[1] LOGAN I, BOWLUS C L. The geoepidemiology of autoimmune intestinal diseases[J]. Autoimmunity Reviews, 2010, 9(5): A372-A8.
[2] ENDO K, SHIGA H, KINOUCHI Y, et al. Inflammatory bowel disease: IBD [J]. Rinsho Byori the Japanese Journal of Clinical Pathology, 2009, 57(6): 527-32.
[3] CIOMBOR K K, WU C, GOLDBERG R M. Recent therapeutic advances in the treatment of colorectal cancer [J]. Annual Review of Medicine, 2015, 66: 83-95.
[4] ALATAB S, SEPANLOU S G, IKUTA K, et al. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017 [J]. The Lancet Gastroenterology & Hepatology, 2020, 5(1): 17-30.
[5] ZHAI H, LIU A, HUANG W, et al. Increasing rate of inflammatory bowel disease: a 12-year retrospective study in NingXia, China [J]. BMC Gastroenterology, 2016, 16: 1-7.
[6] FREDDIE, BRAY, JACQUES, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[7] FERLIZZA E, SOLMI R, SGARZI M, et al. The roadmap of colorectal cancer screening [J]. Cancers, 2021, 13(5): 1101.
[8] HOWLADER N, NOONE A M, KRAPCHO M, et al. SEER cancer statistics review, 1975–2009 (Vintage 2009 Populations) [J]. Bethesda, MD: National Cancer Institute, 2012: 1975-2009.
[9] WOLLOWSKI I, RECHKEMMER G, POOL-ZOBEL B L. Protective role of probiotics and prebiotics in colon cancer [J]. The American Journal of Clinical Nutrition, 2001, 73(2): 451s-5s.
[10] GISBERT J P, GONZáLEZ-LAMA Y, MATé J. 5-Aminosalicylates and renal function in inflammatory bowel disease: a systematic review [J]. Inflammatory Bowel Diseases, 2007, 13(5): 629-38.
[11] WALJEE A K, WIITALA W L, GOVANI S, et al. Corticosteroid use and complications in a US inflammatory bowel disease cohort [J]. PloS One, 2016, 11(6): e0158017.
[12] BIANCONE L, ONALI S, PETRUZZIELLO C, et al. Cancer and immunomodulators in inflammatory bowel diseases [J]. Inflammatory Bowel Diseases, 2015, 21(3): 674-98.
[13] MAGGIORI L, PANIS Y. Surgical management of IBD—from an open to a laparoscopic approach [J]. Nature Reviews Gastroenterology & Hepatology, 2013, 10(5): 297-306.
[14] TSATSANIS C, ANDROULIDAKI A, VENIHAKI M, et al. Signalling networks regulating cyclooxygenase-2 [J]. The International Journal of Biochemistry & Cell Biology, 2006, 38(10): 1654-61.
[15] ZITVOGEL L, APETOH L, GHIRINGHELLI F, et al. Immunological aspects of cancer chemotherapy [J]. Nature Reviews Immunology, 2008, 8(1): 59-73.
[16] SCHAUE, DOERTHE, MCBRIDE, et al. Opportunities and challenges of radiotherapy for treating cancer [J]. Nature Reviews Clinical Oncology, 2015, 12(9): 527-540.
[17] KHALIFA S A, ELIAS N, FARAG M A, et al. Marine natural products: A source of novel anticancer drugs [J]. Marine Drugs, 2019, 17(9): 491.
[18] LI J, WANG R, GAO J. Novel anticancer drugs approved in 2020 [J]. Drug Discoveries & Therapeutics, 2021, 15(1): 44-7.
[19] VAN DER ZANDEN S Y, QIAO X, NEEFJES J. New insights into the activities and toxicities of the old anticancer drug doxorubicin [J]. The FEBS Journal, 2021, 288(21): 6095-111.
[20] HOU K, WU Z-X, CHEN X-Y, et al. Microbiota in health and diseases [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 135.
[21] JANDHYALA S M, TALUKDAR R, SUBRAMANYAM C, et al. Role of the normal gut microbiota [J]. World Journal of Gastroenterology: WJG, 2015, 21(29): 8787.
[22] ROUTY B, GOPALAKRISHNAN V, DAILLèRE R, et al. The gut microbiota influences anticancer immunosurveillance and general health [J]. Nature Reviews Clinical Oncology, 2018, 15(6): 382-96.
[23] PANEBIANCO C, ANDRIULLI A, PAZIENZA V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies [J]. Microbiome, 2018, 6(1): 1-13.
[24] KINTZING J R, INTERRANTE M V F, COCHRAN J R. Emerging strategies for developing next-generation protein therapeutics for cancer treatment [J]. Trends in Pharmacological Sciences, 2016, 37(12): 993-1008.
[25] ATANASOV A G, ZOTCHEV S B, DIRSCH V M, et al. Natural products in drug discovery: advances and opportunities [J]. Nature Reviews Drug Discovery, 2021, 20(3): 200-16.
[26] DANG T, SUSSMUTH R D. Bioactive peptide natural products as leadstructures for medicinal use [J]. Accounts of Chemical Research, 2017, 50(7):1566-76.
[27] MUTTENTHALER M, KING G F, ADAMS D J, et al. Trends in peptide drug discovery [J]. Nature Reviews Drug Discovery, 2021, 20(4): 309-25.
[28] LAU J L, DUNN M K. Therapeutic peptides: Historical perspectives, current development trends, and future directions [J]. Bioorganic & Medicinal Chemistry, 2018, 26(10): 2700-7.
[29] DAVENPORT A P, SCULLY C C, DE GRAAF C, et al. Advances in therapeutic peptides targeting G protein-coupled receptors [J]. Nature Reviews Drug Discovery, 2020, 19(6): 389-413.
[30] BROWN T D, WHITEHEAD K A, MITRAGOTRI S. Materials for oral delivery of proteins and peptides [J]. Nature Reviews Materials, 2020, 5(2): 127-48.
[31] PISA R, KAPOOR T M. Chemical strategies to overcome resistance against targeted anticancer therapeutics [J]. Nature Chemical Biology, 2020, 16(8): 817- 25.
[32] KURTZHALS P, ØSTERGAARD S, NISHIMURA E, et al. Derivatization with fatty acids in peptide and protein drug discovery [J]. Nature Reviews Drug Discovery, 2023, 22(1): 59-80.
[33] PITHADIA A B, JAIN S. Treatment of inflammatory bowel disease (IBD) [J]. Pharmacological Reports, 2011, 63(3): 629-42.
[34] CONRAD K, ROGGENBUCK D, LAASS M W. Diagnosis and classification of ulcerative colitis [J]. Autoimmunity Reviews, 2014, 13(4-5): 463-6.
[35] SHANAHAN F. Crohn's disease [J]. The Lancet, 2002, 359(9300): 62-9.
[36] TORRES J, MEHANDRU S, COLOMBEL J-F, et al. Crohn's disease [J]. The Lancet, 2017, 389(10080): 1741-55.
[37] CAMMA C, GIUNTA M, ROSSELLI M, et al. Mesalamine in the maintenance treatment of Crohn's disease: a meta-analysis adjusted for confounding variables [M]. Database of Abstracts of Reviews of Effects (DARE): Quality-assessed Reviews [Internet]. Centre for Reviews and Dissemination (UK). 1997.
[38] FIOCCHI C. Inflammatory bowel disease: etiology and pathogenesis [J]. Gastroenterology, 1998, 115(1): 182-205.
[39] MACFARLANE S, FURRIE E, KENNEDY A, et al. Mucosal bacteria in ulcerative colitis [J]. British Journal of Nutrition, 2005, 93(S1): S67-S72.
