中文版 | English
题名

铜绿假单胞菌pa0285基因在细菌生物被膜形成与c-di-GMP代谢中的功能研究

其他题名
FUNCTION OF PA0285 GENE OF PSEUDOMONAS AERUGINOSA IN BACTERIAL BIOFILM FORMATION AND C-DI-GMP METABOLISM
姓名
姓名拼音
YU Kaiwei
学号
12032607
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
杨亮
导师单位
南方科技大学医学院
论文答辩日期
2023-05-12
论文提交日期
2023-06-19
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

c-di-GMP 是一种在细菌中广泛存在的第二信使,并且参与到细菌生物 被膜的形成与解聚中,同时调控多种细菌的生理行为。在铜绿假单胞菌 (Pseudomonas aeruginosaPAO1 中,预计有 41 个相关基因编码的蛋白质 参与到 c-di-GMP 的产生或降解过程中。尽管学界已经进行了多方面的研究, 但 c-di-GMP 信号网络的整体机制尚不明确,其中约有三分之一的蛋白质仍 未得到详细的分析。pa0285 基因在假单胞菌中广泛保守存在,并且被预测具有磷酸二酯酶活性,在本论文中,我们发现 pa0285 的缺失显著增加了铜绿假单胞菌内 c-di-GMP 的水平,并且促进了培养皿表面和浮游状态的细菌生物被膜生成。然而,这种对于生物被膜的调节作用并不是由生物被膜形成的两个经典途径(胞外多糖的过量生成或细菌动力抑制)调控的。转录组测序(RNA-Seq)结果显示,与野生型菌株(WT)相比,pa0285 突变株中 361个基因的表达水平发生了显著改变,这说明 pa0285 PAO1 中具有关键作用,其中最显著的下调基因位于 Pf4 噬菌体基因簇上。外源添加的 Pf4 噬菌体可以以浓度依赖的方式影响 pa0285 突变体在液体培养基中形成细菌聚集体的大小,这表明噬菌体的数量在调节细菌聚集体的形成中起着一定的作用。综上所述,本项目首次报道了铜绿假单胞菌可以通过特异的 c-di-GMP 磷酸二酯酶调节噬菌体的激活,并且为噬菌体与细菌聚集体形成之间的相互作用提供了新的见解。

 

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1]FADI S, PAUL W, JOHN SM, et al. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives[J]. Journal of Medicinal Chemistry, 2018, 61 (23), 10385–10402.
[2]FAZELI H, AKBARI R, MOGHIM S, et al. Pseudomonas aeruginosa infections in patients, hospitalmeans, and personnel's specimens[J]. Journal of research in medical sciences, 2012,17(4):332-337.
[3]COSTERTON JW, STEWART PS, GREENBERG EP. Bacteria biofilm, a common cause of persistentinfection[J]. Science, 1999, 284: 1318—1322.
[4]JEFFERSON KK. What drives bacteria to produce a biofilm[J]? Fems Microbiology Letters, 2004, 236(2):163-173.
[5]PEARSON JP, VAN DELDEN C, IGLEWSKI BH. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals[J]. Journal of bacteriology, 1999,181(4):1203-1210.
[6]KUMAR A, ALAM A, RANI M, et al. Biofilms: Survival and defense strategy for pathogens[J]. International journal of medical microbiology : IJMM, 2017, 307(8), 481–489.
[7]CERI H, OLSON ME, STREMICK CA, et al. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilm[J]. Journal of Clinical Microbiology, 1999, 37(6):1771-1776.
[8]COGGAN KA, WOLFGANG MC. Global regulatory pathways and cross-talk control pseudomonas aeruginosa environmental lifestyle and virulence phenotype[J]. Current issues in molecular biology, 2012, 14(2), 47–70.
[9]COTTER PA, STIBITZ S. c-di-GMP-mediated regulation of virulence and biofilm formation[J]. Current opinion in microbiology, 2007, 10(1), 17–23.
[10]KARAOLIS DK, MEANS TK, YANG D, et al. Bacterial c-di-GMP is an immunostimulatory molecule[J]. Journal of immunology, 2007, 178(4), 2171–2181.
[11]LYCZAK JB, CANNON CL, PIER GB. Lung infections associated with cystic fibrosis[J]. Clinical microbiology reviews, 2002, 15(2), 194–222.
