中文版 | English
题名

三维CGFDM-DSM混合方法远震波场模拟研究

其他题名
RESEARCH ON THREE-DEMENSIONAL CGFDM-DSM HYBRID METHOD FOR MODELLING TELESEISMIC WAVES
姓名
姓名拼音
GAO Xinhao
学号
12032537
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
张振国
导师单位
地球与空间科学系
论文答辩日期
2023-05-11
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
    远震波形记录一直以来被用于震源反演研究,并且可利用于地下结构成像领域。日益增加的全球地震台站记录下了大量的高质量远震数据,高精度的远震波场模拟方法可以帮助地球物理学家将其有效利用。然而传统的一维数值方法无法考虑地球的三维复杂性,三维方法则在全球尺度下对高频地震波传播开展数值模拟时计算量极其巨大,尽管现有超算技术进展卓著但仍无法负担。最近的研究表明,将一维方法与三维方法结合进行远震模拟能够兼具高效与精确。受此启发,通过将可处理三维复杂介质与地形起伏的曲线网格有限差分方法(CGFDM)与直接解方法(DSM)基于表示定理结合,本文提出了CGFDM-DSM 混合方法来有效地计算具有三维源侧结构的远震波形。CGFDM-DSM 混合方法能够将计算成本巨大的三维模拟限制在一块较小的源侧区域,避免了对整个地球空间的计算。
    本文从介绍弹性波动方程谈起,简单说明了曲线网格有限差分、直接解法以及混合方法的原理,并通过混合方法合成了远震地震图。本文的混合方法与其他比较成熟的方法分别在一维均匀层状模型和三维高斯山模型中进行了对比验证,结果显示本文方法与其他方法合成的地震图有高度一致性。基于一组实验,本文研究了CGFDM 中的频散数值问题在混合方法中产生的误差。最后应用CGFDM-DSM 混合方法,在一个莫霍面偏移结构模型中开展了模拟,并且以门源地震为例分别使用矩张量点震源模型和有限断层震源模型作为震源合成了远震地震图。模拟表明,源侧三维地下结构对远震波形起着重要的控制作用,更精确的震源参数可合成更接近真实的远震地震图。综上,三维 CGFDM-DSM 混合远震波场模拟方法可以模拟具有三维源侧结构的地球中的地震波传播过程,并可精确合成远震地震图,可在地下结构成像以及震源参数反演等领域发挥重要作用。
关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 桑莹泉, 刘有山, 徐涛, 等. 远震波场正演模拟方法及应用[J]. 地球与行星物理论评, 2021,52(2021-011): 569.
[2] OKAMOTO T. Effects of Sedimentary Structure and Bathymetry Near the Source on Teleseismic P Waveforms from Shallow Subduction Zone Earthquakes[J]. Geophysical Journal International, 1993, 112(3): 471-480.
[3] LIU Q, GU Y J. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 2012, s 566–567: 31–66.
[4] HELMBERGER D. Generalized ray theory for shear dislocations[J]. Bulletin of the Seismological Society of America, 1974, 64.
[5] 李旭,陈运泰. 合成地震图的广义反射透射系数矩阵方法[J]. 地震地磁观测与研究, 1996.
[6] CHAPMAN C H. Exact and Approximate Generalized Ray Theory in Vertically Inhomogeneous Media[J]. Geophysical Journal International, 1976, 46(2): 201-233.
[7] CHAPMAN C H. A new method for computing synthetic seismograms[J]. Geophysical Journal International, 1978, 54(3): 481-518.
[8] CHAPMAN C H, ORCUTT J A. The computation of body wave synthetic seismograms in laterally homogeneous media[J]. Reviews of Geophysics, 1985, 23(2): 105-163.
[9] CHAPMAN C H, DRUMMOND R. Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory[J]. Bulletin of the Seismological Society of America, 1982, 72(6B):S277-S317.
[10] GRAVES R W, HELMBERGER D V. Upper mantle cross section from Tonga to Newfoundland[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B5): 4701-4711.
[11] GILBERT F. Excitation of the Normal Modes of the Earth by Earthquake Sources[J]. Geophysical Journal International, 1971, 22(2): 223-226.
