中文版 | English
题名

应用纳米孔测序技术对拟南芥转录终止和表观基因组的研究

其他题名
APPLICATION OF NANOPORE SEQUENCING TECHNOLOGY TO THE TRANSCRIPTION TERMINATION AND EPIGENOME OF ARABIDOPSIS
姓名
姓名拼音
MO Weipeng
学号
11930795
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
翟继先
导师单位
生物系
论文答辩日期
2023-05-10
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

纳米孔测序技术可以在单分子水平获得 DNA 和 RNA 的序列及其修饰信息。近年来,该技术快速发展,在测序数据准确性、读长和测序通量等方面都有了显著提高,推动了多领域的研究进展。通过不断开发新的基于纳米孔测序技术的方法和生物信息学分析流程,不仅可以突破二代测序技术读长的限制,还可以从多维度,多层次对序列进行分析,从而获得新的视角和发现。本论文基于纳米孔测序技术,利用单分子新生 RNA 测序技术 FLEP-seq(Full-length elongating and polyadenylated RNA sequencing)来分析拟南芥转录终止,和开发了单分子靶向染色质开放状态和甲基化测序方法 STAM-seq(Single-molecule targeted accessibility and methylation sequencing)用于研究高度重复区域的表观遗传特征。主要结果如下:

1. 利用 FLEP-seq 技术,对拟南芥基因进行了转录终止研究。通过单分子测序的优势,本研究区分了转录终止过程中产生的 RNA 中间产物,包括顺读(Readthrough) 转录本、5'切割产物、3'切割产物和 polyA 转录本,并利用这些序列信息对转录过程进行了分析,绘制了转录终止图谱。研究数据表明,拟南芥RNA聚合酶II在经过polyA位点后会继续一段距离的转录才从DNA模板解离。该距离(即转录终止窗口)分布范围广泛,从 50 nt 到 1,000 nt 不等。蛋白编码基因下游紧邻(200 bp内)的同向tRNA 可以高效促进上游基因的转录终止。通过突变体的研究,本研究发现在5'→3'核酸外切酶xrn3突变体中,累积了大量的3'切割产物,个别基因的3'切割产物甚至延伸至下游基因,并可进行剪接和多聚腺苷酸化。在3'末端加工因子fpa突变体中,少数基因的转录终止延迟,转录本延伸至下游基因并形成嵌合转录本。然而,在DNA甲基转移酶met1突变体中并未发现明显的转录终止缺陷,说明CG甲基化不影响转录终止。

2. 综合利用了纳米孔测序的长读长、可直接检测DNA分子碱基修饰以及可靶向富集基因组目标区间的优势,同时结合外源标记染色质开放区域的策略,开发了STAM-seq方法,从单分子水平研究了拟南芥基因组高度重复区域(着丝粒、端粒和 45S rDNAs) 的表观遗传特征。结果表明,拟南芥的着丝粒区域表现出链特异的染色质开放状态;在rRNA 基因中,DNA 甲基化水平与染色质的开放程度呈负相关关系;在端粒下游 1 kb 区域具有链特异的 DNA 甲基化分布。

综上所述,本研究利用基于纳米孔测序平台的两种单分子测序技术 FLEP-seq 和 STAM-seq,分别对拟南芥转录终止和表观基因组进行了深入研究,为探究基因表达和基因组表观遗传的调控机制提供了新的视角。此外,本研究创新性的技术和生物信息学分析流程也可以用于其他物种,为解决复杂生物学问题提供更加完整和准确的信息。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] PROUDFOOT N J. Transcriptional termination in mammals: Stopping the RNA polymerase II juggernaut[J]. Science, 2016, 352(6291): aad9926.
[2] ROSONINA E, KANEKO S, MANLEY J L. Terminating the transcript: breaking up is hard to do[J]. Genes & Development, 2006, 20(9): 1050-1056.
[3] SCHWALB B, MICHEL M, ZACHER B, et al. TT-seq maps the human transient transcriptome [J]. Science, 2016, 352(6290): 1225-1228.
[4] FONG N, BRANNAN K, ERICKSON B, et al. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition [J]. Molecular Cell, 2015, 60(2): 256-267.
[5] PROUDFOOT N J. Ending the message: poly (A) signals then and now[J]. Genes & Develop- ment, 2011, 25(17): 1770-1782.
[6] WEST S, GROMAK N, PROUDFOOT N J. Human 5′→ 3′ exonuclease Xrn2 promotes tran- scription termination at co-transcriptional cleavage sites[J]. Nature, 2004, 432(7016): 522-525.
[7] DUC C, SHERSTNEV A, COLE C, et al. Transcription termination and chimeric RNA forma- tion controlled by Arabidopsis thaliana FPA[J]. PLoS Genetics, 2013, 9(10): e1003867.
[8] EATON J D, FRANCIS L, DAVIDSON L, et al. A unified allosteric/torpedo mechanism for transcriptional termination on human protein-coding genes[J]. Genes & Development, 2020, 34(1-2): 132-145.
[9] KRZYSZTON M, ZAKRZEWSKA-PLACZEK M, KWASNIK A, et al. Defective XRN 3-mediated transcription termination in Arabidopsis affects the expression of protein-coding genes [J]. The Plant Journal, 2018, 93(6): 1017-1031.