[12]JIMENEZ PN, KOCH G, THOMPSON JA, et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa[J]. Microbiology and molecular biology reviews : MMBR, 2012, 76(1), 46–65.
[13]WEI Q, MA LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa[J]. International journal of molecular sciences, 2013, 14(10), 20983–21005.
[14]RYDER C, BYRD M, WOZNIAK DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current opinion in microbiology, 2007, 10(6), 644–648.
[15]IRIE Y, BORLEE BR, O'CONNOR JR, et al. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(50), 20632–20636.
[16]HALL-STOODLEY L, COSTERTON JW, STOODLEY P. Bacterial biofilms: from the natural environment to infectious diseases[J]. Nature reviews. Microbiology, 2004, 2(2), 95–108.
[17]World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed[EB]. 2017.
[18]ROSS P, WEINHOUSE H, ALONI Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid[J]. Nature, 1987, 325: 279–281
[19]JENAL U, REINDERS A, LORI C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature reviews Microbiology, 2017, 15(5), 271–284.
[20]TUCKERMAN JR, GONZALEZ G., SOUSA EH, et al. An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control[J]. Biochemistry, 2009, 48(41), 9764–9774.
[21]SUDARSAN N, LEE ER, WEINBERG Z, et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP[J]. Science, 2008, 321(5887), 411–413.
[22]SMITH KD, SHANAHAN CA, MOORE EL, et al. Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19), 7757–7762.
[23]BORLEE BR, GOLDMAN AD., MURAKAMI K, et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix[J]. Molecular microbiology, 2010, 75(4), 827–842.
[24]HENGGE R. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins[J]. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2016, 371(1707), 20150498.
[25]LI W, CUI T, HU L, et al. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity[J]. Nature communications, 2015, 6, 8330.
[26]KULASAKARA H, LEE V, BRENCIC A, et al. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8), 2839–2844.
[27]KLEBENSBERGER J, BIRKENMAIER A, GEFFERS R, et al. SiaA and SiaD are essential for inducing autoaggregation as a specific response to detergent stress in Pseudomonas aeruginosa[J]. Environmental microbiology, 2009, 11(12), 3073–3086.
[28]MALONE JG, JAEGER T, SPANGLER C, et al. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa[J]. PLoS pathogens, 2010, 6(3), e1000804.
[29]HICKMAN JW, TIFREA DF, HARWOOD CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(40), 14422–14427.
[30]ZHU B, LIU C, LIU S, et al. Membrane association of SadC enhances its diguanylate cyclase activity to control exopolysaccharides synthesis and biofilm formation in Pseudomonas aeruginosa[J]. Environmental microbiology, 2016, 18(10), 3440–3452.
[31]JONES CJ, NEWSOM D, KELLY B, et al. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa[J]. PLoS pathogens, 2014, 10(3), e1003984.
[32]KULASEKARA HD, VENTRE I, KULASEKARA BR, et al. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes[J]. Molecular microbiology, 2005, 55(2), 368–380.
[33]KUCHMA SL, BROTHERS KM, MERRITT JH, et al. BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14[J]. Journal of bacteriology, 2007, 189(22), 8165–8178.
[34]KULASEKARA BR, KAMISCHKE C, KULASEKARA HD, et al. c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility[J]. eLife, 2013, 2, e01402.
[35]MASSIE JP, REYNOLDS EL, KOESTLER BJ., et al. Quantification of high-specificity cyclic diguanylate signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31), 12746–12751.
[36]WEI Q, LECLERCQ S, BHASME P, et al. Diguanylate Cyclases and Phosphodiesterases Required for Basal-Level c-di-GMP in Pseudomonas aeruginosa as Revealed by Systematic Phylogenetic and Transcriptomic Analyses[J]. Applied and environmental microbiology, 2019, 85(21), e01194-19.
[37]Leonardo D. Estudos bioquímicos e biofísicos das proteínas PA0575 e PA0285, componentes das vias de sinalização do c-di-GMP em Pseudomonas aeruginosa[D]. São Carlos: Universidade de São Paulo, 2020: 41-42.
[38]HA DG, RICHMAN ME, O'TOOLE GA. Deletion mutant library for investigation of functional outputs of cyclic diguanylate metabolism in Pseudomonas aeruginosa PA14[J]. Applied and environmental microbiology, 2014, 80(11), 3384–3393.
