI L X, HOU, X L. Enantioselective allylic substitution of Morita–Baylis–Hillmanadducts catalyzed by planar chiral
[2.2]paracyclophane monophosphines[J]. Tetrahedron:Asymmetry. 2007, 18(16): 1990-1994.60
[17] ZHONG F, LUO J, CHEN G Y, et al. Highly enantioselective regiodivergent allylic alkylations ofMBH carbonates with phthalides[J]. Journal of the American Chemical Society. 2012, 134(24):10222-10227.
[18] MENG L, CHANG X, LIN Z, et al. Metal-free access to 3-allyl-2-alkoxychromanones viaphosphine-catalyzed alkoxy allylation of chromones with MBH carbonates and alcohols[J]. Organic& Biomolcular Chemistry. 2021, 19(12): 2663-2667.
[19] SUN F, LU F, SONG X, et al. A combined experimental and computational study of NHC-catalyzedallylation of allenoate with MBH esters: new regiospecific and stereoselective access to 1,5-enyne[J].Organic Chemistry Frontiers. 2022, 9(1): 51-57.
[20] CHEN G Z, LU Y X, et al. Asymmetric allylic alkylation of isatin-derived Morita-Baylis-Hillmancarbonates with nitroalkanes[J]. Organic Letters. 2012, 14(15): 3955-3957.
[21] CHEN L, LI P F. Organocatalytic Regio- and enantioselective allylic alkylation of indolin-2-imineswith MBH carbonates toward 3-allylindoles[J]. Journal of Organic Chemistry. 2023.
[22] WANG Q G, ZHU S F, YE L W, et al. Catalytic asymmetric intramolecular cascade reaction for theconstruction of functionalized benzobicyclo
[4.3.0] skeletons. Remote control ofenantioselectivity[J]. Advanced Synthesis & Catalysis. 2010, 352(11‐12): 1914-1919.
[23] CAI W, HE Y, ZHOU Y, et al. Catalyst-controlled divergent intramolecular cyclizations of Morita-Baylis-Hillman carbonates[J]. Journal of Organic Chemistry. 2021, 86(17): 12267-12276.
[24] DU Y, LU X, ZHANG C. A Catalytic carbon–phosphorus ylide reaction: Phosphane-catalyzedannulation of allylic compounds with electron-deficient alkenes[J]. Angewandte ChemieInternational Edition. 2003, 42(9): 1035-1037.
[25] WANG Q G, ZHU S F, YE L W, et al. Catalytic asymmetric intramolecular cascade reaction for theconstruction of functionalized benzobicyclo
[4.3.0] skeletons. Remote control ofenantioselectivity[J]. Advanced Synthesis & Catalysis. 2010, 352(11-12): 1914-1919.
[26] TAN B, CANDEIAS N R, BARBAS C F III. Core-structure-motivated design of a phosphinecatalyzed
[3+2] cycloaddition reaction: Enantioselective syntheses ofspirocyclopenteneoxindoles[J]. Journal of the American Chemical Society. 2011, 133(13): 4672-4675.
[27] ZHONG F, HAN X, WANG Y, et al. Highly enantioselective
[3+2] annulation of Morita-Baylis-Hillman adducts mediated by L-threonine-derived phosphines: synthesis of 3-spirocyclopentene-2-oxindoles having two contiguous quaternary centers[J]. Angewandte Chemie International Edition.2011, 50(34): 7837-7841.
[28] ZHONG F, CHEN G Y, HAN X, et al. Asymmetric construction of functionalized bicyclic imidesvia
[3+2] annulation of MBH Carbonates Catalyzed by dipeptide-based phosphines[J]. OrganicLetters. 2012, 14(14): 3764-3767.
[29] ZHANG L, LIU H, QIAO G, et al. Phosphine-catalyzed highly enantioselective
[3+3] cycloadditionof Morita-Baylis-Hillman carbonates with C,N-cyclic azomethine imines[J]. Journal of theAmerican Chemical Society. 2015, 137(13): 4316-4319.
[30] WANG Y, LIU L, ZHANG T, et al. Diastereo- and Enantioselective
[3+2] Cycloaddition Reactionof Morita–Baylis–Hillman Carbonates of Isatins with N-Phenylmaleimide Catalyzed by Me-DuPhos[J]. The Journal of Organic Chemistry. 2012, 77(8): 4143-4147.
[31] Hu H, Yu S, Zhu L, et al. Chiral Bifunctional Ferrocenylphosphine Catalyzed HighlyEnantioselective
[3+2] Cycloaddition Reaction[J] . Organic & Biomolecular Chemistry, 2016, 14(2):752-760.
[32] Zhan G, Shi M L, He Q, et al. Catalyst-Controlled switch in chemo- and diastereoselectivities :annulations of Morita-Baylis-Hillman carbonates from isatins[J]. Angewandte ChemieInternational Edition, 2016, 55(6): 2147-2151.