[12] SINGH S J, BEN-MENAHEM A. Eigenvibrations of the Earth Excited by Finite Dislocations—I Toroidal Oscillations[J]. Geophysical Journal International, 1969, 17(2): 151-177.
[13] SINGH S J, BEN-MENAHEM A. Eigenvibrations of the Earth Excited by Finite Dislocations—II Spheroidal Oscillations[J]. Geophysical Journal International, 1969, 17(3): 333-350.
[14] TANIMOTO T. A simple derivation of the formula to calculate synthetic long-period seismograms in a heterogeneous earth by normal mode summation[J]. Geophysical Journal International, 1984, 77(1): 275-278.
[15] FLORSCH N, FH D, SUHADOLC P, et al. Complete synthetic seismograms for high-frequency multimodeSH-waves[J]. Pure and Applied Geophysics, 1991, 136(4): 529-560.
[16] YANG H Y, ZHAO L, HUNG S H. Synthetic seismograms by normal-mode summation: a new derivation and numerical examples[J]. Geophysical Journal International, 2010, 183(3):1613-1632.
[17] LIU T, ZHANG H, GEOPHYSICS D O, et al. Synthetic seismograms for finite sources in spherically symmetric Earth using normal-mode summation[J]. Earthquake Science, 2017.
[18] RITSEMA J, DEUSS A, VAN HEIJST H J, et al. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophysical Journal International, 2011, 184(3): 1223-1236.
[19] AL-ATTAR D, WOODHOUSE J H. Calculation of seismic displacement fields in selfgravitating earth models—applications of minors vectors and symplectic structure[J]. Geophysical Journal International, 2008, 175(3): 1176-1208.
[20] CHEN X, CHANG S. An Efficient Numerical Method for Computing Synthetic Seismograms for a Layered Half-space with Sources and Receivers at Close or Same Depths[J]. Pure and Applied Geophysics, 2003, 160: 467-486.
[21] BOUCHON M, AKI K. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 1977, 67(2): 259-277.
[22] BOUCHON M. A Review of the Discrete Wavenumber Method[J]. Pure and Applied Geophysics, 2003, 160: 445-465.
[23] WU S, NOZU A, NAGASAKA Y. Accuracy of Near‐Fault Fling‐Step Displacements Estimated Using the Discrete Wavenumber Method[J]. Bulletin of the Seismological Society of America, 2020, 111(1): 309-320.
[24] ZHOU H, CHEN X. A new approach to simulate scattering of SH waves by an irregular topography[J]. Geophysical Journal International, 2006, 164(2): 449-459.
[25] ZHOU H, CHEN X. The Localized Boundary Integral Equation–Discrete Wavenumber Method for Simulating P-SV Wave Scattering by an Irregular Topography[J]. Bulletin of the Seismo logical Society of America, 2008, 98(1): 265-279.
[26] MAVROEIDIS G P, PAPAGEORGIOU A S. Effect of Fault Rupture Characteristics on NearFault Strong Ground Motions[J]. Bulletin of the Seismological Society of America, 2010, 100(1): 37-58.
[27] NI S, DING X, HELMBERGER D V. Constructing synthetics from deep earth tomographic models[J]. Geophysical Journal International, 2000, 140(1): 71-82.
[28] NI S, CORMIER V F, HELMBERGER D V. A Comparison of Synthetic Seismograms for 2D Structures: Semianalytical versus Numerical[J]. Bulletin of the Seismological Society of America, 2003, 93(6): 2752-2757.
[29] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17-34.
[30] SCHMIDT H, TANGO G. Efficient global matrix approach to the computation of synthetic seismograms[J]. Geophysical Journal International, 1986, 84(2): 331-359.
[31] HASKELL N A. Crustal reflection of plane P and SV waves[J]. Journal of Geophysical Research, 1962, 67(12): 4751-4768.
[32] ZHU L, RIVERA L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 2002, 148(3): 619-627.
[33] NISSEN‐MEYER T, DAHLEN F A, FOURNIER A. Spherical‐earth Fréchet sensitivity kernels[J]. Geophysical Journal International, 2007, 168(3): 1051-1066.