[10] BAEJEN C, ANDREANI J, TORKLER P, et al. Genome-wide analysis of RNA polymerase II termination at protein-coding genes[J]. Molecular Cell, 2017, 66(1): 38-49.
[11] EATON J D, WEST S. Termination of transcription by RNA polymerase II: BOOM![J]. Trends in Genetics, 2020, 36(9): 664-675.
[12] WISSINK E M, VIHERVAARA A, TIPPENS N D, et al. Nascent RNA analyses: tracking transcription and its regulation[J]. Nature Reviews Genetics, 2019, 20(12): 705-723.
[13] CORE L J, WATERFALL J J, LIS J T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters[J]. Science, 2008, 322(5909): 1845-1848.
[14] KWAK H, FUDA N J, CORE L J, et al. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing[J]. Science, 2013, 339(6122): 950-953.
[15] CHURCHMAN L S, WEISSMAN J S. Nascent transcript sequencing visualizes transcription at nucleotide resolution[J]. Nature, 2011, 469(7330): 368-373.
[16] NOJIMA T, GOMES T, GROSSO A R F, et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing[J]. Cell, 2015, 161(3): 526-540.
[17] VAN DIJK E L, JASZCZYSZYN Y, NAQUIN D, et al. The third revolution in sequencing technology[J]. Trends in Genetics, 2018, 34(9): 666-681.
[18] LOGSDON G A, VOLLGER M R, EICHLER E E. Long-read human genome sequencing and its applications[J]. Nature Reviews Genetics, 2020, 21(10): 597-614.
[19] LEGNINI I, ALLES J, KARAISKOS N, et al. FLAM-seq: full-length mRNA sequencing reveals principles of poly (A) tail length control[J]. Nature Methods, 2019, 16(9): 879-886.
[20] PARKER M T, KNOP K, SHERWOOD A V, et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification[J]. Elife, 2020, 9: e49658.
[21] ROACH N P, SADOWSKI N, ALESSI A F, et al. The full-length transcriptome of C. elegans using direct RNA sequencing[J]. Genome Research, 2020, 30(2): 299-312.
[22] WORKMAN R E, TANG A D, TANG P S, et al. Nanopore native RNA sequencing of a human poly (A) transcriptome[J]. Nature Methods, 2019, 16(12): 1297-1305.
[23] WANG Y, ZHAO Y, BOLLAS A, et al. Nanopore sequencing technology, bioinformatics and applications[J]. Nature Biotechnology, 2021, 39(11): 1348-1365.
[24] CHENG C Y, KRISHNAKUMAR V, CHAN A P, et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome[J]. The Plant Journal, 2017, 89(4): 789-804.
[25] BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position[J]. Nature Methods, 2013, 10(12): 1213-1218.
[26] COKUS S J, FENG S, ZHANG X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning[J]. Nature, 2008, 452(7184): 215-219.
[27] PAYNE A, HOLMES N, CLARKE T, et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes[J]. Nature Biotechnology, 2021, 39(4): 442-450.
[28] MAXAM A M, GILBERT W. A new method for sequencing DNA.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(2): 560-564.
[29] SANGER F, NICKLEN S, COULSON A R. DNA sequencing with chain-terminating inhibitors [J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(12): 5463-5467.
[30] VENTER J C, ADAMS M D, MYERS E W, et al. The sequence of the human genome[J]. Science, 2001, 291(5507): 1304-1351.
[31] SCHLOSS J A. How to get genomes at one ten-thousandth the cost[J]. Nature Biotechnology, 2008, 26(10): 1113-1115.
[32] VAN DIJK E L, AUGER H, JASZCZYSZYN Y, et al. Ten years of next-generation sequencing technology[J]. Trends in Genetics, 2014, 30(9): 418-426.
[33] GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: ten years of next- generation sequencing technologies[J]. Nature Reviews Genetics, 2016, 17(6): 333-351.
[34] ALKAN C, COE B P, EICHLER E E. Genome structural variation discovery and genotyping [J]. Nature Reviews Genetics, 2011, 12(5): 363-376.
[35] TREANGEN T J, SALZBERG S L. Repetitive DNA and next-generation sequencing: compu- tational challenges and solutions[J]. Nature Reviews Genetics, 2012, 13(1): 36-46.
[36] AMARASINGHE S L, SU S, DONG X, et al. Opportunities and challenges in long-read se- quencing data analysis[J]. Genome Biology, 2020, 21(1): 1-16.
[37] EID J, FEHR A, GRAY J, et al. Real-time DNA sequencing from single polymerase molecules [J]. Science, 2009, 323(5910): 133-138.
[38] DEAMER D, AKESON M, BRANTON D. Three decades of nanopore sequencing[J]. Nature Biotechnology, 2016, 34(5): 518-524.
[39] MANRAO E A, DERRINGTON I M, LASZLO A H, et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase[J]. Nature Biotechnology, 2012, 30(4): 349-353.
[40] JAIN M, KOREN S, MIGA K H, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads[J]. Nature Biotechnology, 2018, 36(4): 338-345.
