中文版 | English
题名

用于功率模块封装的烧结纳米铜的机械性能及可靠性研究

其他题名
STUDY ON THE MECHANICAL PROPERTIES AND RELIABILITY OF SINTERED NANO-CU FOR POWER MODULE PACKAGING
姓名
姓名拼音
CHI Hai
学号
12132439
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
叶怀宇
导师单位
深港微电子学院
论文答辩日期
2023-05-15
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  随着电子设备的不断发展,功率器件作为其中的重要组成部分,其性能要求也越来越高。特别是第三代半导体的功率器件,其工作结温高,传统芯片连接材料难以满足要求。因此,需要寻找一种新的连接材料来解决这个问题。在众多的连接材料中,烧结纳米银和烧结纳米铜成为了备受关注的材料。目前对于成本更低的烧结铜的研究仍然不足,缺乏对其微观机械性能和可靠性的研究,这使热力学仿真受到了限制,同时也缺乏将烧结铜应用于实际封装模块中的验证。因此需要这类研究来指导烧结铜的热力学仿真,验证烧结铜的可靠性和实际应用的可行性。

  本课题通过对经过温度冲击老化的烧结铜接头进行剪切强度测试,分析了烧结铜接头在温度冲击老化过程中组织结构的演化情况。通过对烧结铜进行纳米压痕实验,得出了烧结铜在不同温度冲击循环次数下的机械参数和弹塑性本构模型。结果表明,在3000个循环内,烧结铜的机械性能没有明显退化,具有良好的温度冲击可靠性。高温下的纳米压痕实验表明,温度冲击老化不会使烧结铜的高温性能退化,反而有增强的趋势,证明烧结铜材料在温度冲击老化中具有良好的高温稳定性。通过纳米压痕实验提取出了烧结铜的蠕变特性。结果表明,未经温度冲击循环的烧结铜在常温下的蠕变应力指数为34.91,远高于烧结银的4.46。制备了烧结铜SiC MOSFET封装模块,并对模块进行温度冲击老化,通过表征其电学性能和热学性能,结合有限元仿真,评价了烧结铜模块的性能和温度冲击可靠性。结果表明,烧结铜模块具有足够优秀的电学和热学性能以及温度冲击可靠性,可以应用于实际功率模块封装应用中。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] OGHENEWVOGAGA O, ADETOKUN B B, GAMIYA B G, et al. The Role of Power Electronics in Renewable Energy System[C]//2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). 2022: 1-5.
[2] XIAO Y, ZHANG Z, DURAIJ M S, et al. Review of High-Temperature Power Electronics Converters[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 14831-14849.
[3] MILLÁN J, GODIGNON P, PERPIÑÀ X, et al. A Survey of Wide Bandgap Power Semiconductor Devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5): 2155-2163.
[4] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of Silicon Carbide Power Devices and Their Applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.
[5] 徐文辉, 陈云, 王立. SiC混合功率模块封装工艺[J]. 电子与封装, 2016, 16(03): 1-3+8.
[6] YONG L X. Sinter paste for power packages[C]//2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). 2014: 458-462.
[7] ZHANG S, XU X, LIN T, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 13855-13868.
[8] CHEN C, KIM D, WANG Z, et al. Low temperature low pressure solid-state porous Ag bonding for large area and its high-reliability design in die-attached power modules[J]. Ceramics International, 2019, 45(7): 9573-9579.
[9] ZENG G. Development of high-temperature solders: Review[J]. Microelectronics Reliability, 2012.
[10] NAVARRO L A, PERPINA X, GODIGNON P, et al. Thermomechanical Assessment of Die-Attach Materials for Wide Bandgap Semiconductor Devices and Harsh Environment Applications[J]. Ieee Transactions on Power Electronics, 2014, 29(5): 2261-2271.
[11] DRIENOVSKY M, TRNKOVA L R, MARTINKOVIC M, et al. Influence of cerium addition on microstructure and properties of Sn–Cu–(Ag) solder alloys[J]. Materials Science and Engineering: A, 2015, 623: 83-91.
[12] CHEN Z, MA K, LIU L, et al. Mechanical Performance and Reliability of a Sn–Ag–Cu–Sb Alloy at Elevated Temperatures[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(7): 1081-1087.