[40] PAPADAKIS K A, TARGAN S R. The role of chemokines and chemokine receptors in mucosal inflammation [J]. Inflammatory Bowel Diseases, 2000, 6(4): 303-13.
[41] WEHKAMP J, GöTZ M, HERRLINGER K, et al. Inflammatory bowel disease: Crohn’s disease and ulcerative colitis [J]. Deutsches Ärzteblatt International, 2016, 113(5): 72.
[42] MOLODECKY N A, SOON S, RABI D M, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review [J]. Gastroenterology, 2012, 142(1): 46-54. e42.
[43] BARRAL M, DOHAN A, ALLEZ M, et al. Gastrointestinal cancers in inflammatory bowel disease: An update with emphasis on imaging findings [J]. Critical Reviews in Oncology/Hematology, 2016, 97: 30-46.
[44] GRISHAM M B. Oxidants and free radicals in inflammatory bowel disease [J]. The Lancet, 1994, 344(8926): 859-61.
[45] HANAUER S. Aminosalicylates in inflammatory bowel disease [J]. Alimentary Pharmacology & Therapeutics, 2004, 20: 60-5.
[46] SUTHERLAND L R, MAY G R, SHAFFER E A. Sulfasalazine revisited: a meta- analysis of 5-aminosalicylic acid in the treatment of ulcerative colitis [J]. Annals of Internal Medicine, 1993, 118(7): 540-9.
[47] BARNES P J, KARIN M. Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases [J]. New England Journal of Medicine, 1997, 336(15): 1066-71.
[48] FORD A C, ACHKAR J-P, KHAN K J, et al. Efficacy of 5-aminosalicylates in ulcerative colitis: systematic review and meta-analysis [J]. Official Journal of the American College of Gastroenterology ACG, 2011, 106(4): 601-16.
[49] TANG J, SHARIF O, PAI C, et al. Mesalamine protects against colorectal cancer in inflammatory bowel disease [J]. Digestive Diseases and Sciences, 2010, 55: 1696-703.
[50] ROBINSON M. Medical therapy of inflammatory bowel disease for the 21st century [J]. European Journal of Surgery, 1998, 164(Supplement_12): 90-8.
[51] KAPUGI M, CUNNINGHAM K. Corticosteroids [J]. Orthopaedic Nursing, 2019, 38(5): 336-9.
[52] NEBESIO T D, RENBARGER J L, NABHAN Z M, et al. Differential effects of hydrocortisone, prednisone, and dexamethasone on hormonal and pharmacokinetic profiles: a pilot study in children with congenital adrenal hyperplasia [J]. International Journal of Pediatric Endocrinology, 2016, 2016: 1- 9.
[53] IRVING P, GEARRY R B, SPARROW M P, et al. Appropriate use of corticosteroids in Crohn’s disease [J]. Alimentary Pharmacology & Therapeutics, 2007, 26(3): 313-29.
[54] RUTGEERTS P, LOFBERG R, MALCHOW H, et al. A comparison of budesonide with prednisolone for active Crohn's disease [J]. New England Journal of Medicine, 1994, 331(13): 842-5.
[55] YANG Y-X, LICHTENSTEIN G R. Corticosteroids in Crohn’s disease [J]. The American Journal of Gastroenterology, 2002, 97(4): 803-23.
[56] LAURENT C, CAPRON J, QUILLEROU B, et al. Steroid-responsive encephalopathy associated with autoimmune thyroiditis (SREAT): characteristics, treatment and outcome in 251 cases from the literature [J]. Autoimmunity Reviews, 2016, 15(12): 1129-33.
[57] POETKER D M, REH D D. A comprehensive review of the adverse effects of systemic corticosteroids [J]. Otolaryngologic Clinics of North America, 2010, 43(4): 753-68.
[58] TASIC V, TRAJKOVSKI Z, ZAFIROVSKI G, et al. Aseptic necrosis of both tali in a child with steroid-dependent nephrotic syndrome [J]. Nephrology Dialysis Transplantation, 2006, 21(6): 1702-4.
[59] SEOW C H, BENCHIMOL E I, GRIFFITHS A M, et al. Budesonide for induction of remission in Crohn's disease [J]. Cochrane Database of Systematic Reviews, 2008, (3).
[60] MANN J. Natural products as immunosuppressive agents [J]. Natural Product Reports, 2001, 18(4): 417-30.
[61] FRASER A, ORCHARD T, JEWELL D. The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review [J]. Gut, 2002, 50(4):485-9.
[62] GEARRY R B, BARCLAY M L. Azathioprine and 6‐mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease [J]. Journal of Gastroenterology and Hepatology, 2005, 20(8): 1149-57.
[63] ALFADHLI A A, MCDONALD J W, FEAGAN B G. Methotrexate for induction of remission in refractory Crohn's disease [J]. Cochrane Database of Systematic Reviews, 2004, (4).
[64] ABERRA F N, LEWIS J D, HASS D, et al. Corticosteroids and immunomodulators: postoperative infectious complication risk in inflammatory bowel disease patients [J]. Gastroenterology, 2003, 125(2): 320-7.
[65] HYOUN S C, OBIČAN S G, SCIALLI A R. Teratogen update: methotrexate [J]. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94(4):187-207.
[66] HLAVATY T, PERSOONS P, VERMEIRE S, et al. Evaluation of short-term responsiveness and cutoff values of inflammatory bowel disease questionnaire in Crohn's disease [J]. Inflammatory Bowel Diseases, 2006, 12(3): 199-204.
[67] AITHAL G, HAUGK B, DAS S, et al. Monitoring methotrexate‐induced hepatic fibrosis in patients with psoriasis: are serial liver biopsies justified? [J]. Alimentary Pharmacology & Therapeutics, 2004, 19(4): 391-9.
[68] ORDáS I, MOULD D R, FEAGAN B G, et al. Anti‐TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics‐based dosing paradigms [J]. Clinical Pharmacology & Therapeutics, 2012, 91(4): 635-46.
[69] SANDS B E, ANDERSON F H, BERNSTEIN C N, et al. Infliximab maintenance therapy for fistulizing Crohn's disease [J]. New England Journal of Medicine, 2004, 350(9): 876-85.
[70] BILLIOUD V, SANDBORN W J, PEYRIN-BIROULET L. Loss of response andneed for adalimumab dose intensification in Crohn's disease: a systematic review [J]. Official Journal of the American College of Gastroenterology ACG, 2011, 106(4): 674-84.
[71] SANDBORN W J, FEAGAN B G, STOINOV S, et al. Certolizumab pegol for the treatment of Crohn's disease [J]. New England Journal of Medicine, 2007, 357(3): 228-38.
[72] DANESE S, FIORINO G, REINISCH W. causative factors and the clinical management of patients with Crohn’s disease who lose response to anti‐TNF‐α therapy [J]. Alimentary Pharmacology & Therapeutics, 2011, 34(1): 1-10.
[73] COLOMBEL J-F, SANDBORN W J, PANACCIONE R, et al. Adalimumab safety in global clinical trials of patients with Crohn's disease [J]. Inflammatory Bowel Diseases, 2009, 15(9): 1308-19.
[74] HAINSWORTH J D, BURRIS III H A, MORRISSEY L H, et al. Rituximab monoclonal antibody as initial systemic therapy for patients with low-grade non- Hodgkin lymphoma [J]. Blood, The Journal of the American Society of Hematology, 2000, 95(10): 3052-6.
[75] BELL S, KAMM M. the clinical role of anti-TNFalpha antibody treatment in Crohn's disease [J]. Alimentary Pharmacology & Therapeutics, 2000, 14(5):501-14.