[39]BARAQUET C, HARWOOD CS. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ[J]. Proceedings of the National Academy of Sciences, 2013, 110:18478–18483.
[40]BOEHM A, KAISER M, LI H, et al. Second messenger-mediated adjustment of bacterial swimming velocity[J]. Cell, 2010, 141:107–116.
[41]ORR MW, LEE VT. A PilZ domain protein for chemotaxis adds another layer to c-di-GMP– mediated regulation of flagellar motility[J]. Science signaling, 2016, 9:fs16–fs16.
[42]FLEMMING HC. EPS—Then and Now[J]. Microorganisms, 2016, 4:41.
[43]FLEMMING HC, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”[J]. Journal of Bacteriology, 2007, 189:7945–7947.
[44]FLEMMING HC, WINGENDER J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8:623–633.
[45]RYDER C, BYRD M, WOZNIAK DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development[J]. Current opinion in microbiology, 2007, 10:644–648.
[46]RYBTKE M, BERTHELSEN J, YANG L, et al. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface[J]. Microbiology Open, 2015, 4(6), 917–930.
[47]BORLEE BR, GOLDMAN AD, MURAKAMI K, et al. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix[J]. Molecular Microbiology, 2010 75:827–842.
[48]REICHHARDT C, WONG C, PASSOS DA SILVA D, et al. CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing[J]. mBio, 2018, 9:e01376–01318.
[49]MA L, CONOVER M, LU H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix[J]. PLoS Pathogens, 2009, 5:e1000354.
[50]STARKEY M, HICKMAN JH, MA L, et al. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the Cystic fibrosis lung[J]. Journal of Bacteriology, 2009, 191:3492–3503.
[51]SERRA DO, HENGGE R. Stress responses go three dimensional–the spatial order of physiological differentiation in bacterial macrocolony biofilms[J]. Environmental Microbiology, 2014, 16:1455–1471.
[52]Evans LV. Bioflms: recent advances in their study and control, 1st edn[M]. CRC Press, 2003.
[53]Flemming HC, Wingender J, Griebe T, et al. Physicochemical properties of bioflms. Bioflms: recent advances in their study and control[M]. CRC press, 2000, 19–34.
[54]RATHER MA, GUPTA K, MANDAL M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies[J]. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 2021, 52(4), 1701–1718.
[55]PIRES DP, MELO LDR, AZEREDO J. Understanding the Complex Phage-Host Interactions in Biofilm Communities[J]. Annual review of virology, 2021, 8(1), 73–94.
[56]VISNAPUU A, VAN DER GUCHT M, WAGEMANS J, et al. Deconstructing the Phage-Bacterial Biofilm Interaction as a Basis to Establish New Antibiofilm Strategies[J]. Viruses, 2022, 14(5), 1057.
[57]SECOR PR, BURGENER EB, KINNERSLEY M, et al. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections[J]. Frontiers in immunology, 2020, 11, 244.
[58]RICE SA, TAN CH, MIKKELSEN PJ, et al. The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage[J]. The ISME journal, 2009, 3(3), 271–282.
[59]SECOR PR, SWEERE JM, MICHAELS LA, et al. Filamentous Bacteriophage Promote Biofilm Assembly and Function[J]. Cell host & microbe, 2015, 18(5), 549–559.
[60]TAL R, WONG HC, CALHOON R, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes[J]. Journal of bacteriology, 1998, 180(17), 4416–4425.
[61]GALPERIN MY, NATALE DA, ARAVIND L, et al. specialized version of the HD hydrolase domain implicated in signal transduction[J]. Journal of molecular microbiology and biotechnology, 1999, 1(2), 303–305.
[62]AMIKAM D, STEINBERGER O, SHKOLNIK T, et al. The novel cyclic dinucleotide 3'-5' cyclic diguanylic acid binds to p21ras and enhances DNA synthesis but not cell replication in the Molt 4 cell line[J]. The Biochemical journal, 1995, 311 ( Pt 3)(Pt 3), 921–927.
[63]TATUSOV RL, GALPERIN MY, NATALE DA., et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic acids research, 2000, 28(1), 33–36.