[41] SHAFIN K, PESOUT T, LORIG-ROACH R, et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes[J]. Nature Biotechnology, 2020, 38(9): 1044-1053.
[42] JAIN M, FIDDES I T, MIGA K H, et al. Improved data analysis for the MinION nanopore sequencer[J]. Nature Methods, 2015, 12(4): 351-356.
[43] BROWN C G, CLARKE J. Nanopore development at Oxford nanopore[J]. Nature Biotechnol- ogy, 2016, 34(8): 810-811.
[44] GILPATRICK T, LEE I, GRAHAM J E, et al. Targeted nanopore sequencing with Cas9-guided adapter ligation[J]. Nature Biotechnology, 2020, 38(4): 433-438.
[45] Oxford Nanopore Techologies. Towards real-time targeting, enrichment, or other sampling on nanopore sequencing devices, rather than in the sample prep: adaptive sampling for selective nanopore sequencing[EB/OL]. 2020
[2020-02-03]. https://nanoporetech.com/about-us/news/t owards-real-time-targeting-enrichment-or-other-sampling-nanopore-sequencing-devices.
[46] LOOSE M, MALLA S, STOUT M. Real-time selective sequencing using nanopore technology [J]. Nature Methods, 2016, 13(9): 751-754.
[47] KOVAKA S, FAN Y, NI B, et al. Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED[J]. Nature Biotechnology, 2021, 39(4): 431-441.
[48] KRONENBERG Z N, FIDDES I T, GORDON D, et al. High-resolution comparative analysis of great ape genomes[J]. Science, 2018, 360(6393): eaar6343.
[49] VOLLGER M R, DISHUCK P C, SORENSEN M, et al. Long-read sequence and assembly of segmental duplications[J]. Nature Methods, 2019, 16(1): 88-94.
[50] NURK S, KOREN S, RHIE A, et al. The complete sequence of a human genome[J]. Science, 2022, 376(6588): 44-53.
[51] NAISH M, ALONGE M, WLODZIMIERZ P, et al. The genetic and epigenetic landscape of the Arabidopsis centromeres[J]. Science, 2021, 374(6569): eabi7489.
[52] GARALDE D R, SNELL E A, JACHIMOWICZ D, et al. Highly parallel direct RNA sequenc- ing on an array of nanopores[J]. Nature Methods, 2018, 15(3): 201-206.
[53] JIA J, LONG Y, ZHANG H, et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants[J]. Nature Plants, 2020, 6(7): 780-788.
[54] LEUNG S K, JEFFRIES A R, CASTANHO I, et al. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing[J]. Cell Reports, 2021, 37(7): 110022.
[55] VOLDEN R, PALMER T, BYRNE A, et al. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA[J]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2018, 115(39): 9726-9731.
[56] CLARK M B, WRZESINSKI T, GARCIA A B, et al. Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain[J]. Molecular Psychiatry, 2020, 25(1): 37-47.
[57] TANG A D, SOULETTE C M, VAN BAREN M J, et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns [J]. Nature Communications, 2020, 11(1): 1-12.
[58] KIM D, LEE J Y, YANG J S, et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4): 914-921.
[59] LISTER R, O’MALLEY R C, TONTI-FILIPPINI J, et al. Highly integrated single-base reso- lution maps of the epigenome in Arabidopsis[J]. Cell, 2008, 133(3): 523-536.
[60] FLUSBERG B A, WEBSTER D R, LEE J H, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing[J]. Nature Methods, 2010, 7(6): 461-465.
[61] SIMPSON J T, WORKMAN R E, ZUZARTE P, et al. Detecting DNA cytosine methylation using nanopore sequencing[J]. Nature Methods, 2017, 14(4): 407-410.
[62] LIU H, BEGIK O, LUCAS M C, et al. Accurate detection of m6A RNA modifications in native RNA sequences[J]. Nature Communications, 2019, 10(1): 1-9.
[63] LEE I, RAZAGHI R, GILPATRICK T, et al. Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing[J]. Nature Methods, 2020, 17(12): 1191-1199.
[64] SHIPONY Z, MARINOV G K, SWAFFER M P, et al. Long-range single-molecule mapping of chromatin accessibility in eukaryotes[J]. Nature Methods, 2020, 17(3): 319-327.
[65] EICK D, GEYER M. The RNA polymerase II carboxy-terminal domain (CTD) code[J]. Chem- ical Reviews, 2013, 113(11): 8456-8490.
[66] EATON J D, DAVIDSON L, BAUER D L, et al. Xrn2 accelerates termination by RNA poly- merase II, which is underpinned by CPSF73 activity[J]. Genes & Development, 2018, 32(2): 127-139.
[67] KAMIENIARZ-GDULA K, PROUDFOOT N J. Transcriptional control by premature termi- nation: a forgotten mechanism[J]. Trends in Genetics, 2019, 35(8): 553-564.
[68] KREBS A R, IMANCI D, HOERNER L, et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters[J]. Molecular Cell, 2017, 67(3): 411-422.
[69] PARKER M T, KNOP K, ZACHARAKI V, et al. Widespread premature transcription termina- tion of Arabidopsis thaliana NLR genes by the spen protein FPA[J]. Elife, 2021, 10: e65537.