[76] PEYRIN-BIROULET L, DELTENRE P, ARDIZZONE S, et al. Azathioprine and 6-mercaptopurine for the prevention of postoperative recurrence in Crohn's disease: a meta-analysis [J]. Official Journal of the American College of Gastroenterology ACG, 2009, 104(8): 2089-96.
[77] CENTER M M, JEMAL A, SMITH R A, et al. Worldwide variations in colorectal cancer [J]. CA: A Cancer Journal for Clinicians, 2009, 59(6): 366-78.
[78] MáRMOL I, SáNCHEZ-DE-DIEGO C, PRADILLA DIESTE A, et al. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer [J]. International Journal of Molecular Sciences, 2017, 18(1): 197.
[79] KIM S-E, PAIK H Y, YOON H, et al. Sex-and gender-specific disparities in colorectal cancer risk [J]. World Journal of Gastroenterology: WJG, 2015, 21(17): 5167.
[80] KUIPERS E J, GRADY W M, LIEBERMAN D, et al. Colorectal cancer [J]. Nature Reviews Disease Primers, 2015, 1: 15065.
[81] ARNOLD M, SIERRA M S, LAVERSANNE M, et al. Global patterns and trends in colorectal cancer incidence and mortality [J]. Gut, 2017, 66(4): 683-91.
[82] ZHANG Y, CHEN Z, LI J. The current status of treatment for colorectal cancer in China: A systematic review [J]. Medicine, 2017, 96(40).
[83] MARLEY A R, NAN H. Epidemiology of colorectal cancer [J]. International Journal of Molecular Epidemiology and Genetics, 2016, 7(3): 105.
[84] STIDHAM R W, HIGGINS P D. Colorectal cancer in inflammatory bowel disease [J]. Clinics in Colon and Rectal Surgery, 2018, 31(03): 168-78.
[85] FLORES B M, O’CONNOR A, MOSS A C. Impact of mucosal inflammation on risk of colorectal neoplasia in patients with ulcerative colitis: a systematicreview and meta-analysis [J]. Gastrointestinal Endoscopy, 2017, 86(6): 1006-11. e8.
[86] ZHOU Q, SHEN Z-F, WU B-S, et al. Risk of colorectal cancer in ulcerative colitis patients: a systematic review and meta-analysis [J]. Gastroenterology Research and Practice, 2019, 2019.
[87] BOYLE P, LANGMAN M J. ABC of colorectal cancer: Epidemiology [J]. Bmj, 2000, 321(Suppl S6).
[88] SCHWINGSHACKL L, SCHWEDHELM C, HOFFMANN G, et al. Food groups and risk of colorectal cancer [J]. International Journal of Cancer, 2018, 142(9):1748-58.
[89] KLARICH D S, BRASSER S M, HONG M Y. Moderate alcohol consumption and colorectal cancer risk [J]. Alcoholism: Clinical and Experimental Research, 2015, 39(8): 1280-91.
[90] BOTTERI E, BORRONI E, SLOAN E K, et al. Smoking and colorectal cancer risk, overall and by molecular subtypes: a meta-analysis [J]. Official Journal of the American College of Gastroenterology ACG, 2020, 115(12): 1940-9.
[91] BILLER L H, SCHRAG D. Diagnosis and treatment of metastatic colorectal cancer: a review [J]. Jama, 2021, 325(7): 669-85.
[92] LECH G, SŁOTWIŃSKI R, SŁODKOWSKI M, et al. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances [J]. World Journal of Gastroenterology, 2016, 22(5): 1745.
[93] YIU A J, YIU C Y. Biomarkers in colorectal cancer [J]. Anticancer Research, 2016, 36(3): 1093-102.
[94] PORRU M, POMPILI L, CARUSO C, et al. Targeting KRAS in metastatic colorectal cancer: current strategies and emerging opportunities [J]. Journal of Experimental & Clinical Cancer Research, 2018, 37(1): 1-10.
[95] GUSTAVSSON B, CARLSSON G, MACHOVER D, et al. A review of theevolution of systemic chemotherapy in the management of colorectal cancer [J]. Clinical Colorectal Cancer, 2015, 14(1): 1-10.
[96] M MCQUADE R, STOJANOVSKA V, C BORNSTEIN J, et al. Colorectal cancer chemotherapy: the evolution of treatment and new approaches [J]. Current Medicinal Chemistry, 2017, 24(15): 1537-57.
[97] VENOOK A. Critical evaluation of current treatments in metastatic colorectal cancer [J]. The Oncologist, 2005, 10(4): 250-61.
[98] JANAKIRAM N B, RAO C V. The role of inflammation in colon cancer [J]. Inflammation and Cancer, 2014: 25-52.
[99] LASRY A, ZINGER A, BEN-NERIAH Y. Inflammatory networks underlying colorectal cancer [J]. Nature Immunology, 2016, 17(3): 230-40.
[100] BINDU S, MAZUMDER S, BANDYOPADHYAY U. Non-steroidal anti inflammatory drugs (NSAIDs) and organ damage: A current perspective [J]. Biochemical Pharmacology, 2020, 180: 114147.
[101] SUH O, METTLIN C, PETRELLI N J. Aspirin use, cancer, and polyps of the large bowel [J]. Cancer, 1993, 72(4): 1171-7.
[102] RIGAU J, PIQUé J M, RUBIO E, et al. Effects of long-term sulindac therapy on colonic polyposis [J]. Annals of Internal Medicine, 1991, 115(12): 952-4.
[103] SUH N, REDDY B S, DECASTRO A, et al. Combination of Atorvastatin with Sulindac or Naproxen Profoundly Inhibits Colonic Adenocarcinomas by Suppressing the p65/β-Catenin/Cyclin D1 Signaling Pathway in RatsAtorvastatin, with Sulindac or Naproxen, Inhibits Colon Cancer [J]. Cancer Prevention Research, 2011, 4(11): 1895-902.
[104] UNGPRASERT P, CHEUNGPASITPORN W, CROWSON C S, et al. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: A systematic review and meta-analysis of observational studies [J]. European Journal of Internal Medicine, 2015, 26(4): 285-91.
[105] GUPTA R A, DUBOIS R N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2 [J]. Nature Reviews Cancer, 2001, 1(1): 11-21.
[106] JüNI P, NARTEY L, REICHENBACH S, et al. Risk of cardiovascular events and rofecoxib: cumulative meta-analysis [J]. The Lancet, 2004, 364(9450): 2021-9.
[107] SABER M M, AL-MAHALLAWI A M, NASSAR N N, et al. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano- cubosomes [J]. BMC Cancer, 2018, 18: 1-11.
[108] YIN M, YAN J, MARTINEZ-BALIBREA E, et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysisNER gene polymorphisms and platinum therapy [J]. Clinical Cancer Research, 2011, 17(6):1632-40.
[109] KöBERLE B, SCHOCH S. Platinum complexes in colorectal cancer and other solid tumors [J]. Cancers, 2021, 13(9): 2073.
[110] MAHMUD K M, NILOY M S, SHAKIL M S, et al. Ruthenium complexes: An alternative to platinum drugs in colorectal cancer treatment [J]. Pharmaceutics, 2021, 13(8): 1295.
[111] SAFWAT M A, SOLIMAN G M, SAYED D, et al. Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells [J]. International Journal of Pharmaceutics, 2016, 513(1-2): 648-58.
[112] ALDAHHAN R, ALMOHAZEY D, KHAN F A. Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment[C]. Seminars in Cancer Biology, 2022, 86: 1056-1065.