[13] XU J, WU M, PU J, et al. Novel Au-Based Solder Alloys: A Potential Answer for Electrical Packaging Problem[J]. Advances in Materials Science and Engineering, 2020, 2020: e4969647.
[14] BAJWA A A, WILDE J. Reliability modeling of Sn–Ag transient liquid phase die-bonds for high-power SiC devices[J]. Microelectronics Reliability, 2016, 60: 116-125.
[15] GREVE H, MOEINI S A, MCCLUSKEY F P, et al. Microstructural Evolution of Transient Liquid Phase Sinter Joints in High Temperature Environmental Conditions[C]//2016 IEEE 66th Electronic Components and Technology Conference (ECTC). 2016: 2561-2568.
[16] TSAI C H, HUNG H T, CHANG F L, et al. Low-temperature transient liquid phase bonding via electroplated Sn/In–Sn metallization[J]. Journal of Materials Research and Technology, 2022, 19: 2510-2515.
[17] DENG Y, ZHONG W, XU H. Interlayer design for partial transient liquid phase bonding of titanium and copper[J]. Materials Science and Engineering: A, 2021, 807: 140879.
[18] BILLA L R, WANG Y, GRANT T, et al. Transient Liquid Phase Bond Reliability Evaluation of Die-attach for Power Module Packaging[C]//2022 24th European Conference on Power Electronics and Applications (EPE’22 ECCE Europe). 2022: 1-7.
[19] COOK G O, SORENSEN C D. Overview of transient liquid phase and partial transient liquid phase bonding[J]. Journal of Materials Science, 2011, 46(16): 5305-5323.
[20] YAN J. A Review of Sintering-Bonding Technology Using Ag Nanoparticles for Electronic Packaging[J]. Nanomaterials, 2021, 11(4): 927.
[21] SAMSONOV V M, TALYZIN I V, VASILYEV S A, et al. Mechanisms of Coalescence of Metallic Nanodroplets and Sintering of Metallic Nanoparticles[J]. Doklady Physics, 2019, 64(12)
[2023-03-05].
[22] JIANG K, PINCHUK P. Temperature and size-dependent Hamaker constants for metal nanoparticles[J]. Nanotechnology, 2016, 27(34): 345710.
[23] WANG M, MEI Y, LI X, et al. Pressureless Silver Sintering on Nickel for Power Module Packaging[J]. IEEE Transactions on Power Electronics, 2019, 34(8): 7121-7125.
[24] ZHANG W, CHEN J, DENG Z, et al. The pressureless sintering of micron silver paste for electrical connections[J]. Journal of Alloys and Compounds, 2019, 795: 163-167.
[25] LIU W, AN R, WANG C, et al. Recent Progress in Rapid Sintering of Nanosilver for Electronics Applications[J]. Micromachines, 2018, 9(7): 346.
[26] ALARIFI H, HU A, YAVUZ M, et al. Silver Nanoparticle Paste for Low-Temperature Bonding of Copper[J]. Journal of Electronic Materials, 2011, 40(6): 1394-1402.
[27] 董宏伟, 张冠星, 董显, 等. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(S2): 341-345.
[28] 曲选辉. 粉末冶金原理与工艺[M]. 冶金工业出版社, 2013.
[29] 吴炜祯, 杨帆, 胡博, 等. 用于大面积芯片互连的纳米银膏无压烧结行为[J]. 焊接学报, 2021, 42(1): 83-90+103.
[30] WATANABE T, TAKESUE M, MATSUDA T, et al. Thermal stability and characteristic properties of pressureless sintered Ag layers formed with Ag nanoparticles for power device applications[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(20): 17173-17182.
[31] HOU B, HUANG H J, WANG C M, et al. Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism[C]//2022 IEEE 72nd Electronic Components and Technology Conference (ECTC). 2022: 2064-2070.
[32] ZHANG H, LIU Y, WANG L, et al. Effects of Sintering Pressure on the Densification and Mechanical Properties of Nanosilver Double-Side Sintered Power Module[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(5): 963-972.
[33] YANG H. Study on the main influencing factors of shear strength of nano-silver joints[J]. Journal of Materials Research and Technology, 2020, 9(3): 4133-4138.
