中文版 | English
题名

楼宇电热综合能源系统运行优化策略

其他题名
OPTIMIZATION STRATEGY FOR BUILDING ELECTRICITY-HEAT INTEGRATED ENERGY SYSTEM
姓名
姓名拼音
CAO Mengfan
学号
12032430
学位类型
硕士
学位专业
080902 电路与系统
学科门类/专业学位类别
08 工学
导师
杨再跃
导师单位
系统设计与智能制造学院
论文答辩日期
2023-05-17
论文提交日期
2023-06-20
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

       能源是经济社会发展的重要物质基础和动力源泉。为应对环境污染、化石能源日益枯竭等难题,发展清洁、高效的电热综合能源系统已成为一种有效的途径。电热综合能源系统可利用电热互补特性促进可再生能源消纳,相比于各能源单独运行可提高能源利用效率。同时,考虑楼宇的蓄热特性可进一步增强电热系统的灵活性。然而综合能源系统运行过程中存在不确定性因素,影响系统运行安全性与经济性。如何在不确定环境下对系统进行运行调度并确保全局最优性和计算高效性是一项相对有挑战性的工作。本文针对楼宇电热综合能源系统运行优化问题,设计调度策略来保证用户舒适度并确保系统安全经济运行。本文主要工作如下:
     (1)在楼宇供热系统运行调度方面,提出了考虑楼宇蓄热特性的在线优化算法。首先,构建楼宇热动态模型,建立包含系统运行成本和用户舒适度成本的随机优化问题。本文将热负荷由单一标量转为热需求区间,充分利用楼宇蓄热特性,提高了供热系统灵活性。为解决供热系统中的耦合约束,提高计算效率,本文将原调度问题转为多个子问题并进行在线求解。最后,仿真分析了在线算法可降低系统总成本并保证用户舒适度。
    (2)针对含热储能的楼宇供热系统运行调度问题,构建随机优化模型来最小化供热系统期望总成本,提出了基于李雅普诺夫优化理论的在线算法。本文建立虚拟队列与耦合约束的映射关系,构造虚拟队列网络,定义李雅普诺夫漂移加惩罚函数,在线求解多个子优化问题。结果表明热储能可进一步提高系统灵活性,降低系统运行成本。最后,证明在线算法收敛性。
    (3)为应对光伏出力和电负荷不确定性对电热系统运行的影响,本文构建混合整数规划模型并基于信息间隙决策理论提出了双层运行调度模型。下层旨在最小化包含用户舒适度的系统成本,上层考虑不确定参数对系统的积极和消极影响,构建风险规避模型和机会寻求模型。最后,利用Gurobi 对其进行求解,仿真表明在风险规避模型中设置适当的运行成本最大化不确定度可提高系统鲁棒性,在机会寻求模型中追求系统收益最小化不确定度可减少系统风险。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] IEA. [EB/OL]. https://www.iea.org/data-and-statistics/data-sets.
[2] 国家发展改革委,国家能源局. “十四五”可再生能源发展规划[EB/OL]. 2022. https://www.ndrc.gov.cn/xwdt/tzgg/202206/t20220601_1326720.html?code=&state=123.
[3] 吴晨雨. 电热综合能源系统的建模及优化运行[D]. 东南大学, 2019.
[4] 国家能源发改委,国家能源局. “十四五”现代能源体系规划[EB/OL]. 2022. http://www.gov.cn/zhengce/zhengceku/2022-03/23/content_5680759.htm.
[5] 国家发展改革委. 北方地区冬季清洁取暖规划(2017-2021 年)[EB/OL]. 2017. http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm.
[6] CHENG L, QI N, ZHANG F, et al. Energy Internet: Concept and practice exploration[C]//2017 IEEE conference on energy internet and energy system integration (EI2). IEEE, 2017: 1-5.
[7] 张苏涵. 综合能源网络统一建模及其应用(一):时域二端口模型[J]. 中国电机工程学报,2021: 6509-6521.
[8] 张苏涵. 综合能源网络统一建模及其应用(二):复频域增广模型与时、频模型对比[J]. 中国电机工程学报, 2022: 5798-5810.
[9] YANG J, ZHANG N, BOTTERUD A, et al. On an equivalent representation of the dynamics in district heating networks for combined electricity-heat operation[J]. IEEE Transactions on Power Systems, 2019, 35(1): 560-570.
