[1] Richards L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333.
[2] Yeh T C J, Xiang J, Suribhatla R M, et al. River stage tomography: A new approach for characterizing groundwater basins[J]. Water Resources Research, 2009, 45(5): W05409.
[3] Boughton W. A review of the USDA SCS curve number method[J]. Soil Research, 1989, 27(3): 511-523.
[4] Harbaugh A W, Banta E R, Hill M C, et al. Modflow-2000, the u. s. geological survey modular ground-water model-user guide to modularization concepts and the ground-water flow process[J]. Open-file report U S Geological Survey, 2000(92): 134.
[5] Geng X, Heiss J W, Michael H A, et al. Geochemical fluxes in sandy beach aquifers: Modulation due to major physical stressors, geologic heterogeneity, and nearshore morphology[J]. Earth-Science Reviews, 2021, 221: 103800.
[6] Li H, Boufadel M C. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches[J]. Nature Geoscience, 2010, 3(2): 96-99.
[7] Guo Q, Li H, Boufadel M C, et al. Hydrodynamics in a gravel beach and its impact on the Exxon Valdez oil[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12077.
[8] Xia Y, Li H, Boufadel M C, et al. Hydrodynamic factors affecting the persistence of the Exxon Valdez oil in a shallow bedrock beach[J]. Water Resources Research, 2010, 46(10): W10528.
[9] Brutsaert W F. A functional iteration technique for solving the Richards equation applied to two‐dimensional infiltration problems[J]. Water Resources Research, 1971, 7(6): 1583-1596.
[10] Philip J. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil science, 1957, 83(5): 345-358.
[11] Warrick A W, Lomen D O, Islas A. An analytical solution to Richards' equation for a draining soil profile[J]. Water Resources Research, 1990, 26(2): 253-258.
[12] Freeze R A, Witherspoon P A. Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model[J]. Water Resources Research, 1966, 2(4): 641-656.
[13] Neuman S P. Saturated-unsaturated seepage by finite elements[J]. Journal of the hydraulics division, 1973, 99(12): 2233-2250.
[14] Rushton K. Discrete time steps in digital computer analysis of aquifers containing pumped wells[J]. Journal of Hydrology, 1973, 18(1): 1-19.
[15] Moridis G J, Pruess K. T2SOLV: An enhanced package of solvers for the TOUGH2 family of reservoir simulation codes[J]. Geothermics, 1998, 27(4): 415-444.
[16] Cooley R L. Some new procedures for numerical solution of variably saturated flow problems[J]. Water Resources Research, 1983, 19(5): 1271-1285.
[17] Eymard R, Gutnic M, Hilhorst D. The finite volume method for Richards equation[J]. Computational Geosciences, 1999, 3(3): 259-294.
[18] Pour M A, Shoshtari M M, Adib A. Numerical solution of Richards equation by using of finite volume method[J]. World Applied Sciences Journal, 2011, 14(12): 1838-1842.
[19] List F, Radu F A. A study on iterative methods for solving Richards’ equation[J]. Computational Geosciences, 2016, 20(2): 341-353.
[20] Van Genuchten M T. A comparison of numerical solutions of the one-dimensional unsaturated—saturated flow and mass transport equations[J]. Advances in Water Resources, 1982, 5(1): 47-55.
[21] Celia M A, Bouloutas E T, Zarba R L. A general mass‐conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26(7): 1483-1496.
[22] Celia M A, Ahuja L R, Pinder G F. Orthogonal collocation and alternating-direction procedures for unsaturated flow problems[J]. Advances in Water Resources, 1987, 10(4): 178-187.
[23] Hao X, Zhang R, Kravchenko A. A mass-conservative switching method for simulating saturated–unsaturated flow[J]. Journal of Hydrology, 2005, 311(1-4): 254-265.
[24] Paniconi C, Aldama A A, Wood E F. Numerical evaluation of iterative and noniterative methods for the solution of the nonlinear Richards equation[J]. Water Resources Research, 1991, 27(6): 1147-1163.
