[1] 桑莹泉, 刘有山, 徐涛, 等. 远震波场正演模拟方法及应用[J]. 地球与行星物理论评, 2021,52(2021-011): 569.
[2] OKAMOTO T. Effects of Sedimentary Structure and Bathymetry Near the Source on Teleseismic P Waveforms from Shallow Subduction Zone Earthquakes[J]. Geophysical Journal International, 1993, 112(3): 471-480.
[3] LIU Q, GU Y J. Seismic imaging: From classical to adjoint tomography[J]. Tectonophysics, 2012, s 566–567: 31–66.
[4] HELMBERGER D. Generalized ray theory for shear dislocations[J]. Bulletin of the Seismological Society of America, 1974, 64.
[5] 李旭,陈运泰. 合成地震图的广义反射透射系数矩阵方法[J]. 地震地磁观测与研究, 1996.
[6] CHAPMAN C H. Exact and Approximate Generalized Ray Theory in Vertically Inhomogeneous Media[J]. Geophysical Journal International, 1976, 46(2): 201-233.
[7] CHAPMAN C H. A new method for computing synthetic seismograms[J]. Geophysical Journal International, 1978, 54(3): 481-518.
[8] CHAPMAN C H, ORCUTT J A. The computation of body wave synthetic seismograms in laterally homogeneous media[J]. Reviews of Geophysics, 1985, 23(2): 105-163.
[9] CHAPMAN C H, DRUMMOND R. Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory[J]. Bulletin of the Seismological Society of America, 1982, 72(6B):S277-S317.
[10] GRAVES R W, HELMBERGER D V. Upper mantle cross section from Tonga to Newfoundland[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B5): 4701-4711.
[11] GILBERT F. Excitation of the Normal Modes of the Earth by Earthquake Sources[J]. Geophysical Journal International, 1971, 22(2): 223-226.
[12] SINGH S J, BEN-MENAHEM A. Eigenvibrations of the Earth Excited by Finite Dislocations—I Toroidal Oscillations[J]. Geophysical Journal International, 1969, 17(2): 151-177.
[13] SINGH S J, BEN-MENAHEM A. Eigenvibrations of the Earth Excited by Finite Dislocations—II Spheroidal Oscillations[J]. Geophysical Journal International, 1969, 17(3): 333-350.
[14] TANIMOTO T. A simple derivation of the formula to calculate synthetic long-period seismograms in a heterogeneous earth by normal mode summation[J]. Geophysical Journal International, 1984, 77(1): 275-278.
[15] FLORSCH N, FH D, SUHADOLC P, et al. Complete synthetic seismograms for high-frequency multimodeSH-waves[J]. Pure and Applied Geophysics, 1991, 136(4): 529-560.
[16] YANG H Y, ZHAO L, HUNG S H. Synthetic seismograms by normal-mode summation: a new derivation and numerical examples[J]. Geophysical Journal International, 2010, 183(3):1613-1632.
[17] LIU T, ZHANG H, GEOPHYSICS D O, et al. Synthetic seismograms for finite sources in spherically symmetric Earth using normal-mode summation[J]. Earthquake Science, 2017.
[18] RITSEMA J, DEUSS A, VAN HEIJST H J, et al. S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophysical Journal International, 2011, 184(3): 1223-1236.
[19] AL-ATTAR D, WOODHOUSE J H. Calculation of seismic displacement fields in selfgravitating earth models—applications of minors vectors and symplectic structure[J]. Geophysical Journal International, 2008, 175(3): 1176-1208.
[20] CHEN X, CHANG S. An Efficient Numerical Method for Computing Synthetic Seismograms for a Layered Half-space with Sources and Receivers at Close or Same Depths[J]. Pure and Applied Geophysics, 2003, 160: 467-486.
[21] BOUCHON M, AKI K. Discrete wave-number representation of seismic-source wave fields[J]. Bulletin of the Seismological Society of America, 1977, 67(2): 259-277.
[22] BOUCHON M. A Review of the Discrete Wavenumber Method[J]. Pure and Applied Geophysics, 2003, 160: 445-465.
[23] WU S, NOZU A, NAGASAKA Y. Accuracy of Near‐Fault Fling‐Step Displacements Estimated Using the Discrete Wavenumber Method[J]. Bulletin of the Seismological Society of America, 2020, 111(1): 309-320.
[24] ZHOU H, CHEN X. A new approach to simulate scattering of SH waves by an irregular topography[J]. Geophysical Journal International, 2006, 164(2): 449-459.
[25] ZHOU H, CHEN X. The Localized Boundary Integral Equation–Discrete Wavenumber Method for Simulating P-SV Wave Scattering by an Irregular Topography[J]. Bulletin of the Seismo logical Society of America, 2008, 98(1): 265-279.
[26] MAVROEIDIS G P, PAPAGEORGIOU A S. Effect of Fault Rupture Characteristics on NearFault Strong Ground Motions[J]. Bulletin of the Seismological Society of America, 2010, 100(1): 37-58.