[10] WANG Z, CHEN Y, LI Y. Development of RC model for thermal dynamic analysis of buildings through model structure simplification[J]. Energy and Buildings, 2019, 195: 51-67.
[11] JARA E Á R, DE LA FLOR F J S, DOMÍNGUEZ S Á, et al. A new analytical approach for simplified thermal modelling of buildings: Self-Adjusting RC-network model[J]. Energy and Buildings, 2016, 130: 85-97.
[12] DENG K, GOYAL S, BAROOAH P, et al. Structure-preserving model reduction of nonlinear building thermal models[J]. Automatica, 2014, 50(4): 1188-1195.
[13] GUZMAN C, AGBOSSOU K, CARDENAS A. Real-time emulation of residential buildings by hardware solution of multi-layer model[J]. IEEE Transactions on Smart Grid, 2018, 10(4): 4037-4047.
[14] LI Z, WU W, SHAHIDEHPOUR M, et al. Combined heat and power dispatch considering pipeline energy storage of district heating network[J]. IEEE Transactions on Sustainable Energy, 2015, 7(1): 12-22.
[15] HEWITT N J. Heat pumps and energy storage–The challenges of implementation[J]. Applied Energy, 2012, 89(1): 37-44.
[16] ZHANG L, LUO Y. Combined heat and power scheduling: Utilizing building-level thermal inertia for short-term thermal energy storage in district heat system[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13(6): 804-814.
[17] LUND R, PERSSON U. Mapping of potential heat sources for heat pumps for district heating in Denmark[J]. Energy, 2016, 110: 129-138.
[18] TURK A, WU Q, ZHANG M, et al. Day-ahead stochastic scheduling of integrated multi-energy system for flexibility synergy and uncertainty balancing[J]. Energy, 2020, 196: 117130-117146.
[19] SUN H, GUO Q, ZHANG B, et al. Integrated energy management system: concept, design, and demonstration in China[J]. IEEE Electrification Magazine, 2018, 6(2): 42-50.
[20] ZHANG M, WU Q, WEN J, et al. Optimal operation of integrated electricity and heat system: A review of modeling and solution methods[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110098-110116.
[21] SHAH R K, SEKULIC D P. Fundamentals of heat exchanger design[M]. John Wiley & Sons, 2003.
[22] CHEN Q. Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization[J]. Int. J. Heat Mass Transf., 2013, 60: 156-162.
[23] ZHAO T, CHEN X, HE K L, et al. A standardized modeling strategy for heat current method based analysis and simulation of thermal systems[J]. Energy, 2021, 217: 119403-119416.
[24] FINCK C, LI R, KRAMER R, et al. Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems[J]. Applied Energy, 2018, 209: 409-425.
[25] ROMANCHENKO D, KENSBY J, ODENBERGER M, et al. Thermal energy storage in district heating: Centralised storage vs. storage in thermal inertia of buildings[J]. Energy conversion and management, 2018, 162: 26-38.
[26] BOZCHALUI M C, HASHMI S A, HASSEN H, et al. Optimal operation of residential energy hubs in smart grids[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1755-1766.
[27] LIU S, ZHOU C, GUO H, et al. Operational optimization of a building-level integrated energy system considering additional potential benefits of energy storage[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 1-10.
[28] LIU Z, GUO J, WU D, et al. Two-phase collaborative optimization and operation strategy for a new distributed energy system that combines multi-energy storage for a nearly zero energy community[J]. Energy Conversion and Management, 2021, 230: 113800-113816.
[29] CHEN S, ARABKOOHSAR A, YANG Y, et al. Multi-objective optimization of a combined cooling, heating, and power system with subcooled compressed air energy storage considering off-design characteristics[J]. Applied Thermal Engineering, 2021, 187: 116562-116573.
[30] FARIVAR M, LOW S H. Branch flow model: Relaxations and convexification—Part I[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2554-2564.
[31] LAVAEI J, LOW S H. Zero duality gap in optimal power flow problem[J]. IEEE Transactions on Power Systems, 2011, 27(1): 92-107.
[32] ZHOU F, LOW S H. Conditions for Exact Convex Relaxation and No Spurious Local Optima [J]. IEEE Transactions on Control of Network Systems, 2021, 9(3): 1468-1480.