[25] Paniconi C, Putti M. A comparison of Picard and Newton iteration in the numerical solution of multidimensional variably saturated flow problems[J]. Water Resources Research, 1994, 30(12): 3357-3374.
[26] Miller C T, Abhishek C, Farthing M W. A spatially and temporally adaptive solution of Richards’ equation[J]. Advances in Water Resources, 2006, 29(4): 525-545.
[27] Herbst M, Gottschalk S, Reißel M, et al. On preconditioning for a parallel solution of the Richards equation[J]. Computers & geosciences, 2008, 34(12): 1958-1963.
[28] Juncu G, Nicola A, Popa C, et al. Nonlinear multigrid methods for solving Richards' equation in two space dimensions[J]. Carpathian Journal of Mathematics, 2009: 82-91.
[29] 陈启生, 戚隆溪. 有植被覆盖条件下土壤水盐运动规律研究[J]. 水利学报, 1996(01): 38-46.
[30] 陈家军, 彭胜, 王金生等. 非饱和带水气二相流动参数确定实验研究[J]. 水科学进展, 2001(04): 467-472.
[31] 张华, 陈善雄, 陈守义. 非饱和土入渗的数值模拟[J]. 岩土力学, 2003(05): 715-718.
[32] 李毅, 王全九, 王文焰等. 入渗、再分布和蒸发条件下一维土壤水运动的数值模拟[J]. 灌溉排水学报, 2007(01): 5-8.
[33] 吴梦喜. 饱和-非饱和土中渗流Richards方程有限元算法[J]. 水利学报, 2009, 40(10): 1274-1279.
[34] 陈曦, 于玉贞, 程勇刚. 非饱和渗流Richards方程数值求解的欠松弛方法[J]. 岩土力学, 2012, 33(S1): 237-243.
[35] Zha Y, Shi L, Ye M, et al. A generalized Ross method for two-and three-dimensional variably saturated flow[J]. Advances in Water Resources, 2013, 54: 67-77.
[36] 黄文竹. 应用间断有限元方法模拟一维非饱和土壤水流问题[D]. 北京: 中国农业大学, 2014.
[37] 曾季才, 查元源, 杨金忠. 基于Richards方程切换的土壤水流及溶质运移数值模拟[J]. 水利学报, 2018, 49(07): 840-848.
[38] 陈远强, 杨永涛, 郑宏等. 饱和–非饱和渗流的数值流形法研究与应用[J]. 岩土工程学报, 2019, 41(02): 338-347.
[39] Homeier H H. A modified Newton method with cubic convergence: the multivariate case[J]. Journal of Computational and Applied Mathematics, 2004, 169(1): 161-169.
[40] Darvishi M, Barati A. A fourth-order method from quadrature formulae to solve systems of nonlinear equations[J]. Applied Mathematics and Computation, 2007, 188(1): 257-261.
[41] Cordero A, Martínez E, Torregrosa J R. Iterative methods of order four and five for systems of nonlinear equations[J]. Journal of Computational and Applied Mathematics, 2009, 231(2): 541-551.
[42] Chun C, Lee M Y. A new optimal eighth-order family of iterative methods for the solution of nonlinear equations[J]. Applied Mathematics and Computation, 2013, 223: 506-519.
[43] Petković M, Ilić S, Džunić J. Derivative free two-point methods with and without memory for solving nonlinear equations[J]. Applied Mathematics and Computation, 2010, 217(5): 1887-1895.
[44] Salimi M, Long N N, Sharifi S, et al. A multi-point iterative method for solving nonlinear equations with optimal order of convergence[J]. Japan Journal of Industrial and Applied Mathematics, 2018, 35(2): 497-509.
[45] Hills R, Porro I, Hudson D, et al. Modeling one‐dimensional infiltration into very dry soils: 1. Model development and evaluation[J]. Water Resources Research, 1989, 25(6): 1259-1269.