[113] LIN J-F, HU P-S, WANG Y-Y, et al. Phosphorylated NFS1 weakens oxaliplatin- based chemosensitivity of colorectal cancer by preventing PANoptosis [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 54.
[114] MASSAI L, CIRRI D, MARZO T, et al. Auranofin and its analogs as prospective agents for the treatment of colorectal cancer [J]. Cancer Drug Resistance, 2022, 5(1): 1.
[115] KARASAWA T, STEYGER P S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity [J]. Toxicology Letters, 2015, 237(3): 219-27.
[116] PERES L A B, CUNHA JúNIOR A D D. Acute nephrotoxicity of cisplatin: molecular mechanisms [J]. Brazilian Journal of Nephrology, 2013, 35: 332-40.
[117] GONçALVES M, SILVEIRA A, TEIXEIRA A, et al. Mechanisms of cisplatin ototoxicity: theoretical review [J]. The Journal of Laryngology & Otology, 2013, 127(6): 536-41.
[118] SIDDIK Z H. Cisplatin: mode of cytotoxic action and molecular basis of resistance [J]. Oncogene, 2003, 22(47): 7265-79.
[119] AMABLE L. Cisplatin resistance and opportunities for precision medicine [J]. Pharmacological Research, 2016, 106: 27-36.
[120] JIANG Y, GUO Z, FANG J, et al. A multi-functionalized nanocomposite constructed by gold nanorod core with triple-layer coating to combat multidrug resistant colorectal cancer [J]. Materials Science and Engineering: C, 2020, 107:110224.
[121] ROSKOSKI JR R. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers [J]. Pharmacological Research, 2019, 139: 395-411.
[122] ZHONG L, LI Y, XIONG L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives [J]. Signal Transduction and Targeted Therapy, 2021, 6(1): 201.
[123] ZHAO Y, AGUILAR A, BERNARD D, et al. Small-molecule inhibitors of the MDM2–p53 protein–protein interaction (MDM2 Inhibitors) in clinical trials for cancer treatment: miniperspective [J]. Journal of Medicinal Chemistry, 2015, 58(3): 1038-52.
[124] VAN DER JEUGHT K, XU H-C, LI Y-J, et al. Drug resistance and new therapies in colorectal cancer [J]. World Journal of Gastroenterology, 2018, 24(34): 3834.
[125] XIE Y-H, CHEN Y-X, FANG J-Y. Comprehensive review of targeted therapy for colorectal cancer [J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 22.
[126] ARAI H, BATTAGLIN F, WANG J, et al. Molecular insight of regorafenib treatment for colorectal cancer [J]. Cancer Treatment Reviews, 2019, 81: 101912.
[127] BURNESS C B, DUGGAN S T. Trifluridine/tipiracil: a review in metastatic colorectal cancer [J]. Drugs, 2016, 76: 1393-402.
[128] GARCíA-FONCILLAS J, SUNAKAWA Y, ADERKA D, et al. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors [J]. Frontiers in Oncology, 2019, 9: 849.
[129] ROSEN L S, JACOBS I A, BURKES R L. Bevacizumab in colorectal cancer: current role in treatment and the potential of biosimilars [J]. Targeted Oncology, 2017, 12: 599-610.
[130] VERDAGUER H, TABERNERO J, MACARULLA T. Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy [J]. Therapeutic Advances in Medical Oncology, 2016, 8(3): 230-42.
[131] IVANOVA J I, SAVERNO K R, SUNG J, et al. Real-world treatment patterns and effectiveness among patients with metastatic colorectal cancer treated with ziv-aflibercept in community oncology practices in the USA [J]. Medical Oncology, 2017, 34: 1-10.
[132] HAMMOND W A, SWAIKA A, MODY K. Pharmacologic resistance in colorectal cancer: a review [J]. Therapeutic Advances in Medical Oncology, 2016, 8(1): 57-84.
[133] DOS REIS S A, DA CONCEIçãO L L, SIQUEIRA N P, et al. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer [J]. Nutrition Research, 2017, 37: 1-19.
[134] SIVAMARUTHI B S, KESIKA P, CHAIYASUT C. The role of probiotics in colorectal cancer management [J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020.
[135] KAHOULI I, TOMARO-DUCHESNEAU C, PRAKASH S. Probiotics in colorectal cancer (CRC) with emphasis on mechanisms of action and current perspectives [J]. Journal of Medical Microbiology, 2013, 6 (8): 1107-23.
[136] ZHONG L, ZHANG X, COVASA M. Emerging roles of lactic acid bacteria in protection against colorectal cancer [J]. World Journal of Gastroenterology: WJG, 2014, 20(24): 7878.
[137] CHONG E S L. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action [J]. World Journal of Microbiology and Biotechnology, 2014, 30: 351-74.
[138] CHEN C-C, LIN W-C, KONG M-S, et al. Oral inoculation of probiotics Lactobacillus acidophilus NCFM suppresses tumour growth both in segmental orthotopic colon cancer and extra-intestinal tissue [J]. British Journal of Nutrition, 2012, 107(11): 1623-34.
[139] TRIPATHY A, DASH J, KANCHARLA S, et al. Probiotics: a promising candidate for management of colorectal cancer [J]. Cancers, 2021, 13(13): 3178.
[140] SAEIDI N, WONG C K, LO T M, et al. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen [J]. Molecular Systems biology, 2011, 7(1): 521.
[141] HWANG I Y, TAN M H, KOH E, et al. Reprogramming microbes to be pathogen-seeking killers [J]. ACS Synthetic Biology, 2014, 3(4): 228-37.
[142] HO C L, TAN H Q, CHUA K J, et al. Engineered commensal microbes for diet- mediated colorectal-cancer chemoprevention [J]. Nature Biomedical Engineering, 2018, 2(1): 27-37.
[143] KALI A. Human microbiome engineering: the future and beyond [J]. Journal of Clinical and Diagnostic Research: JCDR, 2015, 9(9): DE01.
[144] MAN S M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis [J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(12): 721-37.
[145] NAUCLéR P, HUTTNER A, VAN WERKHOVEN C, et al. Impact of time to antibiotic therapy on clinical outcome in patients with bacterial infections in the emergency department: implications for antimicrobial stewardship [J]. Clinical Microbiology and Infection, 2021, 27(2): 175-81.
[146] TERRENI M, TACCANI M, PREGNOLATO M. New antibiotics for multidrug resistant bacterial strains: latest research developments and future perspectives [J]. Molecules, 2021, 26(9): 2671.
[147] CHOKSHI A, SIFRI Z, CENNIMO D, et al. Global contributors to antibiotic resistance [J]. Journal of Global Infectious Diseases, 2019, 11(1): 36.
[148] COX G, WRIGHT G D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions [J]. International Journal of Medical Microbiology, 2013, 303(6-7): 287-92.
[149] MANCHANDA V, SANCHAITA S, SINGH N. Multidrug resistant acinetobacter[J]. Journal of Global Infectious Diseases, 2010, 2(3): 291.
[150] WIECZOREK K, OSEK J. Antimicrobial resistance mechanisms among Campylobacter [J]. BioMed Research International, 2013, 2013.
[151] GOODMAN K, SIMNER P, TAMMA P, et al. Infection control implications of heterogeneous resistance mechanisms in carbapenem-resistant Enterobacteriaceae (CRE) [J]. Expert Review of Anti-infective Therapy, 2016, 14(1): 95-108.
[152] VESTERGAARD M, FREES D, INGMER H. Antibiotic resistance and the MRSA problem [J]. Microbiology Spectrum, 2019, 7(2): 7.2. 18.