[34] YAMAKAWA T, TAKEMOTO T, SHIMODA M, et al. Influence of Joining Conditions on Bonding Strength of Joints: Efficacy of Low-Temperature Bonding Using Cu Nanoparticle Paste[J]. Journal of Electronic Materials, 2013, 42(6): 1260-1267.
[35] LI J, YU X, SHI T, et al. Low-Temperature and Low-Pressure Cu-Cu Bonding by Highly Sinterable Cu Nanoparticle Paste[J]. Nanoscale Research Letters, 2017, 12: 255.
[36] JO J L, ANAI K, YAMAUCHI S, et al. The Properties of Cu Sinter Paste for Pressure Sintering at Low Temperature[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). 2019: 76-80. DOI:10.1109/ECTC.2019.00019.
[37] BOURELL D L. Sintering in Laser Sintering[J]. JOM, 2016, 68(3): 885-889.
[38] LIU W, WANG Y, ZHENG Z, et al. Laser sintering mechanism and shear performance of Cu–Ag–Cu joints with mixed bimodal size Ag nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(8): 7787-7793.
[39] YASUDA K, TAKADA Y, SONG J M. Characterization of Additively Formed Copper Layer by Blue Laser-Sintered Copper Nanoparticles[C]//2021 International Conference on Electronics Packaging (ICEP). 2021: 53-54.
[40] MUNIR Z A, QUACH D V, OHYANAGI M. Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process[J]. Journal of the American Ceramic Society, 2011, 94(1): 1-19.
[41] 黄圆, 杭春进, 田艳红, 等. 纳米铜银核壳焊膏脉冲电流快速烧结连接铜基板研究[J]. 机械工程学报, 2019, 55(24): 51-56.
[42] MEI Y, LI L, LI X, et al. Electric-current-assisted sintering of nanosilver paste for copper bonding[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(12): 9155-9166.
[43] 曾策, 崔西会, 廖承举, 等. 纳米铜在电子封装中的应用研究进展[J]. 微纳电子技术, 2021, 58(10): 866-874.
[44] MOU Y, WANG H, PENG Y, et al. Enhanced Heat Dissipation of High-Power Light-Emitting Diodes by Cu Nanoparticle Paste[J]. IEEE Electron Device Letters, 2019, 40(6): 949-952.
[45] MURAYAMA K, OTA H, OI K. Thermal Characteristic Evaluation of Silver and Copper Sintering Materials[C]//2019 IEEE 21st Electronics Packaging Technology Conference (EPTC). 2019: 300-304.
[46] CHANG J Y, FUN S Y, CHENG K H, et al. Development of high performance synchronous rectifier module by multi-chip Cu sintering technology (IMPACT 2018)[C]//2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). 2018: 78-82.
[47] LEE H, SMET V, TUMMALA R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 239-255.
[48] MOROZUMI A, YAMADA K, MIYASAKA T, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665-671.
[49] HUH S H, KIM K S, SUGANUMA K. Effect of Ag Addition on the Microstructural and Mechanical Properties of Sn-Cu Eutectic Solder[J]. Materials Transactions, 2001, 42(5): 739-744.
[50] MEINSHAUSEN L, WEIDE-ZAAGE K, FREMONT H. Migration induced material transport in Cu-Sn IMC and SnAgCu microbumps[J]. Microelectronics Reliability, 2011, 51(9-11): 1860-1864.
[51] 闫海东. 甲酸辅助烧结纳米银无压连接IGBT芯片方法及可靠性[D]. 天津大学, 2017
[2022-06-28].
[52] BAYERER R, HERRMANN T, LICHT T, et al. Model for Power Cycling lifetime of IGBT Modules - various factors influencing lifetime[C]//5th International Conference on Integrated Power Electronics Systems. 2008: 1-6.
[53] SCHMIDT R, SCHEUERMANN U. Separating Failure Modes in Power Cycling Tests[C]//2012 7th International Conference on Integrated Power Electronics Systems (CIPS). 2012: 1-6.
[54] KIM D, KIM S, MIN-SU K. Bonding Temperature Effects of Robust Ag Sinter Joints in Air without Pressure within 10 Minutes for Use in Power Module Packaging[J]. Jornal of the Microelectronics and Packaging Society, 2022, 29(4): 41-47.