[64]JENAL U. Cyclic di-guanosine-monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria?[J]. Current opinion in microbiology, 2004, 7(2), 185–191.
[65]SIMM R, MORR M, KADER A, et al. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility[J]. Molecular microbiology, 2004, 53(4), 1123–1134.
[66]KARAOLIS DK, RASHID MH, CHYTHANYA R, et al. c-di-GMP (3'-5'-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation[J]. Antimicrobial agents and chemotherapy, 2005, 49(3), 1029–1038.
[67]KIRILLINA O, FETHERSTON JD, BOBROV AG, et al. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis[J]. Molecular microbiology, 2004, 54(1), 75–88.
[68]TISCHLER AD, CAMILLI A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation[J]. Molecular microbiology, 2004, 53(3), 857–869.
[69]EBENSEN T, SCHULZE K, RIESE P, et al. A. The bacterial second messenger cdiGMP exhibits promising activity as a mucosal adjuvant[J]. Clinical and vaccine immunology : CVI, 2007, 14(8), 952–958.
[70]OGUNNIYI AD, PATON JC., KIRBY AC, et al. c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection[J]. Vaccine, 2008, 26(36), 4676–4685.
[71]KARAOLIS DK, NEWSTEAD MW, ZENG X, et al. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia[J]. Infection and immunity, 2007, 75(10), 4942–4950.
[72]BURDETTE DL, MONROE KM, SOTELO-TROHA K, et al. STING is a direct innate immune sensor of cyclic di-GMP[J]. Nature, 2011, 478(7370), 515–518.
[73]KULSHINA N, BAIRD NJ, FERRÉ-D'AMARÉ AR. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch[J]. Nature structural & molecular biology, 2009, 16(12), 1212–1217.
[74]SMITH KD, LIPCHOCK SV, AMES TD, et al. Structural basis of ligand binding by a c-di-GMP riboswitch[J]. Nature structural & molecular biology, 2009, 16(12), 1218–1223.
[75]孙雨. 滨海耐盐植物田菁共生根瘤菌环二鸟苷酸信号途径相关基因的功能研究[D]. 烟台: 中国科学院大学(中国科学院烟台海岸带研究所)海洋生物学学科博士学位论文, 2019: 25-27.
[76]Muhammad Umar Shahbaz. 水稻白叶枯病菌c-di-GMP途径中受Filp/PXO_02715调控的蛋白功能鉴定[D]. 北京: 中国农业科学院植物病理学学科博士学位论文, 2019: 13-16.
[77]方海红. 结核分枝杆菌二级信使环二鸟苷酸的生理功能[D]. 合肥: 中国科学技术大学微生物学学科博士学位论文, 2013: 34-37.
[78]柳威. BsmR降解c-di-GMP调控医源性病原菌嗜麦芽窄食单胞菌biofilm的形成[D]. 上海: 上海交通大学药学学科硕士学位论文, 2017: 5-6.
[79]孔亮亮. 问号钩端螺旋体HD-GYP结构域蛋白的酶学活性和功能分析[D]. 杭州:浙江大学微生物学学科硕士学位论文, 2017: 28-30.
[80]陈颖. 铜绿假单胞菌GGDEF结构域蛋白质PA2771的结构和功能研究[D]. 济南: 山东大学微生物学学科硕士学位论文, 2011: 22-26.
[81]焦红英. 铜绿假单胞菌中PrtR调控急慢性感染的分子机制[D]. 西安: 西北大学微生物学学科硕士学位论文, 2019: 7-8.
[82]尚立国. 施氏假单胞菌固氮生物膜形成的网络调控机制[D]. 北京: 中国农业科学院生物化学与分子生物学学科博士学位论文, 2018: 22-23.
[83]韦球. 胰岛素对糖尿病小鼠创面感染铜绿假单胞菌生物膜形成及环二鸟苷酸调控影响的体内外研究[D]. 南宁: 广西医科大学呼吸与危重症医学学科博士学位论文, 2018: 27-29.
[84]李丹. 南极红球菌环二鸟苷酸调控生物被膜及其低温适应分子机制研究[D]. 青岛: 青岛科技大学药物化学学科硕士学位论文, 2020: 11-12.