[33] HUANG S, TANG W, WU Q, et al. Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming[J]. Energy, 2019, 179: 464-474.
[34] LU S, GU W, ZHANG C, et al. Hydraulic-thermal cooperative optimization of integrated energy systems: A convex optimization approach[J]. IEEE Transactions on Smart Grid, 2020, 11(6): 4818-4832.
[35] FANG S, WANG C, LIN Y, et al. Optimal Energy Scheduling and Sensitivity Analysis for Integrated Power–Water–Heat Systems[J]. IEEE Systems Journal, 2021, 16(4): 5176-5187.
[36] SUN Y, ZHANG B, GE L, et al. Day-ahead optimization schedule for gas-electric integrated energy system based on second-order cone programming[J]. CSEE Journal of Power and Energy Systems, 2020, 6(1): 142-151.
[37] WU C, GU W, XU Y, et al. Bi-level optimization model for integrated energy system considering the thermal comfort of heat customers[J]. Applied energy, 2018, 232: 607-616.
[38] ZENG Q, FANG J, CHEN Z, et al. A two-stage stochastic programming approach for operating multi-energy systems[C]//2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2017: 1-6.
[39] LI Y, ZOU Y, TAN Y, et al. Optimal stochastic operation of integrated low-carbon electric power, natural gas, and heat delivery system[J]. IEEE Transactions on Sustainable Energy, 2017, 9(1): 273-283.
[40] GAMS. [EB/OL]. http://www.gams.com/.
[41] GOOD N, KARANGELOS E, NAVARRO-ESPINOSA A, et al. Optimization under uncertainty of thermal storage-based flexible demand response with quantification of residential users' discomfort[J]. IEEE Transactions on Smart Grid, 2015, 6(5): 2333-2342.
[42] CONTE F, MASSUCCO S, SAVIOZZI M, et al. A stochastic optimization method for planning and real-time control of integrated pv-storage systems: Design and experimental validation[J]. IEEE Transactions on Sustainable Energy, 2017, 9(3): 1188-1197.
[43] ZHANG M, WU Q, WEN J, et al. Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power[J]. Applied Energy, 2020, 275: 115357-115374.
[44] GABREL V, MURAT C, THIELE A. Recent advances in robust optimization: An overview[J]. European journal of operational research, 2014, 235(3): 471-483.
[45] YANG X, CHEN Z, HUANG X, et al. Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort[J]. Energy, 2021, 221: 119727-119740.
[46] DING T, ZHANG X, LU R, et al. Multi-stage distributionally robust stochastic dual dynamic programming to multi-period economic dispatch with virtual energy storage[J]. IEEE Transactions on Sustainable Energy, 2021, 13(1): 146-158.
[47] YIN S, AI Q, LI J, et al. Energy pricing and sharing strategy based on hybrid stochastic robust game approach for a virtual energy station with energy cells[J]. IEEE Transactions on Sustainable Energy, 2020, 12(2): 772-784.
[48] CHEN Z, SIM M, XIONG P. Robust stochastic optimization made easy with RSOME[J]. Management Science, 2020, 66(8): 3329-3339.
[49] MAJIDI M, MOHAMMADI-IVATLOO B, SOROUDI A. Application of information gap decision theory in practical energy problems: A comprehensive review[J]. Applied Energy, 2019, 249: 157-165.
[50] HOOSHMAND E, RABIEE A. Robust model for optimal allocation of renewable energy sources, energy storage systems and demand response in distribution systems via information gap decision theory[J]. IET Generation, Transmission & Distribution, 2019, 13(4): 511-520.
[51] MAJIDI M, ZARE K. Integration of smart energy hubs in distribution networks under uncertainties and demand response concept[J]. IEEE Transactions on Power Systems, 2018, 34(1): 566-574.
[52] REZAEI N, AHMADI A, KHAZALI A H, et al. Energy and frequency hierarchical management system using information gap decision theory for islanded microgrids[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 7921-7932.
[53] MOHAMMADI-IVATLOO B, MORADI-DALVAND M, RABIEE A. Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients[J]. Electric Power Systems Research, 2013, 95: 9-18.
[54] JIANG X, JING Z, LI Y, et al. Modelling and operation optimization of an integrated energy based direct district water-heating system[J]. Energy, 2014, 64: 375-388.