[55] HU X, LI C, LI Q, et al. Insights on interfacial IMCs growth and mechanical strength of asymmetrical Cu/SAC305/Cu-Co system[J]. Vacuum, 2019, 167: 77-89.
[56] LIU Y, CHEN C, UESHIMA M, et al. Reliability evaluation on Ag sintering die attach for SiC power modules during long-term thermal aging/cycling[C]//2022 International Conference on Electronics Packaging (ICEP). 2022: 49-50.
[57] TIAN R, TIAN Y, HUANG Y, et al. Comparative study between the Sn-Ag-Cu/ENIG and Sn-Ag-Cu/ENEPIG solder joints under extreme temperature thermal shock[J]. Journal of Materials Science-Materials in Electronics, 2021, 32(6): 6890-6899.
[58] LIU X, LI S, FAN J, et al. Microstructural evolution, fracture behavior and bonding mechanisms study of copper sintering on bare DBC substrate for SiC power electronics packaging[J]. Journal of Materials Research and Technology-Jmr&t, 2022, 19: 1407-1421.
[59] 谢佳成. 基于烧结纳米铜焊膏的全铜互连结构热可靠性研究[D]. 重庆大学, 2020
[2023-04-06].
[60] LUO J, LIN J. A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters[J]. International Journal of Solids and Structures, 2007, 44(18-19): 5803-5817.
[61] SNEDDON I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1): 47-57.
[62] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 1564-1583.
[63] GIANNAKOPOULOS A E, SURESH S. Determination of elastoplastic properties by instrumented sharp indentation[J]. Scripta Materialia, 1999, 40(10): 1191-1198.
[64] MU D, HUANG H, MCDONALD S D, et al. Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures[J]. Journal of Electronic Materials, 2013, 42(2): 304-311.
[65] IGOSHEV V I, KLEIMAN J I. Creep phenomena in lead-free solders[J]. Journal of Electronic Materials, 2000, 29(2): 244-250.
[66] LIU X, ZHANG Q, ZHAO X, et al. Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP[J]. Materials Science and Engineering: A, 2016, 676: 73-79.
[67] MAYO M J, SIEGEL R W, LIAO Y X, et al. Nanoindentation of nanocrystalline ZnO[J]. Journal of Materials Research, 1992, 7(4): 973-979.
[68] GROTE K H, HEFAZI H. Springer Handbook of Mechanical Engineering[M]. Springer Nature, 2021.
[69] LIU Y J, ZHAO B, XU B X, et al. Experimental and numerical study of the method to determine the creep parameters from the indentation creep testing[J]. Materials Science and Engineering: A, 2007, 456(1): 103-108.
[70] MARTINEZ N J, SHEN Y L. Analysis of Indentation-Derived Power-Law Creep Response[J]. Journal of Materials Engineering and Performance, 2016, 25(3): 1109-1116.
[71] LI J, DASGUPTA A. Failure-mechanism models for creep and creep rupture[J]. IEEE Transactions on Reliability, 1993, 42(3): 339-353.
[72] 耿旭琛. 基于纳米压痕试验的烧结纳米银力学性能研究[D]. 河北大学, 2021
[2023-03-26].
[73] Zhang H. Investigation of Pressure Assisted Nanosilver Sintering Process for Application in Power Electronics[D]. Delft University of Technology, 2019..
[74] 王志海, 钱江蓉, 兰欣, 等. 纳米压痕法测量SAC305焊料的力学性能[J]. 电子元件与材料, 2020, 39(6): 72-78.
[75] 尹立孟, 苏子龙, 左存果, 等. Cu/SAC305/Cu微焊点的剪切蠕变试验及数值模拟[J]. 机械工程学报, 2022, 58(2): 300-306.
[76] WANG Y, DING Y, YIN Y. Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review[J]. Energies, 2022, 15(18): 6670.
[77] ZHOU H, ZHANG Y, CAO J, et al. Research Progress on Bonding Wire for Microelectronic Packaging[J]. Micromachines, 2023, 14(2): 432.

所在学位评定分委会
材料与化工
国内图书分类号
TG454
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543918
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
池海. 用于功率模块封装的烧结纳米铜的机械性能及可靠性研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132439-池海-南方科技大学-香(7118KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[池海]的文章
百度学术
百度学术中相似的文章
[池海]的文章
必应学术
必应学术中相似的文章
[池海]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。