[27] NI S, DING X, HELMBERGER D V. Constructing synthetics from deep earth tomographic models[J]. Geophysical Journal International, 2000, 140(1): 71-82.
[28] NI S, CORMIER V F, HELMBERGER D V. A Comparison of Synthetic Seismograms for 2D Structures: Semianalytical versus Numerical[J]. Bulletin of the Seismological Society of America, 2003, 93(6): 2752-2757.
[29] HASKELL N A. The dispersion of surface waves on multilayered media[J]. Bulletin of the Seismological Society of America, 1953, 43(1): 17-34.
[30] SCHMIDT H, TANGO G. Efficient global matrix approach to the computation of synthetic seismograms[J]. Geophysical Journal International, 1986, 84(2): 331-359.
[31] HASKELL N A. Crustal reflection of plane P and SV waves[J]. Journal of Geophysical Research, 1962, 67(12): 4751-4768.
[32] ZHU L, RIVERA L A. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophysical Journal International, 2002, 148(3): 619-627.
[33] NISSEN‐MEYER T, DAHLEN F A, FOURNIER A. Spherical‐earth Fréchet sensitivity kernels[J]. Geophysical Journal International, 2007, 168(3): 1051-1066.
[34] NISSEN‐MEYER T, FOURNIER A, DAHLEN F A. A two‐dimensional spectral‐element method for computing spherical‐earth seismograms –I. Moment‐tensor source[J]. Geophysical Journal International, 2007, 168(3): 1067-1092.
[35] GELLER R J, OHMINATO T. Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method[J]. Geophysical Journal International, 1994, 116(2): 421-446.
[36] GELLER R J, TAKEUCHI N. A new method for computing highly accurate DSM synthetic seismograms[J]. Geophysical Journal International, 1995, 123(2): 449-470.
[37] TAKEUCHI N, GELLER R J, CUMMINS P R. Highly accurate P-SV complete synthetic seismograms using modified DSM operators[J]. Geophysical Research Letters, 1996, 23(10): 1175-1178.
[38] KAWAI K, TAKEUCHI N, GELLER R J. Complete synthetic seismograms up to 2 Hz for transversely isotropic spherically symmetric media[J]. Geophysical Journal International, 2006, 164(2): 411-424.
[39] LYSMER J, DRAKE L A. A Finite Element Method for Seismology: volume 11[M]. Elsevier, 1972: 181-216.
[40] SCHLUE J W. Finite element matrices for seismic surface waves in three-dimensional structures[J]. Bulletin of the Seismological Society of America, 1979, 69(5): 1425-1438.
[41] MOCZO P, KRISTEK J, GáLIS M. The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures[M]. Cambridge University Press, 2014.
[42] PATERA A T. A spectral element method for fluid dynamics: Laminar flow in a channel expansion[J]. Journal of Computational Physics, 1984, 54(3): 468-488.
[43] TORDJMAN N. Eléments finis d’ordre élevé avec condensation de masse pour l’équation des ondes[D]. Paris 9, 1995.
[44] KOMATITSCH D, VILOTTE J P. The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bulletin of the Seismological Society of America, 1998, 88(2): 368-392.
[45] KOMATITSCH D, VINNIK L P, CHEVROT S. SHdiff-SVdiff splitting in an isotropic Earth[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B7).
[46] KOMATITSCH D, RITSEMA J, TROMP J. The Spectral-Element Method, Beowulf Computing, and Global Seismology[J]. Science, 2002, 298(5599): 1737-1742.
[47] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation[Z]. 1973.
[48] KäSER M, DUMBSER M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes —I. The two-dimensional isotropic case with external source terms[J]. Geophysical Journal International, 2006, 166(2): 855-877.
[49] DE LA PUENTE J, AMPUERO J P, KäSER M. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B10).
[50] ALTERMAN Z, KARAL J, F. C. Propagation of elastic waves in layered media by finite difference methods[J]. Bulletin of the Seismological Society of America, 1968, 58(1): 367-398.
[51] HIXON R. Evaluation of a High-Accuracy MacCormack-Type Scheme Using Benchmark Problems[J]. Journal of Computational Acoustics, 1998, 06: 291-305.
[52] ZHANG W, CHEN X. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophysical Journal International, 2006, 167(1): 337-353.
[53] ZHANG W, ZHANG Z, CHEN X. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophysical Journal International, 2012, 190(1): 358-378.
[54] ZHANG Z, ZHANG W, CHEN X, et al. Rupture Dynamics and Ground Motion from Potential Earthquakes around Taiyuan, China[J]. Bulletin of the Seismological Society of America, 2017, 107(3): 1201-1212.
[55] YU H, ZHANG W, ZHANG Z, et al. Investigation on the Dynamic Rupture of the 1970 Ms 7.7 Tonghai, Yunnan, China, Earthquake on the Qujiang Fault[J]. Bulletin of the Seismological Society of America, 2020, 110(2): 898-919.
