中文版 | English
题名

基于镍铁水滑石的析氧反应催化剂制备和研究

其他题名
SYNTHESIS AND CHARACTERIZATION OF NICKLE IRON LAYERED DOUBLE HYDROXIDE FOR OXYGEN EVOLUTION REACTION
姓名
姓名拼音
HUANG Zebing
学号
12132264
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
曾林
导师单位
机械与能源工程系
论文答辩日期
2023-05-16
论文提交日期
2023-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

氢气作为能量密度极高的能源物质,具有广阔的发展潜质。电解水制氢技术是符合双碳战略背景下的绿色制氢技术,其中的碱性电解水制氢在我国已有成熟的发展规模,但其能量效率及电流密度仍然有待提高。碱性膜电解水制氢采用阴离子交换膜以传导氢氧根离子,相对于传统的碱水电解制氢,其系统更紧凑,效率更高。在电解水反应中,析氧反应(Oxygen Evolution Reaction)需要转移四个电子,常被认为是电解水制氢的决速步骤,因此析氧反应催化剂的开发具有重要意义。镍铁水滑石(NiFe-LDH)被认为是性能优异的OER催化剂,本课题为了进一步提高NiFe-LDH的催化性能,分别采用锰元素掺杂及硒化两种策略对其进行调控。从数据结果中可得知,锰掺杂后的催化剂(NiFeMn-LDH/NF 0.5)在10 mA/cm2下的过电位为216 mV,在100 mA/cm2下的过电位为262 mV;硒化后的NiFe-LDHSe-NiFe-LDH/NF 250)在10 mA/cm2下的过电位为167 mV,在100 mA/cm2下的过电位为243 mV。以上性能与原始NiFe-LDH/NF性能相比,均有所提高。这说明锰掺杂及硒化策略有效地改变了镍铁水滑石活性位点上附近的电子结构,进而提升了催化剂的析氧反应活性,进一步提高了碱性膜电解水制氢器件的性能。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 陈白平,陆怡,刘恭毅,等. 中国气候路径报告[R].中国:波士顿咨询公司,2020.
[2] 姚遥. 燃料电池行业研究[R].中国:国金证券,2022.
[3] VALERA-MEDINA A, AMER-HATEM F, AZAD A K, et al. Review on ammonia as a potential fuel: From synthesis to economics[J]. Energy and Fuels, 2021, 35(9): 6964-7029.
[4] SADIK-ZADA E R, GATTO A, SCHARFENSTEIN M. Sustainable management of lithium and green hydrogen and long-run perspectives of electromobility[J]. Technological Forecasting and Social Change, 2023, 186(PA): 121992.
[5] 程文姬,赵磊,郗航,等. “十四五”规划下氢能政策与电解水制氢研究[J]. 热力发电, 2022, 51(11):181-188.
[6] ZENG K, ZHANG D. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3):307-326.
[7] KERRES J, EIGENBERGER G, REICHLE S, et al. Advanced alkaline electrolysis with porous polymeric diaphragms[J]. Desalination, 1996, 104(1-2):47-57.
[8] ROSA V M, SANTOS M B F, DA SILVA E P. New materials for water electrolysis diaphragms[J]. International Journal of Hydrogen Energy, 1995, 20(9):697-700.
[9] KRAGLUND M R, AILI D, JANKOVA K, et al. Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations[J]. Journal of The Electrochemical Society, 2016, 163(11):F3125-F3131.
[10] BABIC U, SUERMANN M, BÜCHI F N, et al. Critical Review—Identifying Critical Gaps for Polymer Electrolyte Water Electrolysis Development[J]. Journal of The Electrochemical Society, 2017, 164(4):F387-F399.
[11] CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12):4901-4934.
[12] EBBESEN S D, JENSEN S H, HAUCH A, et al. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chemical Reviews, 2014, 114(21):10697-10734.
[13] MARINO M G, MELCHIOR J P, WOHLFARTH A, et al. Hydroxide, halide and water transport in a model anion exchange membrane[J]. Journal of Membrane Science, 2014, 464:61-71.
[14] MARINO M G, KREUER K D. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids[J]. ChemSusChem, 2015, 8(3):513-523.
[15] Kraglund M R. Alkaline membrane water electrolysis with non-noble catalysts[D].Denmark:Techinical University of Denmark,2017.