[70] LEE J S, MENDELL J T. Antisense-mediated transcript knockdown triggers premature tran- scription termination[J]. Molecular Cell, 2020, 77(5): 1044-1054.
[71] ELKON R, UGALDE A P, AGAMI R. Alternative cleavage and polyadenylation: extent, reg- ulation and function[J]. Nature Reviews Genetics, 2013, 14(7): 496-506.
[72] SUN Y, ZHANG Y, HAMILTON K, et al. Molecular basis for the recognition of the human AAUAAA polyadenylation signal[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(7): E1419-E1428.
[73] SCHÖNEMANN L, KÜHN U, MARTIN G, et al. Reconstitution of CPSF active in polyadeny- lation: recognition of the polyadenylation signal by WDR33[J]. Genes & Development, 2014, 28(21): 2381-2393.
[74] LOGAN J, FALCK-PEDERSEN E, DARNELL JR J, et al. A poly (A) addition site and a downstream termination region are required for efficient cessation of transcription by RNA polymerase II in the mouse beta maj-globin gene.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(23): 8306-8310.
[75] CONNELLY S, MANLEY J L. A functional mRNA polyadenylation signal is required for transcription termination by RNA polymerase II.[J]. Genes & Development, 1988, 2(4): 440- 452.
[76] PROUDFOOT N. How RNA polymerase II terminates transcription in higher eukaryotes[J]. Trends in Biochemical Sciences, 1989, 14(3): 105-110.
[77] ZHANG H, RIGO F, MARTINSON H G. Poly (A) signal-dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the poly(A) site[J]. Molecular Cell, 2015, 59(3): 437-448.
[78] OSHEIM Y N, SIKES M L, BEYER A L. EM visualization of Pol II genes in Drosophila: most genes terminate without prior 3′ end cleavage of nascent transcripts[J]. Chromosoma, 2002, 111(1): 1-12.
[79] CUSTODIO N, CARMO-FONSECA M, GERAGHTY F, et al. Inefficient processing impairs release of RNA from the site of transcription[J]. The EMBO journal, 1999, 18(10): 2855-2866.
[80] NIELSEN S, YUZENKOVA Y, ZENKIN N. Mechanism of eukaryotic RNA polymerase III transcription termination[J]. Science, 2013, 340(6140): 1577-1580.
[81] GREGERSEN L H, MITTER R, UGALDE A P, et al. SCAF4 and SCAF8, mRNA anti-terminator proteins[J]. Cell, 2019, 177(7): 1797-1813.
[82] KAIDA D, BERG M G, YOUNIS I, et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation[J]. Nature, 2010, 468(7324): 664-668.
[83] DUBBURY S J, BOUTZ P L, SHARP P A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation[J]. Nature, 2018, 564(7734): 141-145.
[84] JENAL M, ELKON R, LOAYZA-PUCH F, et al. The poly (A)-binding protein nuclear 1 sup- presses alternative cleavage and polyadenylation sites[J]. Cell, 2012, 149(3): 538-553.
[85] KAMIENIARZ-GDULA K, GDULA M R, PANSER K, et al. Selective roles of vertebrate PCF11 in premature and full-length transcript termination[J]. Molecular Cell, 2019, 74(1): 158-172.
[86] AHN S H, KIM M, BURATOWSKI S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing[J]. Molecular Cell, 2004, 13(1): 67-76.
[87] KIM M, KROGAN N J, VASILJEVA L, et al. The yeast Rat1 exonuclease promotes transcrip- tion termination by RNA polymerase II[J]. Nature, 2004, 432(7016): 517-522.
[88] LUO W, JOHNSON A W, BENTLEY D L. The role of Rat1 in coupling mRNA 3′-end process- ing to transcription termination: implications for a unified allosteric–torpedo model[J]. Genes & Development, 2006, 20(8): 954-965.
[89] KOLEV N G, YARIO T A, BENSON E, et al. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation[J]. EMBO Reports, 2008, 9(10): 1013-1018.
[90] PARUA P K, BOOTH G T, SANSÓ M, et al. A Cdk9–PP1 switch regulates the elongation– termination transition of RNA polymerase II[J]. Nature, 2018, 558(7710): 460-464.
[91] CORTAZAR M A, SHERIDAN R M, ERICKSON B, et al. Control of RNA Pol II speed by PNUTS-PP1 and Spt5 dephosphorylation facilitates termination by a “Sitting Duck Torpedo” mechanism[J]. Molecular Cell, 2019, 76(6): 896-908.
[92] SHI Y, DI GIAMMARTINO D C, TAYLOR D, et al. Molecular architecture of the human pre-mRNA 3′ processing complex[J]. Molecular Cell, 2009, 33(3): 365-376.
[93] SCHREIECK A, EASTER A D, ETZOLD S, et al. RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7[J]. Nature Structural & Molecular Biology, 2014, 21(2): 175-179.
[94] SHAH N, MAQBOOL M A, YAHIA Y, et al. Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals[J]. Molecular Cell, 2018, 69(1): 48-61.
[95] KANEKO S, ROZENBLATT-ROSEN O, MEYERSON M, et al. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcrip- tion termination[J]. Genes & Development, 2007, 21(14): 1779-1789.