[153] GOULD I M, DAVID M Z, ESPOSITO S, et al. New insights into meticillin resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance [J]. International Journal of Antimicrobial Agents, 2012, 39(2): 96-104.
[154] NIELSEN S M, PENSTOFT L N, NøRSKOV-LAURITSEN N. Motility, biofilm formation and antimicrobial efflux of sessile and planktonic cells of Achromobacter xylosoxidans [J]. Pathogens, 2019, 8(1): 14.
[155] FLEMMING H-C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-33.
[156] VAN LOOSDRECHT M, EIKELBOOM D, GJALTEMA A, et al. Biofilm structures [J]. Water Science and Technology, 1995, 32(8): 35-43.
[157] TOLKER-NIELSEN T. Biofilm development [J]. Microbial Biofilms, 2015: 51- 66.
[158] MADSEN J S, BURMøLLE M, HANSEN L H, et al. The interconnection between biofilm formation and horizontal gene transfer [J]. FEMS Immunology & Medical Microbiology, 2012, 65(2): 183-95.
[159] MOLIN S, TOLKER-NIELSEN T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure [J]. Current Opinion in Biotechnology, 2003, 14(3): 255-61.
[160] DAVIES D. Understanding biofilm resistance to antibacterial agents [J]. Nature Reviews Drug Discovery, 2003, 2(2): 114-22.
[161] WATTERS C, FLEMING D, BISHOP D, et al. Host responses to biofilm [J]. Progress in Molecular Biology and Translational Science, 2016, 142: 193-239.
[162] MERONI G, PANELLI S, ZUCCOTTI G, et al. Probiotics as therapeutic tools against pathogenic biofilms: have we found the perfect weapon? [J]. Microbiology Research, 2021, 12(4): 916-37.
[163] BACKHED F, LEY R E, SONNENBURG J L, et al. Host-bacterial mutualism in the human intestine [J]. Science, 2005, 307(5717): 1915-20.
[164] GILL S R, POP M, DEBOY R T, et al. Metagenomic analysis of the human distal gut microbiome [J]. Science, 2006, 312(5778): 1355-9.
[165] NATIVIDAD J M, VERDU E F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications [J]. Pharmacological Research, 2013, 69(1): 42-51.
[166] DEN BESTEN G, VAN EUNEN K, GROEN A K, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism [J]. Journal of Lipid Research, 2013, 54(9): 2325-40.
[167] BäUMLER A J, SPERANDIO V. Interactions between the microbiota and pathogenic bacteria in the gut [J]. Nature, 2016, 535(7610): 85-93.
[168] GENSOLLEN T, IYER S S, KASPER D L, et al. How colonization by microbiota in early life shapes the immune system [J]. Science, 2016, 352(6285):539-44.
[169] CHANG C, LIN H. Dysbiosis in gastrointestinal disorders [J]. Best Practice & Research Clinical Gastroenterology, 2016, 30(1): 3-15.
[170] SCHROEDER B O, BäCKHED F. Signals from the gut microbiota to distant organs in physiology and disease [J]. Nature Medicine, 2016, 22(10): 1079-89.
[171] HWANG I Y, CHANG M W. Engineering commensal bacteria to rewire host– microbiome interactions [J]. Current Opinion in Biotechnology, 2020, 62: 116- 22.
[172] MAH T-F C, O'TOOLE G A. Mechanisms of biofilm resistance to antimicrobial agents [J]. Trends in Microbiology, 2001, 9(1): 34-9.
[173] FRIERI M, KUMAR K, BOUTIN A. Antibiotic resistance [J]. Journal of Infection and Public Health, 2017, 10(4): 369-78.
[174] LEVY S B. The challenge of antibiotic resistance [J]. Scientific American, 1998, 278(3): 46-53.
[175] SIGNAT B, ROQUES C, POULET P, et al. Role of Fusobacterium nucleatum in periodontal health and disease [J]. Current Issues in Molecular Biology, 2011, 13(2): 25-36.
[176] ABED J, EMGåRD J E, ZAMIR G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc [J]. Cell Host & Microbe, 2016, 20(2): 215-25.
[177] HAN Y W, REDLINE R W, LI M, et al. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth [J]. Infection and Immunity, 2004, 72(4): 2272-9.
[178] DAHYA V, PATEL J, WHEELER M, et al. Fusobacterium nucleatum endocarditis presenting as liver and brain abscesses in an immunocompetent patient [J]. The American Journal of the Medical Sciences, 2015, 349(3): 284-5.
[179] RASHIDI A, TAHHAN S G, COHEE M W, et al. Fusobacterium nucleatum infection mimicking metastatic cancer [J]. Indian Journal of Gastroenterology, 2012, 31: 198-200.
[180] GEDIK A H, CAKIR E, SOYSAL O, et al. Endobronchial lesion due to pulmonary Fusobacterium nucleatum infection in a child [J]. Pediatric Pulmonology, 2014, 49(3): E63-E5.
[181] SHAMMAS N W, MURPHY G W, EICHELBERGER J, et al. Infective endocarditis due to Fusobacterium nucleatum: case report and review of the literature [J]. Clinical Cardiology, 1993, 16(1): 72-5.
[182] SWIDSINSKI A, DöRFFEL Y, LOENING-BAUCKE V, et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum [J]. Gut, 2011, 60(1): 34-40.
[183] HAN Y W. Fusobacterium nucleatum: a commensal-turned pathogen [J]. Current Opinion in Microbiology, 2015, 23: 141-7.
[184] GAUTHIER S, TéTU A, HIMAYA E, et al. The origin of Fusobacterium nucleatum involved in intra-amniotic infection and preterm birth [J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2011, 24(11): 1329-32.
[185] CASTELLARIN M, WARREN R L, FREEMAN J D, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma [J]. Genome Research, 2012, 22(2): 299-306.
[186] WARREN R L, FREEMAN D J, PLEASANCE S, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas [J]. Microbiome, 2013, 1(1): 1-12.
[187] KOSTIC A D, GEVERS D, PEDAMALLU C S, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma [J]. Genome Research, 2012, 22(2): 292-8.
[188] FLANAGAN L, SCHMID J, EBERT M, et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancerand disease outcome [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2014, 33: 1381-90.
[189] KOSTIC A D, CHUN E, ROBERTSON L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment [J]. Cell Host & Microbe, 2013, 14(2): 207-15.
[190] STRAUSS J, KAPLAN G G, BECK P L, et al. Invasive potential of gut mucosa- derived Fusobacterium nucleatum positively correlates with IBD status of the host [J]. Inflammatory Bowel Diseases, 2011, 17(9): 1971-8.
[191] MANSON MCGUIRE A, COCHRANE K, GRIGGS A D, et al. Evolution of invasion in a diverse set of Fusobacterium species [J]. MBio, 2014, 5(6):e01864-14.
[192] BULLMAN S, PEDAMALLU C S, SICINSKA E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer [J]. Science, 2017, 358(6369): 1443-8.
[193] YU T, GUO F, YU Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy [J]. Cell, 2017, 170(3): 548-63. e16.
[194] MIMA K, SUKAWA Y, NISHIHARA R, et al. Fusobacterium nucleatum and T cells in colorectal carcinoma [J]. JAMA Oncology, 2015, 1(5): 653-61.
[195] HAMADA T, ZHANG X, MIMA K, et al. Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability statusFusobacterium, MSI, and Immunity in Colorectal Cancer [J]. Cancer Immunology Research, 2018, 6(11): 1327-36.
[196] CHEN T, LI Q, ZHANG X, et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection [J]. Human Pathology, 2018, 79: 93-101.