[16] DING S, GUO B, HU S, et al. Analysis of the Effect of Characteristic Parameters and Operating Conditions on Exergy Efficiency of Alkaline Water Electrolyzer[J]. Journal of Power Sources, 2022,537:1-15.
[17] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12):6161-6175.
[18] TRASATTI S. Electrocatalysis in the anodic evolution of oxygen and chlorine[J]. Electrochimica Acta, 1984, 29(11):1503-1512.
[19] MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices[J]. Journal of the American Chemical Society, 2015, 137(13):4347-4357.
[20] BOCKRIS J O M. Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen[J]. The Journal of Chemical Physics, 1956, 24(4):817-827.
[21] BOCKRIS J O, OTAGAWA T. The Electrocatalysis of Oxygen Evolution on Perovskites[J]. Journal of The Electrochemical Society, 1984, 131(2):290-302.
[22] XIAO Y, FENG L, HU C, et al. NiCo2O4 3 dimensional nanosheet as effective and robust catalyst for oxygen evolution reaction[J]. RSC Advances, 2015, 5(76):61900-61905.
[23] YUAN Y, ADIMI S, GUO X, et al. A Surface-Oxide-Rich Activation Layer (SOAL) on Ni2Mo3N for a Rapid and Durable Oxygen Evolution Reaction[J]. Angewandte Chemie - International Edition, 2020, 59(41):18036-18041.
[24] QIAO Z, PAIK U, SONG T. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation[J]. Energy Environ. Sci, 2019, 12:2443-2454.
[25] WU Z P, ZHANG H, ZUO S, et al. Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution[J]. Advanced Materials, 2021, 33:2103004.
[26] CHEN G F, MA T Y, LIU Z Q, et al. Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting[J]. Advanced Functional Materials, 2016, 26(19):3314-3323.
[27] YANG N, TANG C, WANG K, et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting[J]. Nano Research, 2016, 9(11):3346-3354.
[28] FAN R Y, ZHOU Y N, LI M X, et al. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation[J]. Chemical Engineering Journal, 2021, 426:131943.
[29] WANG Y, YAN D, EL HANKARI S, et al. Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting[J]. Advanced Science, 2018, 5:1800064.
[30] ZHOU D, LI P, LIN X, et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly[J]. Chemical Society Reviews, 2021, 50(15):8790-8817.
[31] LIU H, WANG Y, LU X, et al. The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution[J]. Nano Energy, 2017, 35:350-357.
[32] 杨阳,王雯洁,郭鹏飞,等. 三金属NiFeGa水滑石材料的制备及其电解水析氧性能[J]. 陕西科技大学学报, 2021, 39(3):75-80.
[33] ZHU W, LIU L, YUE Z, et al. Au Promoted Nickel-Iron Layered Double Hydroxide Nanoarrays: A Modular Catalyst Enabling High-Performance Oxygen Evolution[J]. ACS Applied Materials and Interfaces, 2017, 9(23):19807-19814.
[34] LI P, DUAN X, KUANG Y, et al. Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation[J]. Advanced Energy Materials, 2018, 8(15):1703341.
[35] XIE X, CAO C, WEI W, et al. Ligand-assisted capping growth of self-supporting ultrathin FeNi-LDH nanosheet arrays with atomically dispersed chromium atoms for efficient electrocatalytic water oxidation[J]. Nanoscale, 2020, 12(10):5817-5823.
[36] YU J, LU K, WANG C, et al. Modification of NiFe layered double hydroxide by lanthanum doping for boosting water splitting[J]. Electrochimica Acta, 2021, 390:138824.
[37] JIA X, ZHAO Y, CHEN G, et al. Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst[J]. Advanced Energy Materials, 2016, 6(10):1502585.
[38] JIN S. Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts?[J]. ACS Energy Letters, 2017, 2(8):1937-1938.
[39] ZHU W, YUE Z, ZHANG W, et al. Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis[J]. Journal of Materials Chemistry A, 2018, 6(10):4346-4353.
[40] LIU Q, HUANG J, ZHAO Y, et al. Tuning the coupling interface of ultrathin Ni3S2@NiV-LDH heterogeneous nanosheet electrocatalysts for improved overall water splitting[J]. Nanoscale, 2019, 11(18):8855-8863.