[96] CROSSLEY M P, BOCEK M, CIMPRICH K A. R-loops as cellular regulators and genomic threats[J]. Molecular Cell, 2019, 73(3): 398-411.
[97] CHEN L, CHEN J Y, ZHANG X, et al. R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters[J]. Molecular Cell, 2017, 68(4): 745-757.
[98] SKOURTI-STATHAKI K, PROUDFOOT N J, GROMAK N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termina- tion[J]. Molecular Cell, 2011, 42(6): 794-805.
[99] HOEK T A, KHUPERKAR D, LINDEBOOM R G, et al. Single-molecule imaging uncovers rules governing nonsense-mediated mRNA decay[J]. Molecular Cell, 2019, 75(2): 324-339.
[100] PROUDFOOT N J, FURGER A, DYE M J. Integrating mRNA processing with transcription [J]. Cell, 2002, 108(4): 501-512.
[101] LENG X, THOMAS Q, RASMUSSEN S H, et al. AG (enomic) P (ositioning) S (ystem) for Plant RNAPII Transcription[J]. Trends in Plant Science, 2020, 25(8): 744-764.
[102] PARK J, KANG M, KIM M. Unraveling the mechanistic features of RNA polymerase II termi- nation by the 5′-3′ exoribonuclease Rat1[J]. Nucleic Acids Research, 2015, 43(5): 2625-2637.
[103] GROMAK N, WEST S, PROUDFOOT N J. Pause sites promote transcriptional termination of mammalian RNA polymerase II[J]. Molecular and cellular biology, 2006, 26(10): 3986-3996.
[104] WEST S, PROUDFOOT N J, DYE M J. Molecular dissection of mammalian RNA polymerase II transcriptional termination[J]. Molecular Cell, 2008, 29(5): 600-610.
[105] HORNYIK C, TERZI L C, SIMPSON G G. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA[J]. Developmental Cell, 2010, 18(2): 203-213.
[106] UÁJVÁRI A, PAL M, LUSE D S. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides[J]. Journal of Biological Chemistry, 2002, 277(36): 32527-32537.
[107] ŠIKOVÁ M, WIEDERMANNOVÁ J, PŘEVOROVSKỲ M, et al. The torpedo effect in Bacil- lus subtilis: RN ase J1 resolves stalled transcription complexes[J]. The EMBO Journal, 2020, 39(3): e102500.
[108] MARTIN F H, TINOCO JR I. DNA-RNA hybrid duplexes containing oligo (dA: rU) sequences are exceptionally unstable and may facilitate termination of transcription[J]. Nucleic Acids Research, 1980, 8(10): 2295-2300.
[109] RAY-SONI A, BELLECOURT M J, LANDICK R. Mechanisms of bacterial transcription ter- mination: all good things must end[J]. Annual Review of Biochemistry, 2016, 85(1): 319-347.
[110] KASTENMAYER J, GREEN P. Novel features of the XRN-family in Arabidopsis: evidence that AtXRN4, one of several orthologs of nuclear Xrn2p/Rat1p, functions in the cytoplasm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(25): 13985-13990.
[111] SOURET F F, KASTENMAYER J P, GREEN P J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets[J]. Molecular Cell, 2004, 15(2): 173-183.
[112] GY I, GASCIOLLI V, LAURESSERGUES D, et al. Arabidopsis FIERY1, XRN2, and XRN3are endogenous RNA silencing suppressors[J]. The Plant Cell, 2007, 19(11): 3451-3461.
[113] ZAKRZEWSKA-PLACZEK M, SOURET F F, SOBCZYK G J, et al. Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA[J]. Nucleic Acids Research, 2010, 38(13): 4487-4502.
[114] KURIHARA Y, SCHMITZ R J, NERY J R, et al. Surveillance of 3′ noncoding transcripts requires FIERY1 and XRN3 in Arabidopsis[J]. G3: Genes| Genomes| Genetics, 2012, 2(4): 487-498.
[115] PORRUA O, BOUDVILLAIN M, LIBRI D. Transcription termination: variations on common themes[J]. Trends in Genetics, 2016, 32(8): 508-522.
[116] ARIMBASSERI A G, MARAIA R J. Mechanism of transcription termination by RNA poly- merase III utilizes a non-template strand sequence-specific signal element[J]. Molecular Cell, 2015, 58(6): 1124-1132.
[117] ORIOLI A, PASCALI C, QUARTARARO J, et al. Widespread occurrence of non-canonical transcription termination by human RNA polymerase III[J]. Nucleic Acids Research, 2011, 39(13): 5499-5512.
[118] HOFFMANN N A, JAKOBI A J, MORENO-MORCILLO M, et al. Molecular structures of unbound and transcribing RNA polymerase III[J]. Nature, 2015, 528(7581): 231-236.
[119] OLINS D E, OLINS A L. Chromatin history: our view from the bridge[J]. Nature Reviews Molecular Cell Biology, 2003, 4(10): 809-814.
[120] THURMAN R E, RYNES E, HUMBERT R, et al. The accessible chromatin landscape of the human genome[J]. Nature, 2012, 489(7414): 75-82.