[33] ZHANG X N, DENG H P, HUANG L, et al. Phosphine-catalyzed asymmetric
[4+1] annulation ofMorita-Baylis-Hillman carbonates with dicyano-2-methylenebut-3-enoates[J]. ChemicalCommunications. 2012, 48(69): 8664-8666.61
[34] Hu F L, Wei Y, Shi M. Phosphine-Catalyzed Asymmetric
[4+1] Annulation of Activated Alpha,Beta-Unsaturated Ketones with Morita-Baylis-Hillman Carbonates: Enantioselective Synthesis ofSpirooxindoles Containing Two Adjacent Quaternary Stereocenters[J]. Chemical Communications,2014, 50(64): 8912-8914.
[35] Lei Y, Zhang X N, Yang X Y, et al. Regio- and Diastereoselective Construction of 1',2'-(Dihydrospirolndoline-3,3'-Pyrrol-2'-Yl)Acrylates through Phosphine- Catalyzed
[4+1] Annulationof Morita-Baylis-Hillman Carbonates with Oxindole-Derived Alpha, Beta-Unsaturated Imines[J].Rsc Advances, 2015, 5(61): 49657-49661.
[36] CHENG Y Y, HAN, Y Z, LI P F. Organocatalytic enantioselective
[1+4] annulation of Morita–Baylis–Hillman carbonates with electron-deficient olefins: Access to chiral 2,3-dihydrofuranderivatives[J]. Organic Letters. 2017, 19(18): 4774-4777.
[37] WANG T, ZHANG P F, LI W, et al. Phosphine-mediated enantioselective
[1+4]-annulation ofMorita–Baylis–Hillman carbonates with 2-enoylpyridines[J]. Royal Society Chemistry Advances.2018, 8(72): 41620-41623.
[38] ZHANG P, GUO X, LIU C, et al. Enantioselective construction of pyridine N-Oxides featuring 2,3-dihydrofuran motifs via phosphine-catalyzed
[4+1]-annulation of 2-enoylpyridine N-Oxides withMorita–Baylis–Hillman carbonates[J]. Organic Letters. 2019, 21(1): 152-155.
[39] CHENG Y, FANG Z, LI W, et al. Phosphine-mediated enantioselective
[4+1] annulations betweenortho-quinone methides and Morita–Baylis–Hillman carbonates[J]. Organic Chemistry Frontiers.2018, 5(18): 2728-2733.
[40] GUO X, SHEN B, LIU C, et al. Rational design and organocatalytic enantioselective
[1+4]-annulations of MBH carbonates with modified enones[J]. Organic Chemistry Frontiers. 2023, 10(1):150-156.
[41] CHEN X, WANG T, LU Z Y, et al. Organocatalytic enantioselective formal (4+2)-cycloadditions ofphosphine-containing dipoles with isocyanates[J]. Organic Letters. 2022, 24(16): 3102-3106.
[42] ZHOU J, CHEN C, PANG Q, et al. Cooperative photoactivation/lewis base catalyzed
[4+2]annulations of α-diazoketones and ortho-amino MBH carbonates to access dihydroquinolinoneframeworks[J]. Organic Chemistry Frontiers. 2023.
[43] ROGERS D M, JASIM S B, DYER N T, et al. Electronic circular dichroism spectroscopy ofproteins[J]. Chem. 2019, 5(11): 2751-2774.
[44] 周相勇. TDDFT 模拟电子圆二色谱确定分子绝对构型的初步研究 [D]; 山东大学, 2015.
[45] CAI W, ZHOU Y, HE Y, et al. Designing and accurately developing a
[6+2] dipolar cycloadditionfor the synthesis of benzodiazocines[J]. Organic Letters. 2021, 23(14): 5430-5434.
[46] CAI W, HE Y, ZHOU Y, et al. Catalyst-Controlled divergent intramolecular cyclizations of Morita–Baylis–Hillman carbonates[J]. The Journal of Organic Chemistry. 2021, 86(17): 12267-12276.
[47] NAMMALWAR B, BUNCE R A. Recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions[J]. Molecules. 2013, 19(1):204-232.
[48] WALSH C T, HAYNES S W, AMES B D. Aminobenzoates as building blocks for natural productassembly lines[J]. Natural Product Reports. 2012, 29(1): 37-59.
[49] ASOLKAR R N, SCHRöDER D, HECKMANN R, et al. Helquinoline, a new tetrahydroquinolineantibiotic from janibacter limosus Hel 1+[J]. Journal of Antibiotics. 2004, 57(1): 17-23.
[50] SATYANARAYANA G, PFLäSTERER D, HELMCHEN G. Enantioselective syntheses oftetrahydroquinolines based on iridium-catalyzed allylic substitutions: Total syntheses of (+)-angustureine and (–)-cuspareine[J]. European Journal of Organic Chemistry. 2011, 2011(34): 6877-6886.
[51] LEESON P D, CARLING R W, MOORE K W, et al. 4-Amido-2-carboxytetrahydroquinolines.structure-activity relationships for antagonism at the glycine site of the NMDA receptor[J]. Journalof Medicinal Chemistry. 1992, 35(11): 1954-1968.62
[52] PANGALOS M N, FRANCIS P T, FOSTER A C, et al. NMDA receptors assessed byautoradiography with
[3H]L-689,560 are present but not enriched on corticofugal-projectingpyramidal neurones[J]. Brain Research. 1992, 596(1): 223-230.