[197] PARHI L, ALON-MAIMON T, SOL A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression [J]. Nature Communications, 2020, 11(1): 3259.
[198] VIAUD S, SACCHERI F, MIGNOT G, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide [J]. Science, 2013, 342(6161): 971-6.
[199] IIDA N, DZUTSEV A, STEWART C A, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment [J]. Science, 2013, 342(6161): 967-70.
[200] MATSON V, CHERVIN C S, GAJEWSKI T F. Cancer and the microbiome—influence of the commensal microbiota on cancer, immune responses, and immunotherapy [J]. Gastroenterology, 2021, 160(2): 600-13.
[201] TONNEAU M, ELKRIEF A, PASQUIER D, et al. The role of the gut microbiome on radiation therapy efficacy and gastrointestinal complications: a systematic review [J]. Radiotherapy and Oncology, 2021, 156: 1-9.
[202] CARDING S, VERBEKE K, VIPOND D T, et al. Dysbiosis of the gut microbiota in disease [J]. Microbial Ecology in Health and Disease, 2015, 26(1): 26191.
[203] LEE P, YACYSHYN B R, YACYSHYN M B. Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT) [J]. Diabetes, Obesity and Metabolism, 2019, 21(3): 479-90.
[204] WANG J-W, KUO C-H, KUO F-C, et al. Fecal microbiota transplantation:review and update [J]. Journal of the Formosan Medical Association, 2019, 118: S23-S31.
[205] FISCHER M, KAO D, MEHTA S R, et al. Predictors of early failure after fecal microbiota transplantation for the therapy of Clostridium difficile infection: a multicenter study [J]. Official Journal of the American College of Gastroenterology ACG, 2016, 111(7): 1024-31.
[206] KABWE M, BROWN T L, DASHPER S, et al. Genomic, morphological and functional characterisation of novel bacteriophage FNU1 capable of disruptingFusobacterium nucleatum biofilms [J]. Scientific Reports, 2019, 9(1): 9107.
[207] LU T K, KOERIS M S. The next generation of bacteriophage therapy [J]. Current Opinion in Microbiology, 2011, 14(5): 524-31.
[208] MATSUZAKI S, RASHEL M, UCHIYAMA J, et al. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases [J]. Journal of Infection and Chemotherapy, 2005, 11: 211-9.
[209] IGLESIAS-FIGUEROA B, VALDIVIEZO-GODINA N, SIQUEIROS-CENDóN T, et al. High-level expression of recombinant bovine lactoferrin in Pichia pastoris with antimicrobial activity [J]. International Journal of Molecular Sciences, 2016, 17(6): 902.
[210] GONZáLEZ-CHáVEZ S A, ARéVALO-GALLEGOS S, RASCóN-CRUZ Q. Lactoferrin: structure, function and applications [J]. International Journal of Antimicrobial Agents, 2009, 33(4): 301. e1-e8.
[211] JIANG R, LONNERDAL B. Bovine lactoferrin and bovine lactoferricin are internalized by colon cancer cells and exhibit elevated apoptosis [Z]. Wiley Online Library. 2012: 366-8.
[212] SUGIHARA Y, ZUO X, TAKATA T, et al. Inhibition of DMH‑DSS‑induced colorectal cancer by liposomal bovine lactoferrin in rats [J]. Oncology Letters, 2017, 14(5): 5688-94.
[213] GUILLéN C, MCINNES I B, VAUGHAN D M, et al. Enhanced Th1 response to Staphylococcus aureus infection in human lactoferrin-transgenic mice [J]. The Journal of Immunology, 2002, 168(8): 3950-7.
[214] SPADARO M, CURCIO C, VARADHACHARY A, et al. Requirement for IFN-γ, CD8+ T lymphocytes, and NKT cells in talactoferrin-induced inhibition of neu+tumors [J]. Cancer Research, 2007, 67(13): 6425-32.
[215] FARLEY J, LOUP D, NELSON M, et al. Neoplastic transformation of the endocervix associated with downregulation of lactoferrin expression [J].Molecular Carcinogenesis: Published in Cooperation with the University of Texas MD Anderson Cancer Center, 1997, 20(2): 240-50.
[216] RADO T A, WEI X, BENZ E J. Isolation of lactoferrin cDNA from a human myeloid library and expression of mRNA during normal and leukemic myelopoiesis [J] Ashpublications, 1987, 989-993.
[217] FUJITA K-I, MATSUDA E, SEKINE K, et al. Lactoferrin modifies apoptosis related gene expression in the colon of the azoxymethane-treated rat [J]. Cancer Letters, 2004, 213(1): 21-9.
[218] MULDER A M, CONNELLAN P A, OLIVER C J, et al. Bovine lactoferrin supplementation supports immune and antioxidant status in healthy human males [J]. Nutrition Research, 2008, 28(9): 583-9.
[219] MOSER A R, PITOT H C, DOVE W F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse [J]. Science, 1990, 247(4940): 322-4.
[220] KANWAR J R, PALMANO K P, SUN X, et al. ‘Iron‐saturated’lactoferrin is a potent natural adjuvant for augmenting cancer chemotherapy [J]. Immunology and Cell Biology, 2008, 86(3): 277-88.
[221] GIFFORD J L, HUNTER H N, VOGEL H. Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties [J]. Cellular and Molecular Life Sciences, 2005, 62: 2588-98.
[222] PAN Y, CHUA N, LIM K, et al. Engineering of human lactoferrin for improved anticancer activity [J]. ACS Pharmacology & Translational Science, 2021, 4(5):1476-82.
[223] GIFFORDJ L, HUNTER H, VOGEL H. Lactoferricin: a lactoferrin-de-rived Peptide with antimicrobial, antiviral, antitumor and immuno-logical properties[J]. Cellular and Molecular Life Sciences, 2005, 62: 2588-98.
[224] YEAMAN M R, YOUNT N Y. Mechanisms of antimicrobial peptide action and resistance [J]. Pharmacological Reviews, 2003, 55(1): 27-55.
[225] MAHLAPUU M, HåKANSSON J, RINGSTAD L, et al. Antimicrobial peptides: an emerging category of therapeutic agents [J]. Frontiers in Cellular and Infection Microbiology, 2016: 194.
[226] SANG Y, BLECHA F. Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics [J]. Animal Health Research Reviews, 2008, 9(2): 227-35.
[227] ALBERMAN S S, AL-JUMAILI E A-W. Soluble antimicrobial peptide pyocin of Pseudomonas aeruginosa and its therapeutics: a review article [J]. Indian Journal of Forensic Medicine & Toxicology, 2022, 16(2): 395-403.
[228] DE SMET K, CONTRERAS R. Human antimicrobial peptides: defensins, cathelicidins and histatins [J]. Biotechnology Letters, 2005, 27: 1337-47.
[229] CASCALES E, BUCHANAN S K, DUCHé D, et al. Colicin biology [J]. Microbiology and Molecular Biology Reviews, 2007, 71(1): 158-229.
[230] SUTTMANN H, RETZ M, PAULSEN F, et al. Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells [J]. BMC Urology, 2008, 8(1): 1-7.
[231] KANG H-K, KIM C, SEO C H, et al. The therapeutic applications of antimicrobial peptides (AMPs): a patent review [J]. Journal of Microbiology, 2017, 55: 1-12.
[232] LUO Y, SONG Y. Mechanism of antimicrobial peptides: Antimicrobial, anti inflammatory and antibiofilm activities [J]. International Journal of Molecular Sciences, 2021, 22(21): 11401.
[233] BAHAR A A, REN D. Antimicrobial peptides [J]. Pharmaceuticals, 2013, 6(12):1543-75.