[121] KLEMM S L, SHIPONY Z, GREENLEAF W J. Chromatin accessibility and the regulatory epigenome[J]. Nature Reviews Genetics, 2019, 20(4): 207-220.
[122] ALLIS C D, JENUWEIN T. The molecular hallmarks of epigenetic control[J]. Nature Reviews Genetics, 2016, 17(8): 487-500.
[123] MINNOYE L, MARINOV G K, KRAUSGRUBER T, et al. Chromatin accessibility profiling methods[J]. Nature Reviews Methods Primers, 2021, 1(1): 1-24.
[124] CLAPIER C R, IWASA J, CAIRNS B R, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes[J]. Nature Reviews Molecular Cell Biol- ogy, 2017, 18(7): 407-422.
[125] DEAL R B, HENIKOFF J G, HENIKOFF S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones[J]. Science, 2010, 328(5982): 1161-1164.
[126] MERKENSCHLAGER M, ODOM D T. CTCF and cohesin: linking gene regulatory elements with their targets[J]. Cell, 2013, 152(6): 1285-1297.
[127] KAPLAN N, MOORE I K, FONDUFE-MITTENDORF Y, et al. The DNA-encoded nucleo-some organization of a eukaryotic genome[J]. Nature, 2009, 458(7236): 362-366.
[128] SCHONES D E, CUI K, CUDDAPAH S, et al. Dynamic regulation of nucleosome positioning in the human genome[J]. Cell, 2008, 132(5): 887-898.
[129] CREYGHTON M P, MARKOULAKI S, LEVINE S S, et al. H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment[J]. Cell, 2008, 135(4): 649-661.
[130] JOHN S, SABO P J, JOHNSON T A, et al. Interaction of the glucocorticoid receptor with the chromatin landscape[J]. Molecular Cell, 2008, 29(5): 611-624.
[131] BOYLE A P, DAVIS S, SHULHA H P, et al. High-resolution mapping and characterization of open chromatin across the genome[J]. Cell, 2008, 132(2): 311-322.
[132] KELLY T K, LIU Y, LAY F D, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules[J]. Genome Research, 2012, 22(12): 2497- 2506.
[133] MIECZKOWSKI J, COOK A, BOWMAN S K, et al. MNase titration reveals differences be- tween nucleosome occupancy and chromatin accessibility[J]. Nature Communications, 2016, 7(1): 1-11.
[134] SUZUKI M M, BIRD A. DNA methylation landscapes: provocative insights from epigenomics [J]. Nature Reviews Genetics, 2008, 9(6): 465-476.
[135] LLOYD J P, LISTER R. Epigenome plasticity in plants[J]. Nature Reviews Genetics, 2022, 23(1): 55-68.
[136] ZHANG H, LANG Z, ZHU J K. Dynamics and function of DNA methylation in plants[J]. Nature Reviews Molecular Cell Biology, 2018, 19(8): 489-506.
[137] ZHANG X, YAZAKI J, SUNDARESAN A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6): 1189-1201.
[138] BEWICK A J, JI L, NIEDERHUTH C E, et al. On the origin and evolutionary consequences of gene body DNA methylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): 9111-9116.
[139] WOLLMANN H, STROUD H, YELAGANDULA R, et al. The histone H3 variant H3. 3 regulates gene body DNA methylation in Arabidopsis thaliana[J]. Genome Biology, 2017, 18(1): 1-10.
[140] LANG Z, WANG Y, TANG K, et al. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit[J]. Pro- ceedings of the National Academy of Sciences of the United States of America, 2017, 114(22): E4511-E4519.
[141] LI Q, GENT J I, ZYNDA G, et al. RNA-directed DNA methylation enforces boundaries be- tween heterochromatin and euchromatin in the maize genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14728-14733.
[142] MIROUZE M, REINDERS J, BUCHER E, et al. Selective epigenetic control of retrotranspo- sition in Arabidopsis[J]. Nature, 2009, 461(7262): 427-430.
[143] ITO H, GAUBERT H, BUCHER E, et al. An siRNA pathway prevents transgenerational retro- transposition in plants subjected to stress[J]. Nature, 2011, 472(7341): 115-119.
[144] WRIGHT D A, VOYTAS D F. Athila4 of Arabidopsis and Calypso of soybean define a lineage of endogenous plant retroviruses[J]. Genome Research, 2002, 12(1): 122-131.
[145] MOHANNATH G, PONTVIANNE F, PIKAARD C S. Selective nucleolus organizer inac- tivation in Arabidopsis is a chromosome position-effect phenomenon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47): 13426-13431.
[146] SÁEZ-VÁSQUEZ J, DELSENY M. Ribosome biogenesis in plants: from functional 45S ribo- somal DNA organization to ribosome assembly factors[J]. The Plant Cell, 2019, 31(9): 1945- 1967.
[147] COPENHAVER G P, PIKAARD C S. RFLP and physical mapping with an rDNA-specific en- donuclease reveals that nucleolus organizer regions of Arabidopsis thaliana adjoin the telomeres on chromosomes 2 and 4[J]. The Plant Journal, 1996, 9(2): 259-272.