[34] NISSEN‐MEYER T, FOURNIER A, DAHLEN F A. A two‐dimensional spectral‐element method for computing spherical‐earth seismograms –I. Moment‐tensor source[J]. Geophysical Journal International, 2007, 168(3): 1067-1092.
[35] GELLER R J, OHMINATO T. Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method[J]. Geophysical Journal International, 1994, 116(2): 421-446.
[36] GELLER R J, TAKEUCHI N. A new method for computing highly accurate DSM synthetic seismograms[J]. Geophysical Journal International, 1995, 123(2): 449-470.
[37] TAKEUCHI N, GELLER R J, CUMMINS P R. Highly accurate P-SV complete synthetic seismograms using modified DSM operators[J]. Geophysical Research Letters, 1996, 23(10): 1175-1178.
[38] KAWAI K, TAKEUCHI N, GELLER R J. Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media[J]. Geophysical Journal International, 2006, 164(2): 411-424.
[39] LYSMER J, DRAKE L A. A Finite Element Method for Seismology: volume 11[M]. Elsevier, 1972: 181-216.
[40] SCHLUE J W. Finite element matrices for seismic surface waves in three-dimensional structures[J]. Bulletin of the Seismological Society of America, 1979, 69(5): 1425-1438.
[41] MOCZO P, KRISTEK J, GáLIS M. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures[M]. Cambridge University Press, 2014.
[42] PATERA A T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3): 468-488.
[43] TORDJMAN N. Eléments finis d’ordre élevé avec condensation de masse pour l’équation des ondes[D]. Paris 9, 1995.
[44] KOMATITSCH D, VILOTTE J P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
[45] KOMATITSCH D, VINNIK L P, CHEVROT S. SHdiff-SVdiff splitting in an isotropic Earth[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7).
[46] KOMATITSCH D, RITSEMA J, TROMP J. The Spectral-Element Method, Beowulf Computing, and Global Seismology[J]. Science, 2002, 298(5599): 1737-1742.
[47] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation[Z]. 1973.
[48] KäSER M, DUMBSER M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes —I. The two-dimensional isotropic case with external source terms[J]. Geophysical Journal International, 2006, 166(2): 855-877.
[49] DE LA PUENTE J, AMPUERO J P, KäSER M. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B10).
[50] ALTERMAN Z, KARAL J, F. C. Propagation of elastic waves in layered media by finite difference methods[J]. Bulletin of the Seismological Society of America, 1968, 58(1): 367-398.
[51] HIXON R. Evaluation of a High-Accuracy MacCormack-Type Scheme Using Benchmark Problems[J]. Journal of Computational Acoustics, 1998, 06: 291-305.
[52] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[53] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[54] ZHANG Z, ZHANG W, CHEN X, et al. Rupture Dynamics and Ground Motion from Potential Earthquakes around Taiyuan, China[J]. Bulletin of the Seismological Society of America, 2017, 107(3): 1201-1212.
[55] YU H, ZHANG W, ZHANG Z, et al. Investigation on the Dynamic Rupture of the 1970 Ms 7.7 Tonghai, Yunnan, China, Earthquake on the Qujiang Fault[J]. Bulletin of the Seismological Society of America, 2020, 110(2): 898-919.
[56] MONTEILLER V, CHEVROT S, KOMATITSCH D, et al. A hybrid method to compute shortperiod synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophys ical Journal International, 2012, 192(1): 230-247.
[57] MONTEILLER V, CHEVROT S, KOMATITSCH D, et al. Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM–DSM hybrid method[J]. Geophysical Journal International, 2015, 202(2): 811-827.
[58] WU W, NI S, ZHAN Z, et al. An SEM-DSM three-dimensional hybrid method for modelling teleseismic waves with complicated source-side structures[J]. Geophysical Journal International, 2018, 215(1): 133-154.
[59] LYU C, ZHAO L, CAPDEVILLE Y. Novel Hybrid Numerical Simulation of the WaveEquation by Combining Physical and Numerical Representation Theorems and a Review of Hybrid Methodologies[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB022368.