[234] MARTINEZ F A C, BALCIUNAS E M, CONVERTI A, et al. Bacteriocin production by Bifidobacterium spp. A review [J]. Biotechnology Advances, 2013, 31(4): 482-8.
[235] RILEY M A. Molecular mechanisms of bacteriocin evolution [J]. Annual Review of Genetics, 1998, 32(1): 255-78.
[236] SIDHU P K, NEHRA K. Bacteriocins of lactic acid bacteria as potent antimicrobial peptides against food pathogens [J]. Biomimetics, 2021, 10.
[237] HASSAN M, KJOS M, NES I, et al. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance [J]. Journal of Applied Microbiology, 2012, 113(4): 723-36.
[238] LEWIES A, DU PLESSIS L H, WENTZEL J F. Antimicrobial peptides: the Achilles’ heel of antibiotic resistance? [J]. Probiotics and Antimicrobial Proteins, 2019, 11: 370-81.
[239] DEIRMENGIAN C, KARDOS K, KILMARTIN P, et al. The alpha-defensin test for periprosthetic joint infection responds to a wide spectrum of organisms [J]. Clinical Orthopaedics and Related Research®, 2015, 473: 2229-35.
[240] WANG G. Human antimicrobial peptides and proteins [J]. Pharmaceuticals, 2014, 7(5): 545-94.
[241] GANZ T. The role of antimicrobial peptides in innate immunity [J]. Integrative and Comparative Biology, 2003, 43(2): 300-4.
[242] HANCOCK R E, SAHL H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies [J]. Nature Biotechnology, 2006, 24(12):1551-7.
[243] KANG S-J, PARK S J, MISHIG-OCHIR T, et al. Antimicrobial peptides: therapeutic potentials [J]. Expert Review of Anti-infective Therapy, 2014, 12(12): 1477-86.
[244] HUANG L C, REDFERN R L, NARAYANAN S, et al. In vitro activity of human β-defensin 2 against Pseudomonas aeruginosa in the presence of tear fluid [J]. Antimicrobial Agents and Chemotherapy, 2007, 51(11): 3853-60.
[245] MARR A K, GOODERHAM W J, HANCOCK R E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook [J]. Current Opinion in Pharmacology, 2006, 6(5): 468-72.
[246] PILMIS B, LE MONNIER A, ZAHAR J-R. Gut microbiota, antibiotic therapy and antimicrobial resistance: a narrative review [J]. Microorganisms, 2020, 8(2):269.
[247] QI X, ZHOU C, LI P, et al. Novel short antibacterial and antifungal peptides with low cytotoxicity: efficacy and action mechanisms [J]. Biochemical and Biophysical Research Communications, 2010, 398(3): 594-600.
[248] HENRY N L, HAYES D F. Cancer biomarkers [J]. Molecular Oncology, 2012, 6(2): 140-6.
[249] GONZALEZ-PONS M, CRUZ-CORREA M. Colorectal cancer biomarkers: where are we now? [J]. BioMed Research International, 2015, 2015.
[250] GAO Y X, YANG T W, YIN J M, et al. Progress and prospects of biomarkers in primary liver cancer [J]. International Journal of Oncology, 2020, 57(1): 54-66.
[251] HASAN S, JACOB R, MANNE U, et al. Advances in pancreatic cancer biomarkers [J]. Oncology Reviews, 2019, 13(1).
[252] SUH K S, PARK S W, CASTRO A, et al. Ovarian cancer biomarkers for molecular biosensors and translational medicine [J]. Expert Review of Molecular Diagnostics, 2010, 10(8): 1069-83.
[253] HENDRIKS R, VAN OORT I, SCHALKEN J. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions [J]. Prostate Cancer and Prostatic Diseases, 2017, 20(1): 12-9.
[254] BALZAR M, WINTER M J, DE BOER C J, et al. The biology of the 17–1A antigen (Ep-CAM) [J]. Journal of Molecular Medicine, 1999, 77: 699-712.
[255] OSTA W A, CHEN Y, MIKHITARIAN K, et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy [J]. Cancer Research, 2004, 64(16): 5818-24.
[256] GIRES O, PAN M, SCHINKE H, et al. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? [J]. Cancer and Metastasis Reviews, 2020, 39: 969-87.
[257] PLüCKTHUN A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy [J]. Annual Review of Pharmacology and Toxicology, 2015, 55: 489-511.
[258] HOSSE R J, ROTHE A, POWER B E. A new generation of protein displayscaffolds for molecular recognition [J]. Protein Science, 2006, 15(1): 14-27.
[259] BABAEE N, TALEBKHAN GAROOSI Y, KARIMIPOOR M, et al. DARPin Ec1-LMWP protein scaffold in targeted delivery of siRNA molecules through EpCAM cancer stem cell marker [J]. Molecular Biology Reports, 2020, 47:7323-31.
[260] STUMPP M T, BINZ H K, AMSTUTZ P. DARPins: a new generation of protein therapeutics [J]. Drug Discovery Today, 2008, 13(15-16): 695-701.
[261] STEFAN N, MARTIN-KILLIAS P, WYSS-STOECKLE S, et al. DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency [J]. Journal of Molecular Biology, 2011, 413(4): 826-43.
[262] MARTIN-GALLAUSIAUX C, MALABIRADE A, HABIER J, et al. Fusobacterium nucleatum extracellular vesicles modulate gut epithelial cell innate immunity via FomA and TLR2 [J]. Frontiers in Immunology, 2020, 11:583644.
[263] ZHANG Z, LIU S, ZHANG S, et al. Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA [J]. Journal of Periodontology, 2022, 93(4): 515-25.
[264] BOLSTAD A I, JENSEN H, TOMMASSEN J. Sequence variability of the 40- kDa outer membrane proteins of Fusobacterium nucleatum strains and a model for the topology of the proteins [J]. Molecular and General Genetics MGG, 1994, 244(1): 104-10.
[265] BAKKEN V, AARø S, JENSEN H B. Purification and partial characterization of a major outer-membrane protein of Fusobacterium nucleatum [J]. Microbiology, 1989, 135(12): 3253-62.
[266] VAN DER LEY P, HECKELS J E, VIRJI M, et al. Topology of outer membrane porins in pathogenic Neisseria spp [J]. Infection and Immunity, 1991, 59(9):2963-71.
[267] DOUGLAS W H, REEH E S, RAMASUBBU N, et al. Statherin: a major boundary lubricant of human saliva [J]. Biochemical and Biophysical Research Communications, 1991, 180(1): 91-7.
[268] NAKAGAKI H, SEKINE S, TERAO Y, et al. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide [J]. Infection and Immunity, 2010, 78(3): 1185-92.
[269] PRASAD S, YADAV V R, SUNG B, et al. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: chemosensitization with capecitabine ursolic acid inhibits growth and metastasis of CRC [J]. Clinical Cancer Research, 2012, 18(18): 4942-53.
[270] SCHUMANN R R, LEONG S R, FLAGGS G W, et al. Structure and function of lipopolysaccharide binding protein [J]. Science, 1990, 249(4975): 1429-31.
[271] LAMBERT L A, PERRI H, HALBROOKS P J, et al. Evolution of the transferrin family: conservation of residues associated with iron and anion binding [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 142(2): 129-41.
[272] JOSEPH J, BINDHU A, ALEYKUTTY N. In vitro and in vivo antiinflammatory activity of Clerodendrum paniculatum Linn. Leaves [J]. Indian Journal of Pharmaceutical Sciences, 2013, 75(3): 376.