[41] DU J, ZOU Z, YU A, et al. Selenization of NiMn-layered double hydroxide with enhanced electrocatalytic activity for oxygen evolution[J]. Dalton Transactions, 2018, 47(22):7492-7497.
[42] CHISHOLM G, CRONIN L. Hydrogen from water electrolysis[M]//Storing Energy: with Special Reference to Renewable Energy Sources. Elsevier Inc., 2022:559-591.
[43] XIE X, HE C, LI B, et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells[J]. Nature Catalysis, 2020, 3(12):1044-1054.
[44] LIU Z, ZHANG G, ZHANG K, et al. Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-free water electrolysis[J]. Journal of Materials Chemistry A, 2020, 8(7):4073-4082.
[45] MONJOGHTAPEH R H, ZARDKHOSHOUI A M, Hosseiny Davarani S S. Hierarchical MnCo2S4 nanowires/NiFeLDH nanosheets/graphene: A promising binder-free positive electrode for high-performance supercapacitors[J]. Electrochimica Acta, 2020, 338:135891.
[46] WU Z P, ZHANG H, ZUO S, et al. Manipulating the Local Coordination and Electronic Structures for Efficient Electrocatalytic Oxygen Evolution[J]. Advanced Materials, 2021, 33(40):1-10.
[47] WANG S B, XIA Y SEN, XIN Z F, et al. Fabrication of the novel NiFe-LDHs @γ-MnOOH nanorod electrocatalyst for effective water oxidation[J]. Catalysis Communications, 2023, 173(October 2022)106564.
[48] JIA X, ZHANG Y, ZHANG L, et al. Fabrication and bifunctional electrocatalytic performance of FeNi3/MnFe2O4/nitrogen-doping reduced graphene oxide nanocomposite for oxygen electrocatalytic reactions[J]. Ionics, 2020:991-1001.
[49] DAHAL B, MUKHIYA T, OJHA G P, et al. A multicore-shell architecture with a phase-selective (α + δ)MnO2 shell for an aqueous-KOH-based supercapacitor with high operating potential[J]. Chemical Engineering Journal, 2020, 387(December 2019):124028.
[50] TSAI K J, NI C S, CHEN H Y, et al. Single-walled carbon nanotubes/Ni–Co–Mn layered double hydroxide nanohybrids as electrode materials for high-performance hybrid energy storage devices[J]. Journal of Power Sources, 2020, 454(February):227912.
[51] CHEN X, HE M, ZHOU Y, et al. Design of hierarchical double-layer NiCo/NiMn-layered double hydroxide nanosheet arrays on Ni foam as electrodes for supercapacitors[J]. Materials Today Chemistry, 2021, 21:100507.
[52] TANG Y, LIU Q, DONG L, et al. Activating the hydrogen evolution and overall water splitting performance of NiFe LDH by cation doping and plasma reduction[J]. Applied Catalysis B: Environmental, 2020, 266(January):118627.
[53] ZHANG K, LI Y, DENG S, et al. Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction[J]. ChemElectroChem, 2019, 6(14):3530-3548.
[54] XIAO T, TANG Y, JIA Z, et al. Self-assembled 3D flower-like Ni2+-Fe3+ layered double hydroxides and their calcined products[J]. Nanotechnology, 2009, 20(47):475603.
[55] SHA D, LU C, HE W, et al. Surface Selenization Strategy for V2CTx MXene toward Superior Zn-Ion Storage[J]. ACS Nano, 2022, 16(2):2711-2720.
[56] HUANG K, LIN C, YU G, et al. Ru/Se-RuO2 Composites via Controlled Selenization Strategy for Enhanced Acidic Oxygen Evolution[J]. Advanced Functional Materials, 2022:2211102.
[57] CHEN F Y, WU Z Y, ADLER Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design[J]. Joule, 2021, 5(7):1704-1731.

所在学位评定分委会
材料与化工
国内图书分类号
O646
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543920
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
黄泽冰. 基于镍铁水滑石的析氧反应催化剂制备和研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132264-黄泽冰-机械与能源工程(4970KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄泽冰]的文章
百度学术
百度学术中相似的文章
[黄泽冰]的文章
必应学术
必应学术中相似的文章
[黄泽冰]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。