[1] 熊万里. 我国高性能机床主轴技术现状分析[J]. 金属加工 (冷加工), 2011(18): 5-11.
[2] 李圣怡, 戴一帆. 超精密加工技术的发展及对策[J]. 中国机械工程, 2000, 11(8): 4.
[3] 林杰. 超精密加工铝反射镜表面形貌建模及散射特性研究[D]. 哈尔滨工业大学, 2018.
[4] LU S, YANG X, ZHANG J. Rational Discussion on Material Removal Mechanisms and Machining Damage of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2022, 58(15): 31-45.
[5] 丁浩, 刘蕾. 液体动静压轴承结构多目标优化设计[J]. 现代机械, 2021(004): 000.
[6] 张闯, 刘保国, 冯伟. 超高速磨削电主轴热特性分析[J]. 组合机床与自动化加工技术, 2019(04): 41-44.
[7] 吴魁, 吴志璇. 超高速空气静压电主轴的关键技术[J]. 中国高新技术企业, 2016(18): 2.
[8] 栾景美, 黄红武, 熊万里, 等. 超高速电主轴结构综述[J]. 精密制造与自动化, 2002(3): 5.
[9] 梅俊伟, 刘保国, 冯伟. 超高速磨削电主轴磁热耦合分析[J]. 制造技术与机床, 2021(05):134-138.
[10] 张伯霖, 夏红梅, 黄晓明. 高速电主轴设计制造中若干问题的探讨[J]. 制造技术与机床,2001(7): 3.
[11] 王攀. 超高速磨削电主轴液体动静压轴承动力学问题研究[D]. 河南工业大学, 2018.
[12] PHALLE V M, SHARMA S C, JAIN S C. Performance analysis of a 2-lobe worn multirecess hybrid journal bearing system using different flow control devices[J]. Tribology International,2012, 52: 101-116.
[13] 虞付进. 电主轴技术的应用及发展趋势[J]. 机电工程, 2003, 20(6): 3.
[14] STRIBECK. Ball bearing for various loads[J]. Journal of Basic Engineering, 1959, 3: 1-15.
[15] JONES, A. B. A General Theory for Elastically Constrained Ball and Radial Roller Bearings Under Arbitrary Load and Speed Conditions[J]. Trans Asme, 1960, 82(2): 309.
[16] 张直明. 滑动轴承的流体动力润滑理论[M]. 滑动轴承的流体动力润滑理论, 1986.
[17] HAGIU G D, GAFITANU M. Dynamic characteristics of high speed angular contact ball bearings[J]. Wear, 1997, 211(1): 22-29.
[18] JORGENSEN B R, SHIN Y C. Dynamics of Machine Tool Spindle/Bearing Systems Under Thermal Growth[J]. Journal of Tribology, 1997, 119(4): 875-882.
[19] LI H, SHIN Y C. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model[J]. International Journal of Machine Tools & Manufacture, 2004, 44(4): 347-364.
[20] JIANG S, ZHENG S. Dynamic Design of a High-Speed Motorized Spindle-Bearing System[J].Journal of Mechanical Design, 2010, 132(3).68
[21] LIU D P, ZHANG H, TAO Z, et al. Finite Element Analysis of High-Speed Motorized Spindle Based on ANSYS[J]. The Open Mechanical Engineering Journal, 2011, 5: 1-10.
[22] YANG J, SHI H, FENG B, et al. Thermal error modeling and compensation for a high-speed motorized spindle[J]. The International Journal of Advanced Manufacturing Technology, 2015,77(5a8).
[23] LIU Z, PAN M, ZHANG A, et al. Thermal characteristic analysis of high-speed motorized spindle system based on thermal contact resistance and thermal-conduction resistance[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9-12): 1913-1926.
[24] LI Y, CHEN X, ZHANG P, et al. Dynamics modeling and modal experimental study of high speed motorized spindle[J]. Journal of Mechanical Science and Technology, 2017, 31(3): 1049-1056.
[25] TIAN S, ZHAO X, DONG S. Dynamic Support Stiffness of Motorized Spindle Bearings under High-speed Rotation[Z]. 2021.
[26] STACH E, SMOLIK J, SULITKA M, et al. THERMO-MECHANICAL ANALYSIS OF AMACHINE TOOL WITH HYDROSTATIC BEARINGS[J]. MM Science Journal, 2022, 2022(5): 6180–6189.