[273] DEBNATH P C, DAS A, ISLAM A, et al. Membrane stabilization–A possible mechanism of action for the anti-inflammatory activity of a Bangladeshi medicinal plant: Erioglossum rubiginosum (Bara Harina) [J]. Pharmacognosy Journal, 2013, 5(3): 104-7.
[274] CONNEELY O M. Antiinflammatory activities of lactoferrin [J]. Journal of the American College of Nutrition, 2001, 20(sup5): 389S-95S.
[275] FEDORKA C, SCOGGIN K, BOAKARI Y, et al. The anti-inflammatory effect ofexogenous lactoferrin on breeding-induced endometritis when administered post-breeding in susceptible mares [J]. Theriogenology, 2018, 114: 63-9.
[276] DRAGO-SERRANO M E, CAMPOS-RODRíGUEZ R, CARRERO J C, et al. Lactoferrin: balancing ups and downs of inflammation due to microbial infections [J]. International Journal of Molecular Sciences, 2017, 18(3): 501.
[277] THOME J, GSELL W, RöSIER M, et al. Oxidative-stress associated parameters (lactoferrin, superoxide dismutases) in serum of patients with Alzheimer's disease [J]. Life Sciences, 1996, 60(1): 13-9.
[278] NGUYEN D N, JIANG P, STENSBALLE A, et al. Bovine lactoferrin regulates cell survival, apoptosis and inflammation in intestinal epithelial cells and preterm pig intestine [J]. Journal of Proteomics, 2016, 139: 95-102.
[279] WEI P F, HO K Y, HO Y P, et al. The investigation of glutathione peroxidase, lactoferrin, myeloperoxidase and interleukin‐1β in gingival crevicular fluid:implications for oxidative stress in human periodontal diseases [J]. Journal of Periodontal Research, 2004, 39(5): 287-93.
[280] KRUZEL M L, ZIMECKI M, ACTOR J K. Lactoferrin in a context of inflammation-induced pathology [J]. Frontiers in immunology, 2017, 8: 1438.
[281] KUETE V, SANDJO L P, MBAVENG A T, et al. Cytotoxicity of compoundsfrom Xylopia aethiopica towards multi-factorial drug-resistant cancer cells [J]. Phytomedicine, 2015, 22(14): 1247-54.
[282] ZUGIC A, JEREMIC I, ISAKOVIC A, et al. Evaluation of anticancer and antioxidant activity of a commercially available CO2 supercritical extract of old man’s beard (Usnea barbata) [J]. PloS One, 2016, 11(1): e0146342.
[283] AHMED K A, SAIKAT A S M, MONI A, et al. Lactoferrin: potential functions, pharmacological insights, and therapeutic promises [J]. J Adv Biotechnol Exp Ther, 2021, 4(2): 223.
[284] ROBERGE S, ROUSSEL J, ANDERSSON D C, et al. TNF-α-mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes [J]. Cardiovascular Research, 2014, 103(1): 90-9.
[285] KIM J-Y, PARK J-H. ROS-dependent caspase-9 activation in hypoxic cell death [J]. FEBS Letters, 2003, 549(1-3): 94-8.
[286] ELMORE S. Apoptosis: a review of programmed cell death [J]. Toxicologic Pathology, 2007, 35(4): 495-516.
[287] NARAYANAN A, AMAYA M, VOSS K, et al. Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells [J]. Virology, 2014, 449: 270-86.
[288] CHARALAMBOUS M, LIGHTFOOT T, SPEIRS V, et al. Expression of COX-2, NF-κB-p65, NF-κB-p50 and IKKα in malignant and adjacent normal human colorectal tissue [J]. British Journal of Cancer, 2009, 101(1): 106-15.
[289] KIM C W, LEE T H, PARK K H, et al. Human lactoferrin suppresses TNF-α-induced intercellular adhesion molecule-1 expression via competition with NF- κB in endothelial cells [J]. FEBS Letters, 2012, 586(3): 229-34.
[290] FEDORKA C E. An investigation into specific seminal plasma proteins and their effect on the innate immune response to breeding in the mare [M]. University of Kentucky, 2017.
[291] POPIVANOVA B K, KITAMURA K, WU Y, et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis [J]. The Journal of Clinical Investigation, 2008, 118(2): 560-70.
[292] LIN H Y, TANG C H, CHEN J H, et al. Peptidoglycan induces interleukin‐6 expression through the TLR2 receptor, JNK, c‐Jun, and AP‐1 pathways in microglia [J]. Journal of Cellular Physiology, 2011, 226(6): 1573-82.
[293] BECKER C, FANTINI M C, WIRTZ S, et al. IL-6 signaling promotes tumor growth in colorectal cancer [J]. Cell Cycle, 2005, 4(2): 220-3.
[294] REHEMTULLA A. Cancer subclonal genetic architecture as a key to personalized medicine [J]. Neoplasia, 2013, 15(12): 1410-20.
[295] LI L, HONG Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis [J]. Archives of Biochemistry and Biophysics, 2016, 604: 20-6.
[296] FU X-T, DAI Z, SONG K, et al. Macrophage-secreted IL-8 induces epithelial- mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway [J]. International Journal of Oncology, 2015, 46(2):587-96.
[297] DI Y, HE J, MA P, et al. Liraglutide promotes the angiogenic ability of human umbilical vein endothelial cells through the JAK2/STAT3 signaling pathway [J]. Biochemical and Biophysical Research Communications, 2020, 523(3): 666-71.
[298] CERóN J M, CONTRERAS-MORENO J, PUERTOLLANO E, et al. The antimicrobial peptide cecropin A induces caspase-independent cell death in human promyelocytic leukemia cells [J]. Peptides, 2010, 31(8): 1494-503.
[299] HOSKIN D W, RAMAMOORTHY A. Studies on anticancer activities of antimicrobial peptides [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778(2): 357-75.
[300] PAESANO R, PIETROPAOLI M, GESSANI S, et al. The influence of lactoferrin, orally administered, on systemic iron homeostasis in pregnant women suffering of iron deficiency and iron deficiency anaemia [J]. Biochimie, 2009, 91(1): 44- 51.
[301] WEI Y-S, FENG K, LI S-F, et al. Oral fate and stabilization technologies of lactoferrin: a systematic review [J]. Critical Reviews in Food Science and Nutrition, 2022, 62(23): 6341-58.
[302] CHASSAING B, AITKEN J D, MALLESHAPPA M, et al. Dextran sulfate sodium (DSS)‐induced colitis in mice [J]. Current Protocols in Immunology, 2014, 104(1): 15.25. 1-15.25. 14.
[303] DEBELA D T, MUZAZU S G, HERARO K D, et al. New approaches and procedures for cancer treatment: Current perspectives [J]. SAGE Open Medicine, 2021, 9: 20503121211034366.
[304] MATHIJSSEN R H, SPARREBOOM A, VERWEIJ J. Determining the optimal dose in the development of anticancer agents [J]. Nature Reviews Clinical Oncology, 2014, 11(5): 272-81.
[305] IVANOV A A, KHURI F R, FU H. Targeting protein–protein interactions as ananticancer strategy [J]. Trends in Pharmacological Sciences, 2013, 34(7): 393- 400.
[306] LAU J T, WHELAN F J, HERATH I, et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling [J]. Genome Medicine, 2016, 8(1): 1-10.
[307] MCDONALD J A, SCHROETER K, FUENTES S, et al. Evaluation of microbialcommunity reproducibility, stability and composition in a human distal gut chemostat model [J]. Journal of Microbiological Methods, 2013, 95(2): 167-74.
[308] MA L, KIM J, HATZENPICHLER R, et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa [J]. Proceedings of the National Academy of Sciences, 2014, 111(27): 9768-73.
修改评论