[148] CHEN Z J, PIKAARD C S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance[J]. Genes & Development, 1997, 11(16): 2124-2136.
[149] PONTVIANNE F, ABOU-ELLAIL M, DOUET J, et al. Nucleolin is required for DNA methy- lation state and the expression of rRNA gene variants in Arabidopsis thaliana[J]. PLoS Genetics, 2010, 6(11): e1001225.
[150] PREUSS S B, COSTA-NUNES P, TUCKER S, et al. Multimegabase silencing in nucleo- lar dominance involves siRNA-directed DNA methylation and specific methylcytosine-binding proteins[J]. Molecular Cell, 2008, 32(5): 673-684.
[151] BLASCO M A. The epigenetic regulation of mammalian telomeres[J]. Nature Reviews Genet- ics, 2007, 8(4): 299-309.
[152] MICHISHITA E, MCCORD R A, BERBER E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J]. Nature, 2008, 452(7186): 492-496.
[153] GARCÍA-CAO M, O’SULLIVAN R, PETERS A H, et al. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases[J]. Nature Genetics, 2004, 36(1): 94-99.
[154] GONZALO S, JACO I, FRAGA M F, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells[J]. Nature Cell Biology, 2006, 8(4): 416-424.
[155] VRBSKY J, AKIMCHEVA S, WATSON J M, et al. siRNA–mediated methylation of Arabidop- sis telomeres[J]. PLoS Genetics, 2010, 6(6): e1000986.
[156] KANKEL M W, RAMSEY D E, STOKES T L, et al. Arabidopsis MET1 cytosine methyltrans- ferase mutants[J]. Genetics, 2003, 163(3): 1109-1122.
[157] LONG Y, JIA J, MO W, et al. FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyadenylation site and poly (A) tail length at genome-wide scale by single- molecule nascent RNA sequencing[J]. Nature Protocols, 2021, 16(9): 4355-4381.
[158] LI H. Minimap2: pairwise alignment for nucleotide sequences[J]. Bioinformatics, 2018, 34(18): 3094-3100.
[159] LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nature Methods, 2012, 9(4): 357-359.
[160] DOBIN A, DAVIS C A, SCHLESINGER F, et al. STAR: ultrafast universal RNA-seq aligner [J]. Bioinformatics, 2013, 29(1): 15-21.
[161] KRUEGER F, ANDREWS S R. Bismark: a flexible aligner and methylation caller for Bisulfite- Seq applications[J]. Bioinformatics, 2011, 27(11): 1571-1572.
[162] CHEN S, ZHOU Y, CHEN Y, et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
[163] LI H, HANDSAKER B, WYSOKER A, et al. The sequence alignment/map format and SAM- tools[J]. Bioinformatics, 2009, 25(16): 2078-2079.
[164] RAMÍREZ F, RYAN D P, GRÜNING B, et al. deepTools2: a next generation web server for deep-sequencing data analysis[J]. Nucleic Acids Research, 2016, 44(W1): W160-W165.
[165] ROBINSON J T, THORVALDSDÓTTIR H, WINCKLER W, et al. Integrative genomics viewer [J]. Nature Biotechnology, 2011, 29(1): 24-26.
[166] DIESH C, STEVENS G J, XIE P, et al. JBrowse 2: A modular genome browser with views of synteny and structural variation[J]. BioRxiv, 2022.
[167] CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications [J]. BMC Bioinformatics, 2009, 10(1): 1-9.
[168] ZHANG Y, LIU T, MEYER C A, et al. Model-based analysis of ChIP-Seq (MACS)[J]. Genome Biology, 2008, 9(9): 1-9.
[169] NI P, HUANG N, NIE F, et al. Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning[J]. Nature Communications, 2021, 12(1): 5976.
[170] WU X, LIU M, DOWNIE B, et al. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12533-12538.
[171] ZHANG S, LI R, ZHANG L, et al. New insights into Arabidopsis transcriptome complexity revealed by direct sequencing of native RNAs[J]. Nucleic Acids Research, 2020, 48(14): 7700- 7711.
[172] SHERSTNEV A, DUC C, COLE C, et al. Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation[J]. Nature Structural & Molecular Biology, 2012, 19(8): 845-852.
[173] ZHU J, LIU M, LIU X, et al. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis[J]. Nature Plants, 2018, 4(12): 1112-1123.
[174] KINDGREN P, IVANOV M, MARQUARDT S. Native elongation transcript sequencing re- veals temperature dependent dynamics of nascent RNAPII transcription in Arabidopsis[J]. Nu- cleic Acids Research, 2020, 48(5): 2332-2347.
[175] HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12316-12321.
[176] CHEN F X, SMITH E R, SHILATIFARD A. Born to run: control of transcription elongation by RNA polymerase II[J]. Nature Reviews Molecular Cell Biology, 2018, 19(7): 464-478.
[177] YU X, MARTIN P G, MICHAELS S D. BORDER proteins protect expression of neighboring genes by promoting 3′ Pol II pausing in plants[J]. Nature Communications, 2019, 10(1): 1-15.
[178] LIU C, XIN Y, XU L, et al. Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses[J]. Developmental Cell, 2018, 44(3): 348- 361.