[56] MONTEILLER V, CHEVROT S, KOMATITSCH D, et al. A hybrid method to compute shortperiod synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophys ical Journal International, 2012, 192(1): 230-247.
[57] MONTEILLER V, CHEVROT S, KOMATITSCH D, et al. Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM–DSM hybrid method[J]. Geophysical Journal International, 2015, 202(2): 811-827.
[58] WU W, NI S, ZHAN Z, et al. An SEM-DSM three-dimensional hybrid method for modelling teleseismic waves with complicated source-side structures[J]. Geophysical Journal International, 2018, 215(1): 133-154.
[59] LYU C, ZHAO L, CAPDEVILLE Y. Novel Hybrid Numerical Simulation of the WaveEquation by Combining Physical and Numerical Representation Theorems and a Review of Hybrid Methodologies[J]. Journal of Geophysical Research: Solid Earth, 2022, 127(5): e2021JB022368.
[60] MONTEILLER V, BELLER S, PLAZOLLES B, et al. On the validity of the planar waveapproximation to compute synthetic seismograms of teleseismic body waves in a 3-D regional model[J]. Geophysical Journal International, 2020, 224(3): 2060-2076.
[61] TONG P, CHEN C W, KOMATITSCH D, et al. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophysical Journal International, 2014, 197(1): 369-395.
[62] MENG W, YANG D, DONG X, et al. A 3D Optimized Frequency–Wavenumber (FK), Time–Space Optimized Symplectic (TSOS) Hybrid Method for Teleseismic Wave Modeling[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 3403-3419.
[63] OKAMOTO T. Teleseismic synthetics obtained from 3-D calculations in 2-D media[J]. Geophysical Journal International, 1994, 118(3): 613-622.
[64] OKAMOTO T, TAKENAKA H. Waveform inversion for slip distribution of the 2006 Java tsunami earthquake by using 2.5D finite-difference Green’s function[J]. Earth Planets and Space, 2009, 61.
[65] QIAN Y, WEI S, WU W, et al. Teleseismic Waveform Complexities Caused by Near Trench Structures and Their Impacts on Earthquake Source Study: Application to the 2015 Illapel Aftershocks (Central Chile)[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(1): 870-889.
[66] WEN L, HELMBERGER D V. A two-dimensional P-SV hybrid method and its application to modeling localized structures near the core-mantle boundary[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B8): 17901-17918.
[67] MASSON Y, ROMANOWICZ B. Box tomography: localized imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth[J]. Geophysical Journal International, 2017, 211(1): 141-163.
[68] MASSON Y, ROMANOWICZ B. Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem[J]. Geophysical Journal International, 2016, 208(2): 674-692.
[69] AKI K, RICHARDS P. Quantitative Seismology[Z]. 2002.
[70] 张文强. 破裂动力学的曲线网格有限差分方法研究及高性能计算[D]. 中国科学技术大学,2020.
[71] 王文强. 基于异构并行三维复杂地震模拟研究[D]. 哈尔滨工业大学, 2023.
[72] 张振国. 三维非平面断层破裂动力学研究[D]. 中国科学技术大学, 2014.
[73] HIXON R. Evaluation of a High-Accuracy MacCormack-Type Scheme Using Benchmark Problems[J]. Journal of Computational Acoustics, 1997, 06.
[74] TAM C K W, WEBB J C. Dispersion-relation-preserving finite difference schemes for compu tational acoustics[J]. Journal of Computational Physics, 1993, 107: 262-281.
[75] TAKEUCHI H, SAITO M. Seismic Surface Waves[M]//BOLT B A. Methods in Computational Physics: Advances in Research and Applications: volume 11 Seismology: Surface Waves and Earth Oscillations. Elsevier, 1972: 217-295.
[76] WANG W, ZHANG Z, ZHANG W, et al. CGFDM3D‐EQR: A Platform for Rapid Response to Earthquake Disasters in 3D Complex Media[J]. Seismological Research Letters, 2022, 93(4): 2320-2334.
[77] REUTER H I, NELSON A, JARVIS A. An evaluation of void-filling interpolation methods for SRTM data[J]. International Journal of Geographical Information Science, 2007, 21(9): 983-1008.
[78] SHEN W, RITZWOLLER M, KANG D, et al. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion[J]. Geophysical Journal International, 2016, 206: ggw175.
[79] KENNETT B L N, ENGDAHL E R. Traveltimes for global earthquake location and phase identification[J]. Geophysical Journal International, 1991, 105(2): 429-465.
[80] EKSTRöM G, NETTLES M, DZIEWOńSKI A. The global CMT project 2004–2010: Centroidmoment tensors for 13,017 earthquakes[J]. Physics of the Earth and Planetary Interiors, 2012, 200-201: 1-9.
[81] IRIKURA K. Semi-Empirical Estimation of Strong Ground Motions During Large Earthquakes[J]. Bulletin of the Disaster Prevention Research Institute, 1983, 33: 63-104.
[82] JI C, WALD D J, HELMBERGER D V. Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1192-1207.
修改评论