[53] ZHANG X, YOU S L. THQphos in ir-catalyzed asymmetric allylic substitution reactions[J]. Chimia.2018, 72(9): 589-594.
[54] SRIDHARAN V, SURYAVANSHI P A, MENéNDEZ J C. Advances in the chemistry oftetrahydroquinolines. Chemical Reviews[J]. 2011, 111(11): 7157-7259.
[55] MOYANO A, RIOS R. Asymmetric organocatalytic cyclization and cycloaddition reactions[J].Chemical Reviews. 2011, 111(8): 4703-4832.
[56] TIAN Y, DUAN M, LIU J, et al. Recent advances in metal-catalyzed decarboxylative reactions ofvinyl benzoxazinanones[J]. Advanced Synthesis & Catalysis. 2021, 363(19): 4461-4474.
[57] WANG T, CHEN X, LI P. One‐Pot Divergent Synthesis of Benzoxazines and Dihydroquinolinesfrom Morita‐Baylis‐Hillman Alcohols[J]. European Journal of Organic Chemistry. 2022, 2022(30) .
[58] GE Y, QIN C, BAI L, et al. A dearomatization/debromination strategy for the
[4+1] spiroannulationof bromophenols with α,β-unsaturated imines[J]. Angewandte Chemie International Edition. 2020,59(43): 18985-18989.
[59] BATISTA G M F, DE CASTRO P P, DOS SANTOS, H F, et al. Electron-Donor–Acceptor complexenabledflow methodology for the hydrotrifluoromethylation of unsaturated β-keto esters[J].Organic Letters. 2020, 22(21): 8598-8602.
[60] KERRU N, GUMMIDI L, MADDILA S, et al. A Review on recent advances in nitrogen-containingmolecules and their biological applications[J]. Molecules. 2020, 25(8): 1909
[61] NATARAJAN P, PRIYA, CHUSKIT D. Persulfate-activated charcoal mixture: an efficient oxidantfor the synthesis of sulfonated benzo[d]
[1,3]oxazines from N-(2-vinylphenyl)amides and thiols inaqueous solution[J]. Royal Society Chmistry Advances. 2021, 11(26): 15573-15580
[62] JI D W, HU Y C, MIN X T, et al. Skeleton-Reorganizing coupling reactions of cycloheptatriene andcycloalkenones with amines[J]. Angewandte Chemie International Edition. 2023, 62(2):e202213074.
[63] REID C S, PATRICK D A, HE S, et al. Synthesis and antitrypanosomal evaluation of derivatives ofN-benzyl-1,2-dihydroquinolin-6-ols: Effect of core substitutions and salt formation[J]. Bioorganicand Medicinal Chemistry. 2011, 19(1): 513-523.
[64] LOCKHART B, BONHOMME N, ROGER A, et al. Protective effect of the antioxidant 6-ethoxy-2,2-pentamethylen-1,2-dihydroquinoline (S 33113) in models of cerebral neurodegeneration[J].European Journal of Pharmacology. 2001, 416(1): 59-68.
[65] CARON C, LESTRAT C, MARSAL S, et al. Functional characterization of ATAD2 as a newcancer/testis factor and a predictor of poor prognosis in breast and lung cancers[J]. Oncogene. 2010,29(37): 5171-5181.
[66] DUAN Z, ZOU J X, YANG P, et al. Developmental and androgenic regulation of chromatinregulators EZH2 and ANCCA/ATAD2 in the prostate Via MLL histone methylase complex[J]. TheProstate. 2013, 73(5): 455-466.
[67] BOUSSOUAR F, JAMSHIDIKIA M, MOROZUMI Y, et al. Malignant genome reprogramming byATAD2[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2013, 1829(10):1010-1014.
[68] ZOU J X, REVENKO A S, LI L B, et al. ANCCA, an estrogen-regulated AAA+ ATPase coactivatorfor ERα, is required for coregulator occupancy and chromatin modification[J]. Proceedings of theNational Academy of Sciences. 2007, 104(46): 18067-18072.
[69] DEMONT E H, CHUNG C W, FURZE R C, et al. Fragment-Based discovery of low-micromolarATAD2 bromodomain inhibitors[J]. Journal of Medicinal Chemistry. 2015, 58(14): 5649-5673.
[70] YAR M, FRITZ S P, GATES P J, et al. Synthesis of N-vinyloxazolidinones and morpholines fromamino alcohols and vinylsulfonium salts: Analysis of the outcome's dependence on the N-Protecting63group by nanospray mass spectrometry[J]. European Journal of Organic Chemistry. 2012, 2012(1):160-166.
[71] YU W, TUNG C H, XU Z. Synthesis of benzofurans from sulfur ylides and ortho-hydroxyfunctionalizedalkynes[J]. Advanced Synthesis & Catalysis. 2022, 364(21): 3749-3753.
修改评论