[27] YADAV S K, THAKRE G. Solution of Lubrication Problems with Deep Neural Network[J].Lecture Notes in Mechanical Engineering, 2023: 471–477.
[28] MICHALEC M, HURNíK J, FOLTýN J, et al. Contactless measurement of hydrostatic bearing lubricating film using optical point tracking method[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2023, 237(1): 76–84.
[29] PATRICK J K, CHEN N. Performance of a Short Multi-Grooved Capillary Compensated Hy-drostatic Journal Bearing[J]. ARCHIVE: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 1964-1970 (vols 178-184), Various titles labelled Volumes A to S, 1968, 183(316): 107-115.
[30] 高维亮, 丁叙生, 李尧忠. 利用不等封油边提高液体静压轴承刚度的探讨[J]. 机床与液压,1981(02): 44-53.
[31] 吴建康, 马向能, 黄玉盈. 不同设计参数下螺旋槽径向液体润滑轴承油膜稳定性的比较计算[J]. 摩擦学学报, 1999, 19(1): 56-60.
[32] 胡雄海, 洪玉芳, 汪久根. 微沟槽表面的滑动轴承性能分析[J]. 机械设计与研究, 2002, 18(2): 3.
[33] SATISH C, S.C.JAIN, D.K.BHARUKA. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing[J]. Tribology International, 2002,35: 347-356.
[34] NARENDRA S, SATISH C, S.C.JAIN. Performance of membrane compensated multirecess hydrostatic/hybrid flexible journal bearing system considering various recess shapes[J]. Tribology International, 2004, 37.
[35] CHEN S, CHANGHOU L U, LEI L I. Fluid flow separation character on novel hybrid journal bearing[J]. 中国机械工程学报:英文版, 2006, 19(4): 4.69
[36] HUANG T, Ching-hsing (Taipei, HSU T, Hung-kuang (Taipei. Hydrodynamic and hydrostatic hybrid bearing and its manufacturing method: 6880976[P]. 2005.
[37] 陈淑江, 路长厚, 马金奎. 螺旋油腔动静压滑动轴承各向异性研究[J]. 润滑与密封, 2007,32(6): 4.
[38] NICODEMUS E R, SHARMA S C. Orifice compensated multirecess hydrostatic/hybrid journal bearing system of various geometric shapes of recess operating with micropolar lubricant[J].Tribology International, 2011, 44(3): 284-296.
[39] SHAO, JUN-PENG, DAI, et al. THE EFFECT OF OIL CAVITY DEPTH ON TEMPERATURE FIELD IN HEAVY HYDROSTATIC THRUST BEARING[J]. 水动力学研究与进展:英文版, 2011, 23(5): 5.
[40] 杨建玺, 周浩兵, 崔凤奎. 液体动静压轴承油腔结构对承载特性的影响[J]. 河南科技大学学报:自然科学版, 2012, 33(5): 4.
[41] SHANG Y, CHENG K, BAI Q, et al. Drag Reduction Analysis of the Hydrostatic Bearing with Surface Micro Textures[J]. Applied Sciences (Switzerland), 2022, 12(21).
[42] YU X, FENG Y, ZHAO Y, et al. Morphology characterization of micro-gap oil film of tilting pad hydrostatic bearing under extreme working conditions[J]. Journal of Mechanical Science and Technology, 2022, 36(12): 6015–6026.
[43] MAAN J S, AWASTHI R K. Theoretical Investigation of Texture Geometry on the Performance of Partial Textured Hydrodynamic Journal Bearing under Turbulent Regime[J]. Tribology Online, 2022, 17(2): 118–125.
[44] JIANG S, LIN S, LIU F. Correction to: Thermal behavior of an improved face‑grinding spindle:water‑lubricated hydrostatic thrust bearing decreases temperature rise and increases axial stiffness (The International Journal of Advanced Manufacturing Technology, (2023), 124, 11-12,(4329-4345), 10.1007/s00170-022-09614-1)[J]. International Journal of Advanced Manufacturing Technology, 2023, 124(11-12): 4347.