[46] Matthews C, Braddock R, Sander G. Modeling flow through a one-dimensional multi-layered soil profile using the Method of Lines[J]. Environmental Modeling & Assessment, 2004, 9(2): 103-113.
[47] Kirkland M R, Hills R, Wierenga P. Algorithms for solving Richards' equation for variably saturated soils[J]. Water Resources Research, 1992, 28(8): 2049-2058.
[48] Forsyth P A, Wu Y, Pruess K. Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[J]. Advances in Water Resources, 1995, 18(1): 25-38.
[49] Forsyth P, Wu Y, Pruess K. Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[J]. International Journal of Multiphase Flow, 1996, 22(S1): 92-92.
[50] Lehmann F, Ackerer P. Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[J]. Transport in porous media, 1998, 31(3): 275-292.
[51] Huang K, Mohanty B, Van Genuchten M T. A new convergence criterion for the modified Picard iteration method to solve the variably saturated flow equation[J]. Journal of Hydrology, 1996, 178(1-4): 69-91.
[52] Crevoisier D, Chanzy A, Voltz M. Evaluation of the Ross fast solution of Richards’ equation in unfavourable conditions for standard finite element methods[J]. Advances in Water Resources, 2009, 32(6): 936-947.
[53] Simunek J, Van Genuchten M T, Sejna M. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[J]. University of California-Riverside Research Reports, 2005, 3: 1-240.
[54] Simunek J, van Genuchten M T, Sejna M. Development and applications of the HYDRUS and STANMOD software packages and related codes[J]. Vadose Zone Journal, 2008, 7(2): 587-600.
[55] Sinha B P, Mukherjee A. Parallel Sorting Algorithm Using Multiway Merge and Its Implementation on a Multi-Mesh Network[J]. Journal of Parallel and Distributed Computing, 2000, 60(7): 891-907.
[56] Li H, Farthing M, Dawson C, et al. Local discontinuous Galerkin approximations to Richards’ equation[J]. Advances in Water Resources, 2007, 30(3): 555-575.
[57] Zheng C, C. Hill M, Cao G, et al. MT3DMS: Model Use, Calibration, and Validation[J]. Transactions of the ASABE, 2012, 55(4): 1549-1559.
[58] Appelo C A J, Rolle M. PHT3D: A Reactive Multicomponent Transport Model for Saturated Porous Media[J]. Groundwater, 2010, 48(5): 627-632.
[59] Langevin C D. SEAWAT: A computer program for simulation of variable-density groundwater flow and multi-species solute and heat transport[R]. Reston: U.S. Geological Survey, 2009.
[60] Xiao-bin Z. The software (GMS) of Groundwater Modeling System[J]. Hydrogeology and Engineering Geology, 2003, 5: 53-55.
[61] Trefry M G, Muffels C. FEFLOW: A finite-element ground water flow and transport modeling tool[J]. Groundwater, 2007, 45(5): 525-528.
[62] Provost A M, Voss C I. SUTRA, a model for saturated-unsaturated, variable-density groundwater flow with solute or energy transport—Documentation of generalized boundary conditions, a modified implementation of specified pressures and concentrations or temperatures, and the lake capability[R]. Reston: U.S. Geological Survey, 2019.
[63] Croucher A E, O’Sullivan M J. Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems[J]. Geothermics, 2008, 37(6): 622-634.
[64] Wei Y, Cao X. A COMSOL-PHREEQC Coupled Python Framework for Reactive Transport Modeling in Soil and Groundwater[J]. Groundwater, 2022, 60(2): 284-294.
[65] Van Genuchten M T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil science society of America journal, 1980, 44(5): 892-898.
[66] Park E-J. Mixed finite element methods for nonlinear second-order elliptic problems[J]. SIAM Journal on Numerical Analysis, 1995, 32(3): 865-885.
[67] Bergamaschi L, Putti M. Mixed finite elements and Newton‐type linearizations for the solution of Richards' equation[J]. International journal for numerical methods in engineering, 1999, 45(8): 1025-1046.