[60] MONTEILLER V, BELLER S, PLAZOLLES B, et al. On the validity of the planar waveapproximation to compute synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophysical Journal International, 2020, 224(3): 2060-2076.
[61] TONG P, CHEN C W, KOMATITSCH D, et al. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophysical Journal International, 2014, 197(1): 369-395.
[62] MENG W, YANG D, DONG X, et al. A 3D Optimized Frequency–Wavenumber (FK), Time–Space Optimized Symplectic (TSOS) Hybrid Method for Teleseismic Wave Modeling[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 3403-3419.
[63] OKAMOTO T. Teleseismic synthetics obtained from 3-D calculations in 2-D media[J]. Geophysical Journal International, 1994, 118(3): 613-622.
[64] OKAMOTO T, TAKENAKA H. Waveform inversion for slip distribution of the 2006 Java tsunami earthquake by using 2.5D finite-difference Green’s function[J]. Earth Planets and Space, 2009, 61.
[65] QIAN Y, WEI S, WU W, et al. Teleseismic Waveform Complexities Caused by Near Trench Structures and Their Impacts on Earthquake Source Study: Application to the 2015 Illapel Aftershocks (Central Chile)[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 870-889.
[66] WEN L, HELMBERGER D V. A two-dimensional P-SV hybrid method and its application to modeling localized structures near the core-mantle boundary[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B8): 17901-17918.
[67] MASSON Y, ROMANOWICZ B. Box tomography: localized imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth[J]. Geophysical Journal International, 2017, 211(1): 141-163.
[68] MASSON Y, ROMANOWICZ B. Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem[J]. Geophysical Journal International, 2016, 208(2): 674-692.
[69] AKI K, RICHARDS P. Quantitative Seismology[Z]. 2002.
[70] 张文强. 破裂动力学的曲线网格有限差分方法研究及高性能计算[D]. 中国科学技术大学,2020.
[71] 王文强. 基于异构并行三维复杂地震模拟研究[D]. 哈尔滨工业大学, 2023.
[72] 张振国. 三维非平面断层破裂动力学研究[D]. 中国科学技术大学, 2014.
[73] HIXON R. Evaluation of a High-Accuracy MacCormack-Type Scheme Using Benchmark Problems[J]. Journal of Computational Acoustics, 1997, 06.
[74] TAM C K W, WEBB J C. Dispersion-relation-preserving finite difference schemes for compu tational acoustics[J]. Journal of Computational Physics, 1993, 107: 262-281.
[75] TAKEUCHI H, SAITO M. Seismic Surface Waves[M]//BOLT B A. Methods in Computational Physics: Advances in Research and Applications: volume 11 Seismology: Surface Waves and Earth Oscillations. Elsevier, 1972: 217-295.
[76] WANG W, ZHANG Z, ZHANG W, et al. CGFDM3D‐EQR: A Platform for Rapid Response to Earthquake Disasters in 3D Complex Media[J]. Seismological Research Letters, 2022, 93(4): 2320-2334.
[77] REUTER H I, NELSON A, JARVIS A. An evaluation of void-filling interpolation methods for SRTM data[J]. International Journal of Geographical Information Science, 2007, 21(9): 983-1008.
[78] SHEN W, RITZWOLLER M, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206: ggw175.
[79] KENNETT B L N, ENGDAHL E R. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105(2): 429-465.
[80] EKSTRöM G, NETTLES M, DZIEWOńSKI A. The global CMT project 2004–2010: Centroidmoment tensors for 13,017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200-201: 1-9.
[81] IRIKURA K. Semi-Empirical Estimation of Strong Ground Motions During Large Earthquakes[J]. Bulletin of the Disaster Prevention Research Institute, 1983, 33: 63-104.
[82] JI C, WALD D J, HELMBERGER D V. Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-1207.

所在学位评定分委会
物理学
国内图书分类号
P315.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543915
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
高心昊. 三维CGFDM-DSM混合方法远震波场模拟研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032537-高心昊-地球与空间科学(22437KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[高心昊]的文章
百度学术
百度学术中相似的文章
[高心昊]的文章
必应学术
必应学术中相似的文章
[高心昊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。