[55] DU Y, ZANDI H, KOTEVSKA O, et al. Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning[J]. Applied Energy, 2021, 281: 116117-116130.
[56] ZHANG B, HU W, CAO D, et al. Deep reinforcement learning–based approach for optimizing energy conversion in integrated electrical and heating system with renewable energy[J]. Energy conversion and management, 2019, 202: 112199.
[57] BELLMAN R. Dynamic programming[J]. Science, 1966, 153(3731): 34-37.
[58] BAHLAWAN H, MORINI M, PINELLI M, et al. Optimization of energy and economic scheduling of a hybrid energy plant by using a dynamic programming approach[J]. Applied Thermal Engineering, 2021, 187: 116577-116590.
[59] XU N, KONG Y, YAN J, et al. Global optimization energy management for multi-energy source vehicles based on “Information layer-Physical layer-Energy layer-Dynamic programming”(IPE-DP)[J]. Applied Energy, 2022, 312: 118668-118685.
[60] LIU C, WANG Y, WANG L, et al. Load-adaptive real-time energy management strategy for battery/ultracapacitor hybrid energy storage system using dynamic programming optimization [J]. Journal of Power Sources, 2019, 438: 227024-227036.
[61] GOLMOHAMADI H, LARSEN K G. Economic heat control of mixing loop for residential buildings supplied by low-temperature district heating[J]. Journal of Building Engineering, 2022, 46: 103286-103299.
[62] GOLMOHAMADI H. Stochastic energy optimization of residential heat pumps in uncertain electricity markets[J]. Applied Energy, 2021, 303: 117629-117646.
[63] NEELY M J. Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3(1): 1-211.
[64] MA Q, WEI W, WU L, et al. Life-Aware Operation of Battery Energy Storage in Frequency Regulation[J]. IEEE Transactions on Sustainable Energy, 2023.
[65] SHI J, YE Z, GAO H O, et al. Lyapunov Optimization in Online Battery Energy Storage System Control for Commercial Buildings[J]. IEEE Transactions on Smart Grid, 2022, 14(1): 328-340.
[66] URGAONKAR R, URGAONKAR B, NEELY M J, et al. Optimal power cost management using stored energy in data centers[C]//Proceedings of the ACM SIGMETRICS joint international conference on Measurement and modeling of computer systems. 2011: 221-232.
[67] FAN W, LIU N, ZHANG J. An event-triggered online energy management algorithm of smart home: Lyapunov optimization approach[J]. Energies, 2016, 9(5): 381-404.
[68] YU J, LIU Q, ZHAO A, et al. A distributed optimization algorithm for the dynamic hydraulic balance of chilled water pipe network in air-conditioning system[J]. Energy, 2021, 223: 120059- 120071.
[69] CAI W, WU Y, ZHONG Y, et al. China building energy consumption: situation, challenges and corresponding measures[J]. Energy policy, 2009, 37(6): 2054-2059.
[70] ZHANG Y, ZHANG Y, WANG X. Inverse Problem Method to Optimize Cascade Heat Exchange Network in Central Heating System[J]. IJEOE, 2020, 9(3): 62-82.
[71] CHUA K J, CHOU S K, YANG W. Advances in heat pump systems: A review[J]. Appl. energy, 2010, 87(12): 3611-3624.
[72] TASSIULAS L, EPHREMIDES A. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks[C]//29th IEEE Conference on Decision and Control. IEEE, 1990: 2130-2132.
[73] SUN J, CHEN S, YOU P, et al. Battery-Assisted Online Operation of Distributed Data Centers with Uncertain Workload and Electricity Prices[J]. IEEE Transactions on Cloud Computing, 2021.
[74] PJM. [EB/OL]. https://www.pjm.com.
[75] MURRAY D, STANKOVIC L, STANKOVIC V. An electrical load measurements dataset of United Kingdom households from a two-year longitudinal study[J]. Scientific data, 2017, 4(1): 1-12.

所在学位评定分委会
电子科学与技术
国内图书分类号
TP273
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543923
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
曹梦凡. 楼宇电热综合能源系统运行优化策略[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032430-曹梦凡-机械与能源工程(1753KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[曹梦凡]的文章
百度学术
百度学术中相似的文章
[曹梦凡]的文章
必应学术
必应学术中相似的文章
[曹梦凡]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。