[68] Radu F, Pop I, Knabner P. On the convergence of the Newton method for the mixed finite element discretization of a class of degenerate parabolic equation[J]. Numerical Mathematics and Advanced Applications, 2006, 42: 1194-1200.
[69] Putti M, Paniconi C. Picard and Newton linearization for the coupled model for saltwater intrusion in aquifers[J]. Advances in Water Resources, 1995, 18(3): 159-170.
[70] Gear C W. Numerical initial value problems in ordinary differential equations[J]. Prentice-Hall series in automatic computation, 1971, 1: 1.
[71] Galucio A C, Deü J F, Mengué S, et al. An adaptation of the Gear scheme for fractional derivatives[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44): 6073-6085.
[72] Henry H R. Effects of dispersion on salt encroachment in coastal aquifers, in" Seawater in Coastal Aquifers"[J]. US Geological Survey, Water Supply Paper, 1964, 1613: C70-C80.
[73] Robinson C, Gibbes B, Li L. Driving mechanisms for groundwater flow and salt transport in a subterranean estuary[J]. Geophysical Research Letters, 2006, 33(3): L03402.
[74] Xiao K, Li H, Wilson A M, et al. Tidal groundwater flow and its ecological effects in a brackish marsh at the mouth of a large sub-tropical river[J]. Journal of Hydrology, 2017, 555: 198-212.
[75] Milly P. A mass-conservative procedure for time-stepping in models of unsaturated flow[M]. Burlington: Springer, 1984.
[76] Maurer D, Wieners C. A parallel block LU decomposition method for distributed finite element matrices[J]. Parallel Computing, 2011, 37(12): 742-758.
[77] Istok J. Groundwater Modeling by the Finite Element Method[M]. Florida: American Geophysical Union, 1989.
[78] Koniges A E, Anderson D V. ILUBCG2: A preconditioned biconjugate gradient routine for the solution of linear asymmetric matrix equations arising from 9-point discretizations[J]. Computer Physics Communications, 1987, 43(2): 297-302.
[79] 赵颖旺. 基于有限元的地下水流速场高精度计算方法与流线可视化[D]. 北京: 中国矿业大学(北京), 2015.
[80] 吴吉春, 曾献奎, 祝晓彬. 地下水数值模拟基础[M]. 北京: 中国水利水电出版社, 2018.
[81] 牛庠均. 现代变分原理[M]. 北京: 北京工业大学出版社, 1992.
[82] 徐长发, 李红. 实用偏微分方程数值解法[M]. 武昌: 华中理工大学出版社, 1990.
[83] Boufadel M C. Nutrient transport in beaches: Effect of tides, waves, and buoyancy[M]. Ohio: University of Cincinnati, 1998.
[84] Boufadel M C, Suidan M T, Venosa A D. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media[J]. Journal of Contaminant Hydrology, 1999, 37(1-2): 1-20.
[85] Boufadel M, Suidan M, Venosa A. Numerical modeling of water flow below dry salt lakes: effect of capillarity and viscosity[J]. Journal of Hydrology, 1999, 221(1-2): 55-74.
[86] Boufadel M C, Suidan M T, Venosa A D, et al. 2D variably saturated flows: Physical scaling and Bayesian estimation[J]. Journal of Hydrologic Engineering, 1998, 3(4): 223-231.
[87] Xiao K, Wilson A M, Li H, et al. Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: A modeling study[J]. Advances in Water Resources, 2019, 132: 103408.
[88] Van Der Kamp G, Gale J E. Theory of earth tide and barometric effects in porous formations with compressible grains[J]. Water Resources Research, 1983, 19(2): 538-544.
[89] Li H, Li L, Lockington D. Aeration for plant root respiration in a tidal marsh[J]. Water Resources Research, 2005, 41(6): W06023.
