[1] 陈白平,陆怡,刘恭毅,等. 中国气候路径报告[R].中国:波士顿咨询公司,2020.
[2] 姚遥. 燃料电池行业研究[R].中国:国金证券,2022.
[3] VALERA-MEDINA A, AMER-HATEM F, AZAD A K, et al. Review on ammonia as a potential fuel: From synthesis to economics[J]. Energy and Fuels, 2021, 35(9): 6964-7029.
[4] SADIK-ZADA E R, GATTO A, SCHARFENSTEIN M. Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility[J]. Technological Forecasting and Social Change, 2023, 186(PA): 121992.
[5] 程文姬,赵磊,郗航,等. “十四五”规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11):181-188.
[6] ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3):307-326.
[7] KERRES J, EIGENBERGER G, REICHLE S, et al. Advanced alkaline electrolysis with porous polymeric diaphragms[J]. Desalination, 1996, 104(1-2):47-57.
[8] ROSA V M, SANTOS M B F, DA SILVA E P. New materials for water electrolysis diaphragms[J]. International Journal of Hydrogen Energy, 1995, 20(9):697-700.
[9] KRAGLUND M R, AILI D, JANKOVA K, et al. Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations[J]. Journal of The Electrochemical Society, 2016, 163(11):F3125-F3131.
[10] BABIC U, SUERMANN M, BÜCHI F N, et al. Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development[J]. Journal of The Electrochemical Society, 2017, 164(4):F387-F399.
[11] CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12):4901-4934.
[12] EBBESEN S D, JENSEN S H, HAUCH A, et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chemical Reviews, 2014, 114(21):10697-10734.
[13] MARINO M G, MELCHIOR J P, WOHLFARTH A, et al. Hydroxide, halide and water transport in a model anion exchange membrane[J]. Journal of Membrane Science, 2014, 464:61-71.
[14] MARINO M G, KREUER K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3):513-523.
[15] Kraglund M R. Alkaline membrane water electrolysis with non-noble catalysts[D].Denmark:Techinical University of Denmark,2017.
[16] DING S, GUO B, HU S, et al. Analysis of the Effect of Characteristic Parameters and Operating Conditions on Exergy Efficiency of Alkaline Water Electrolyzer[J]. Journal of Power Sources, 2022,537:1-15.
[17] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12):6161-6175.
[18] TRASATTI S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochimica Acta, 1984, 29(11):1503-1512.
[19] MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. Journal of the American Chemical Society, 2015, 137(13):4347-4357.
[20] BOCKRIS J O M. Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen[J]. The Journal of Chemical Physics, 1956, 24(4):817-827.
[21] BOCKRIS J O, OTAGAWA T. The Electrocatalysis of Oxygen Evolution on Perovskites[J]. Journal of The Electrochemical Society, 1984, 131(2):290-302.
[22] XIAO Y, FENG L, HU C, et al. NiCo2O4 3 dimensional nanosheet as effective and robust catalyst for oxygen evolution reaction[J]. RSC Advances, 2015, 5(76):61900-61905.
[23] YUAN Y, ADIMI S, GUO X, et al. A Surface-Oxide-Rich Activation Layer (SOAL) on Ni2Mo3N for a Rapid and Durable Oxygen Evolution Reaction[J]. Angewandte Chemie - International Edition, 2020, 59(41):18036-18041.
[24] QIAO Z, PAIK U, SONG T. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation[J]. Energy Environ. Sci, 2019, 12:2443-2454.
[25] WU Z P, ZHANG H, ZUO S, et al. Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution[J]. Advanced Materials, 2021, 33:2103004.
[26] CHEN G F, MA T Y, LIU Z Q, et al. Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting[J]. Advanced Functional Materials, 2016, 26(19):3314-3323.
[27] YANG N, TANG C, WANG K, et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting[J]. Nano Research, 2016, 9(11):3346-3354.
[28] FAN R Y, ZHOU Y N, LI M X, et al. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation[J]. Chemical Engineering Journal, 2021, 426:131943.
[29] WANG Y, YAN D, EL HANKARI S, et al. Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting[J]. Advanced Science, 2018, 5:1800064.
[30] ZHOU D, LI P, LIN X, et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly[J]. Chemical Society Reviews, 2021, 50(15):8790-8817.
[31] LIU H, WANG Y, LU X, et al. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution[J]. Nano Energy, 2017, 35:350-357.
[32] 杨阳,王雯洁,郭鹏飞,等. 三金属NiFeGa水滑石材料的制备及其电解水析氧性能[J]. 陕西科技大学学报, 2021, 39(3):75-80.