[45] QIN X, WANG X, QIU Z, et al. Experimental investigation for novel hybrid journal bearing with hydrostatic squeeze film and metal mesh damper in series[J]. Industrial Lubrication and Tribology, 2023, 75(1): 1–8.
[46] CHEN C M, DAREING D W. The Contribution of Fluid Film Inertia to the Thermohydrodynamic Lubrication of Sector-Pad Thrust Bearings[J]. Journal of Tribology, 1976, 98(1): 125.
[47] ESSAMSALEMPH. D, FARIDKHALILPH. D. Thermal and inertia effects in externally pressurized conical thrust oil bearings[J]. Applied Scientific Research, 1978(34-4).
[48] NOWAK Z, WIERZCHOLSKI K. Flow of a non-Newtonian power law lubricant through the conical bearing gap[J]. Acta Mechanica, 1984, 50(3): 221-230.
[49] CHANDRA P, SINHA P, SAXENA S. Effect of lubricant inertia in externally pressurized conical bearings with temperature dependent viscosity[J]. Acta Mechanica, 1994, 106(3): 157-171.
[50] SINHASAN R, SAH P L. Static and dynamic performance characteristics of an orifice compensated hydrostatic journal bearing with non-Newtonian lubricants[J]. Tribology International,1996, 29(6): p.515-526.70
[51] LAURANT F, CHILDS D W. Measurements of Rotordynamic Coefficients of Hybrid Bearings With: (A) A Plugged Orifice, and (B) A Worn Land Surface[C]//Asme Turbo Expo: Power for Land, Sea, & Air. 2000.
[52] YACOUT A W, ISMAEEL A S, KASSAB S Z. The combined effects of the centripetal inertia and the surface roughness on the hydrostatic thrust spherical bearings performance[J]. Tribology International, 2007, 40(3): 522-532.
[53] YAN X, XIONG W, LUE L, et al. Analysis of the Combined Effect of the Surface Roughness and Inertia on the Performance of High-Speed Hydrostatic Thrust Bearing[C]//2009.
[54] DOUSTI S, CAO J, YOUNAN A, et al. Temporal and Convective Inertia Effects in Plain Journal Bearings With Eccentricity, Velocity and Acceleration[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. 2012.
[55] LU L, SU H, LIANG Y, et al. Research on Static Stiffness of Hydrostatic Bearing using Fluid-Structure Interaction Analysis[J]. Procedia Engineering, 2012, 29: 1304-1308.
[56] FENG H, JIANG S, JI A. Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects[J]. Tribology International, 2019, 130: 245–260.
[57] ZHA J, ZHANG H, LYU D. Performance of water-lubricated ceramic journal hybrid bearing[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236(12): 2328–2339.
[58] TóTH S G. CFD Analyses of the Pressure Distribution in Hydrostatic Journal Bearings with Different Recess Shapes[J]. Lecture Notes in Mechanical Engineering, 2023: 592–603.
[59] FEDORYNENKO D, NAKAO Y. Evaluation of thermal stability of ultra-precision water-lubricated spindle[J]. Precision Engineering, 2023, 80: 127-137.
[60] 刘蕾, 刘保国, 王攀, 等. 液体动静压轴承油膜的压力场和温度场分析[J]. 机电工程, 2019,36(9): 7.
[61] 孙大成. 润滑力学讲义[M]. 润滑力学讲义, 1991.
[62] 朱自强. 应用计算流体力学[M]. 应用计算流体力学, 1998.
[63] 丁振乾. 流体静压支承设计[M]. 流体静压支承设计, 1989.
[64] 丁超. 高速电主轴设计关键指标分析及特性影响研究[D]. 天津工业大学, 2021.
[65] 钟洪, 张冠坤. 液体静压动静压轴承设计使用手册[M]. 液体静压动静压轴承设计使用手册, 2007.
[66] 佐晓波. 超精密机床自补偿液体静压轴承设计与特性研究[D]. 国防科学技术大学, 2013.
[67] 钱宇, 蒋皓. 基于动网格的 NACA0012 翼型动态失速仿真计算[J]. 计算机仿真, 2020, 37(4): 5.
[68] 曹树谦, 丁千, 陈予恕, 等. 具有滑动轴承的稳态转子系统有限元建模分析[J]. 汽轮机技术, 1999, 41(006): 347-350.
修改评论