[179] LIU W, DUTTKE S H, HETZEL J, et al. RNA-directed DNA methylation involves co- transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis[J]. Nature Plants, 2018, 4(3): 181-188.
[180] LU Z, HOFMEISTER B T, VOLLMERS C, et al. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes[J]. Nucleic Acids Research, 2017, 45(6): e41-e41.
[181] COULOMBE B, BURTON Z F. DNA bending and wrapping around RNA polymerase: a “revolutionary”model describing transcriptional mechanisms[J]. Microbiology and Molecular Biology Reviews, 1999, 63(2): 457-478.
[182] SOUSA-LUIS R, DUJARDIN G, ZUKHER I, et al. POINT technology illuminates the pro- cessing of polymerase-associated intact nascent transcripts[J]. Molecular Cell, 2021, 81(9): 1935-1950.
[183] LI Q, CHEN S, LEUNG A W S, et al. DNA methylation affects pre-mRNA transcriptional initiation and processing in Arabidopsis[J]. BioRxiv, 2021: 2021-04.
[184] THOMAS Q A, ARD R, LIU J, et al. Transcript isoform sequencing reveals widespread promoter-proximal transcriptional termination in Arabidopsis[J]. Nature Communications, 2020, 11(1): 1-15.
[185] DREXLER H L, CHOQUET K, CHURCHMAN L S. Splicing kinetics and coordination re- vealed by direct nascent RNA sequencing through nanopores[J]. Molecular Cell, 2020, 77(5): 985-998.
[186] WANG Y, WANG A, LIU Z, et al. Single-molecule long-read sequencing reveals the chromatin basis of gene expression[J]. Genome Research, 2019, 29(8): 1329-1342.
[187] STERGACHIS A B, DEBO B M, HAUGEN E, et al. Single-molecule regulatory architectures captured by chromatin fiber sequencing[J]. Science, 2020, 368(6498): 1449-1454.
[188] JEAN FINNEGAN E, DENNIS E S. Isolation and identification by sequence homology of a putative cytosine methyltransferase from Arabidopsis thaliana[J]. Nucleic Acids Research, 1993, 21(10): 2383-2388.
[189] STROUD H, GREENBERG M V, FENG S, et al. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome[J]. Cell, 2013, 152(1-2): 352-364.
[190] LAW J A, JACOBSEN S E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Reviews Genetics, 2010, 11(3): 204-220.
[191] STROUD H, DO T, DU J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis[J]. Nature Structural & Molecular Biology, 2014, 21(1): 64-72.
[192] MATZKE M A, MOSHER R A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity[J]. Nature Reviews Genetics, 2014, 15(6): 394-408.
[193] ZHONG Z, FENG S, DUTTKE S H, et al. DNA methylation-linked chromatin accessibility af- fects genomic architecture in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(5): e2023347118.
[194] LIANG Z, SHEN L, CUI X, et al. DNA N6-adenine methylation in Arabidopsis thaliana[J]. Developmental Cell, 2018, 45(3): 406-416.
[195] MARAND A P, CHEN Z, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution[J]. Cell, 2021, 184(11): 3041-3055.
[196] MAY B P, LIPPMAN Z B, FANG Y, et al. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats[J]. PLoS Genetics, 2005, 1(6): e79.
[197] TSUKAHARA S, KAWABE A, KOBAYASHI A, et al. Centromere-targeted de novo integra- tions of an LTR retrotransposon of Arabidopsis lyrata[J]. Genes & Development, 2012, 26(7): 705-713.
[198] VAQUERO-SEDAS M I, LUO C, VEGA-PALAS M A. Analysis of the epigenetic status of telomeres by using ChIP-seq data[J]. Nucleic Acids Research, 2012, 40(21): e163-e163.
[199] DUBOCANIN D, SEDENO CORTES A, RANCHALIS J E, et al. Single-molecule architecture and heterogeneity of human telomeric DNA and chromatin[J]. BioRxiv, 2022: 2022-05.
[200] NELSON A D, SHIPPEN D E. Blunt-ended telomeres: an alternative ending to the replication and end protection stories[J]. Genes & Development, 2012, 26(15): 1648-1652.
[201] MAESTRONI L, MATMATI S, COULON S. Solving the telomere replication problem[J]. Genes, 2017, 8(2): 55.
[202] MAKAROV V L, HIROSE Y, LANGMORE J P. Long G tails at both ends of human chromo- somes suggest a C strand degradation mechanism for telomere shortening[J]. Cell, 1997, 88(5): 657-666.
[203] BLASCO M A. Telomere length, stem cells and aging[J]. Nature Chemical Biology, 2007, 3 (10): 640-649.
[204] LUO S, PREUSS D. Strand-biased DNA methylation associated with centromeric regions in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of Amer- ica, 2003, 100(19): 11133-11138.

所在学位评定分委会
生物学
国内图书分类号
Q37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543937
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
莫伟鹏. 应用纳米孔测序技术对拟南芥转录终止和表观基因组的研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930795-莫伟鹏-生物系.pdf(11879KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[莫伟鹏]的文章
百度学术
百度学术中相似的文章
[莫伟鹏]的文章
必应学术
必应学术中相似的文章
[莫伟鹏]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。