[85]周思. 耻垢分枝杆菌中一个新型c-di-GMP响应的转录因子及其调控功能研究[D]. 武汉: 华中农业大学微生物学学科硕士学位论文, 2017: 13-14.
[86]郭彦彤. 西瓜噬酸菌phoB、phoR及Aave_2620基因功能研究[D]. 长春: 吉林农业大学植物病理学学科硕士学位论文, 2020: 7-8.
[87]刘聪. 腐败希瓦氏菌生物被膜形成分子机制研究[D]. 北京: 中国农业大学微生物学学科博士学位论文, 2018: 26-27.
[88]王雨舟. 恶臭假单胞菌KT2442鞭毛关键调控基因对菌株生物学特性的影响[D]. 无锡: 江南大学发酵工程学科硕士学位论文, 2018: 6-7.
[89]王志豪. 环二鸟苷酸代谢基因及群体感应系统对禽致病性大肠杆菌生物学特性的影响[D]. 合肥: 安徽农业大学基础兽医学学科硕士学位论文, 2019: 12-14.
[90]夏娟. 运动发酵单胞菌ZM401自絮凝的分子机理[D]. 上海: 上海交通大学生物学学科博士毕业论文, 2019: 28-29.
[91]刘舒. 苏云金芽胞杆菌BMB171中第二信使c-di-GMP合成与降解相关基因的研究[D]. 武汉: 华中农业大学微生物学学科硕士学位论文, 2013: 15-16.
[92]刘小草. 天蓝色链霉菌鸟苷酸环化酶CdgC与CdgD的鉴定及其调控功能研究[D]. 郑州: 河南大学微生物学学科硕士学位论文, 2019: 10-12.
[93]周广静. 海洋着色菌(Marichromatium gracile)YL28生物膜的特性及其形成机理初探[D]. 厦门: 华侨大学微生物学学科硕士学位论文, 2019: 13-14.
[94]霍翠梅. 产酶溶杆菌第二信使c-di-GMP代谢相关蛋白的酶活检测及其功能研究[D]. 南京: 南京农业大学植物保护学学科硕士学位论文, 2016: 41-42.
[95]WADHWA N, BERG HC. Bacterial motility: machinery and mechanisms[J]. Nature reviews. Microbiology, 2022, 20(3), 161–173.
[96]FRIEDMAN L, KOLTER R. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms[J]. Molecular microbiology, 2004, 51(3), 675–690.
[97]BIN ZAMAN S, HUSSAIN MA, NYE R, et al. A review on antibiotic resistance: alarm bells are ringing[J]. Cureus, 2017 9:e1403.
[98]COLLEY B, DEDERER V, CARNELL M, et al. SiaA/D Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular Aggregation of Pseudomonas aeruginosa in Response to Environmental Conditions[J]. Frontiers in microbiology, 2016, 7, 179.
[99]HALL CW, MAH TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria[J]. FEMS microbiology reviews, 2017, 41(3), 276–301.
[100]BJARNSHOLT T, JENSEN PØ, FIANDACA MJ, et al. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients[J]. Pediatric pulmonology, 2009, 44(6), 547–558.
[101]QIN S, XIAO W, ZHOU C, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics[J]. Signal transduction and targeted therapy, 2022, 7(1), 199.
[102]MALONE M, BJARNSHOLT T, MCBAIN AJ, et al. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data[J]. Journal of wound care, 2017, 26(1), 20–25.
[103]PESTRAK MJ, GUPTA TT, DUSANE DH, et al. Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation[J]. PLoS One, 2020, 15:e0231791.
[104]BJARNSHOLT T. The role of bacterial biofilms in chronic infections[J]. APMIS. Supplementum, 2013, (136), 1–51.
[105]THI MTT, WIBOWO D, REHM BHA. Pseudomonas aeruginosa Biofilms[J]. International journal of molecular sciences, 2020, 21(22), 8671.
[106]KUCHMA SL, DELALEZ NJ, FILKINS LM, et al. A. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator[J]. Journal of bacteriology, 2015, 197(3), 420–430.
[107]LIN CHUA S, LIU Y, LI Y, et al. Reduced Intracellular c-di-GMP Content Increases Expression of Quorum Sensing-Regulated Genes in Pseudomonas aeruginosa[J]. Frontiers in cellular and infection microbiology, 2017, 7, 451.