[33] ZHU W, LIU L, YUE Z, et al. Au Promoted Nickel-Iron Layered Double Hydroxide Nanoarrays: A Modular Catalyst Enabling High-Performance Oxygen Evolution[J]. ACS Applied Materials and Interfaces, 2017, 9(23):19807-19814.
[34] LI P, DUAN X, KUANG Y, et al. Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation[J]. Advanced Energy Materials, 2018, 8(15):1703341.
[35] XIE X, CAO C, WEI W, et al. Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation[J]. Nanoscale, 2020, 12(10):5817-5823.
[36] YU J, LU K, WANG C, et al. Modification of NiFe layered double hydroxide by lanthanum doping for boosting water splitting[J]. Electrochimica Acta, 2021, 390:138824.
[37] JIA X, ZHAO Y, CHEN G, et al. Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst[J]. Advanced Energy Materials, 2016, 6(10):1502585.
[38] JIN S. Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts?[J]. ACS Energy Letters, 2017, 2(8):1937-1938.
[39] ZHU W, YUE Z, ZHANG W, et al. Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis[J]. Journal of Materials Chemistry A, 2018, 6(10):4346-4353.
[40] LIU Q, HUANG J, ZHAO Y, et al. Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting[J]. Nanoscale, 2019, 11(18):8855-8863.
[41] DU J, ZOU Z, YU A, et al. Selenization of NiMn-layered double hydroxide with enhanced electrocatalytic activity for oxygen evolution[J]. Dalton Transactions, 2018, 47(22):7492-7497.
[42] CHISHOLM G, CRONIN L. Hydrogen from water electrolysis[M]//Storing Energy: with Special Reference to Renewable Energy Sources. Elsevier Inc., 2022:559-591.
[43] XIE X, HE C, LI B, et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020, 3(12):1044-1054.
[44] LIU Z, ZHANG G, ZHANG K, et al. Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-free water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(7):4073-4082.
[45] MONJOGHTAPEH R H, ZARDKHOSHOUI A M, Hosseiny Davarani S S. Hierarchical MnCo2S4 nanowires/NiFeLDH nanosheets/graphene: A promising binder-free positive electrode for high-performance supercapacitors[J]. Electrochimica Acta, 2020, 338:135891.
[46] WU Z P, ZHANG H, ZUO S, et al. Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution[J]. Advanced Materials, 2021, 33(40):1-10.
[47] WANG S B, XIA Y SEN, XIN Z F, et al. Fabrication of the novel NiFe-LDHs @γ-MnOOH nanorod electrocatalyst for effective water oxidation[J]. Catalysis Communications, 2023, 173(October 2022)106564.
[48] JIA X, ZHANG Y, ZHANG L, et al. Fabrication and bifunctional electrocatalytic performance of FeNi3/MnFe2O4/nitrogen-doping reduced graphene oxide nanocomposite for oxygen electrocatalytic reactions[J]. Ionics, 2020:991-1001.
[49] DAHAL B, MUKHIYA T, OJHA G P, et al. A multicore-shell architecture with a phase-selective (α + δ)MnO2 shell for an aqueous-KOH-based supercapacitor with high operating potential[J]. Chemical Engineering Journal, 2020, 387(December 2019):124028.
[50] TSAI K J, NI C S, CHEN H Y, et al. Single-walled carbon nanotubes/Ni–Co–Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices[J]. Journal of Power Sources, 2020, 454(February):227912.
[51] CHEN X, HE M, ZHOU Y, et al. Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors[J]. Materials Today Chemistry, 2021, 21:100507.
[52] TANG Y, LIU Q, DONG L, et al. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction[J]. Applied Catalysis B: Environmental, 2020, 266(January):118627.
[53] ZHANG K, LI Y, DENG S, et al. Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction[J]. ChemElectroChem, 2019, 6(14):3530-3548.
[54] XIAO T, TANG Y, JIA Z, et al. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products[J]. Nanotechnology, 2009, 20(47):475603.
[55] SHA D, LU C, HE W, et al. Surface Selenization Strategy for V2CTx MXene toward Superior Zn-Ion Storage[J]. ACS Nano, 2022, 16(2):2711-2720.
[56] HUANG K, LIN C, YU G, et al. Ru/Se-RuO2 Composites via Controlled Selenization Strategy for Enhanced Acidic Oxygen Evolution[J]. Advanced Functional Materials, 2022:2211102.
[57] CHEN F Y, WU Z Y, ADLER Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design[J]. Joule, 2021, 5(7):1704-1731.
修改评论