[90] Spiteri C, Cappellen P V, Regnier P. Surface complexation effects on phosphate adsorption to ferric iron oxyhydroxides along pH and salinity gradients in estuaries and coastal aquifers[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3431-3445.
[91] Spiteri C, Slomp C P, Charette M A, et al. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling[J]. Geochimica et Cosmochimica Acta, 2008, 72(14): 3398-3412.
[92] Spiteri C, Slomp C P, Tuncay K, et al. Modeling biogeochemical processes in subterranean estuaries: Effect of flow dynamics and redox conditions on submarine groundwater discharge of nutrients[J]. Water Resources Research, 2008, 44(2): W02430.
[93] Yeh G-T. On the computation of Darcian velocity and mass balance in the finite element modeling of groundwater flow[J]. Water Resources Research, 1981, 17(5): 1529-1534.
[94] Anderson D, Tannehill J C, Pletcher R H. Computational fluid mechanics and heat transfer[M]. NewYork: Taylor & Francis, 1984.
[95] Wang W, Dai Z, Li J, et al. A hybrid Laplace transform finite analytic method for solving transport problems with large Peclet and Courant numbers[J]. Computers & geosciences, 2012, 49: 182-189.
[96] Herzberg A. Die Wasserversorgung einiger Nordseebader (The water supply on parts of the North Sea coast in Germany)[J]. Journal Gabeleucht ung und Wasserversorg ung, 1901, 44(815-819): 824-844.
[97] Badon-Ghyben W. Nota in Verband met de Voorgenomen Putboering Nabij Amsterdam(Notes on the probable results of well drilling near Amsterdam)[J]. Tijdschr Kon Inst Ing, 1889, 1888/9: 8-22.
[98] Carlston C W. An early American statement of the Badon Ghyben-Herzberg principle of static fresh-water-salt-water balance[J]. American Journal of Science, 1963, 261(1): 88.
[99] Boufadel M C, Suidan M T, Venosa A D, et al. Steady seepage in trenches and dams: effect of capillary flow[J]. Journal of Hydraulic Engineering, 1999, 125(3): 286-294.
[100]Xiao K, Li H, Xia Y, et al. Effects of tidally varying salinity on groundwater flow and solute transport: Insights from modelling an idealized creek marsh aquifer[J]. Water Resources Research, 2019, 55(11): 9656-9672.
[101]Yu S, Wang C, Li H, et al. Field and Numerical Investigations of Wave Effects on Groundwater Flow and Salt Transport in a Sandy Beach[J]. Water Resources Research, 2022, 58(11): e2022WR032077.
[102]Geng X, Boufadel M C, Lee K, et al. Biodegradation of subsurface oil in a tidally influenced sand beach: Impact of hydraulics and interaction with pore water chemistry[J]. Water Resources Research, 2015, 51(5): 3193-3218.
[103]Geng X, Pan Z, Boufadel M C, et al. Simulation of oil bioremediation in a tidally influenced beach: Spatiotemporal evolution of nutrient and dissolved oxygen[J]. Journal of Geophysical Research: Oceans, 2016, 121(4): 2385-2404.
[104]Li H, Boufadel M C, Weaver J W. Tide-induced seawater–groundwater circulation in shallow beach aquifers[J]. Journal of Hydrology, 2008, 352(1-2): 211-224.
[105]Liu S, Li H, Boufadel M C, et al. Numerical simulation of the effect of the sloping submarine outlet-capping on tidal groundwater head fluctuation in confined coastal aquifers[J]. Journal of Hydrology, 2008, 361(3): 339-348.
[106]Walther M, Graf T, Kolditz O, et al. How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers?[J]. Journal of Hydrology, 2017, 551: 648-659.
[107]王超月. 潮汐和海浪引起的海岸带含水层地下水动态研究[D]. 北京: 中国地质大学(北京), 2016.
[108]庄振业, 李建华, 仇士华等. 莱州湾东岸的全新世海侵和地层[J]. 海洋湖沼通报, 1987(02): 31-39.
修改评论