[108]LEE VT, MATEWISH JM, KESSLER JL, et al. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production[J]. Molecular microbiology, 2007, 65(6), 1474–1484.
[109]FENG Q, AHATOR SD, ZHOU T, et al. Regulation of Exopolysaccharide Production by ProE, a Cyclic-Di-GMP Phosphodiesterase in Pseudomonas aeruginosa PAO1[J]. Frontiers in microbiology, 2020, 11, 1226.
[110]VALENTINI M, FILLOUX A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria[J]. The Journal of biological chemistry, 2016, 291(24), 12547–12555.
[111]RÖMLING U, GALPERIN MY, GOMELSKY M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger[J]. Microbiology and molecular biology reviews : MMBR, 2013, 77(1), 1–52.
[112]CAI YM, HUTCHIN A, CRADDOCK J, et al. Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa[J]. Scientific reports, 2020, 10(1), 6232.
[113]MA GL, CHANDRA H, LIANG ZX. Taming the flagellar motor of pseudomonads with a nucleotide messenger[J]. Environmental microbiology, 2020, 22(7), 2496–2513.
[114]LIU C, LIEW CW, WONG YH, et al. Insights into Biofilm Dispersal Regulation from the Crystal Structure of the PAS-GGDEF-EAL Region of RbdA from Pseudomonas aeruginosa[J]. Journal of bacteriology, 2018, 200(3), e00515-17.
[115]ROY AB, PETROVA OE, SAUER K. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion[J]. Journal of bacteriology, 2012, 194(11), 2904–2915.
[116]SARENKO O, KLAUCK G, WILKE FM, et al. More than enzymes that make or break cyclic Di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli[J]. mBio, 2017, 8(5):e03384-20.
[117]CHRISTEN M, KULASEKARA HD, CHRISTEN B, et al. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division[J]. Science, 2010, 328(5983):1295–1297.
[118]QVORTRUP K, HULTQVIST LD, NILSSON M, et al. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation[J]. Frontiers in chemistry, 2019, 7, 742.
[119]ANDERSEN JB, HULTQVIST LD, JANSEN CU, et al. Identification of small molecules that interfere with cdi-GMP signaling and induce dispersal of Pseudomonas aeruginosa biofilms[J]. NPJ biofilms and microbiomes, 2021, 7(1), 59.
[120]BJARNSHOLT T, ALHEDE M, ALHEDE M, et al. The in vivo biofilm[J]. Trends in microbiology, 2013, 21(9), 466–474.
[121]CAI YM. Non-surface attached bacterial aggregates: a ubiquitous third lifestyle[J]. Frontiers in microbiology, 2020, 11, 557035.
[122]DE SMET J, WAGEMANS J, HENDRIX H, et al. Bacteriophage-mediated interference of the c-di-GMP signalling pathway in Pseudomonas aeruginosa[J]. Microbial biotechnology, 2021, 14(3), 967–978.
[123]LI Y, LIU X, TANG K, et al. Excisionase in Pf filamentous prophage controls lysis-lysogeny decision-making in Pseudomonas aeruginosa[J]. Molecular microbiology, 2019, 111(2), 495–513.
[124]WEBB JS, THOMPSON LS, JAMES S, et al. Cell death in Pseudomonas aeruginosa biofilm development [J]. Journal of bacteriology, 2003, 185(15), 4585–4592.
[125]FOLSOM JP, RICHARDS L, PITTS B, et al. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis[J]. BMC microbiology, 2010, 10, 294.
[126]WHITELEY M, BANGERA MG, BUMGARNER RE, et al. Gene expression in Pseudomonas aeruginosa biofilms[J]. Nature, 2001, 413(6858), 860–864.SWEERE JM, VAN BELLEGHEM JD, ISHAK H, et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection[J]. Science, 2019, 363(6434), eaat9691.

所在学位评定分委会
生物学
国内图书分类号
Q93
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543924
专题南方科技大学医学院
推荐引用方式
GB/T 7714
于恺威. 铜绿假单胞菌pa0285基因在细菌生物被膜形成与c-di-GMP代谢中的功能研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032607-于恺威-南方科技大学医(6430KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[于恺威]的文章
百度学术
百度学术中相似的文章
[于恺威]的文章
必应学术
必应学术中相似的文章
[于恺威]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。