中文版 | English
题名

氧化铪纳米晶的可控合成及其在存储器件中的应用研究

其他题名
CONTROLLABLE SYNTHESIS OF HAFNIUM OXIDE NANOCRYSTALS FOR MEMORY DEVICES
姓名
姓名拼音
CHEN Xiaozhang
学号
12132435
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
祝渊
导师单位
深港微电子学院
论文答辩日期
2023-05-20
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要
  随着摩尔定律的不断发展,传统的存储器技术路线不可避免地面临发展瓶颈,因此探索新的材料用以发展新型非易失型存储器显得至关重要。近年来,研究者在薄层的氧化铪(HfO2)薄膜中发现了铁电相,体现了HfO2 这种材料在下一代阻变存储器(RRAM)和铁电存储器(FeRAM)应用方面的巨大潜力。然而目前所报道用于制备存储器件的HfO2材料的方法主要为原子层沉积(ALD)和物理气相沉积(PVD)等方法,均需要昂贵的设备。基于此,本论文以制备高性能的RRAMFeRAM为目标,采用低成本的水热法制备HfO2纳米晶,围绕材料制备和表征、存储器件制备及测试、铁电特性和阻变机理分析等几个方面开展研究:
  采用水热法合成了尺寸在几十纳米到几百纳米范围的HfO2纳米晶,表征结果显示HfO2纳米晶呈弱结晶状态,同时兼备单斜、正交、四方三种不同的晶相,且纳米晶中存在大量的铪空位、晶界和晶格畸变等缺陷并显示了较弱的铁电特性。此外,通过控制反应前驱体的比例HfO2纳米晶中的化学计量比也可以从富氧缺铪状态被调控为缺氧富铪状态,从而调控材料中的缺陷种类。进一步地,不同气氛中的快速热退火结果显示,在氩气和空气氛围下较低温度的快速热退火不仅有利于提高HfO2的晶体质量,同时也有利于RRAM 器件性能的改善,而过高的退火温度则会大幅度降低HfO2中的缺陷密度,从而降低了器件的性能。相较之下,在真空氛围中的热退火有助于改善HfO2的铁电特性却会减弱其阻变特性。
  对HfO2 进行了不同含量的锆(Zr)元素和钇(Y)元素掺杂,研究结果显示掺 Zr HfO2样品同时存在间隙氧和铪空位两种缺陷,且由于掺ZrHfO2样品具有更高的结晶性,随着掺杂量的提升会不断减少间隙氧的数量,从而提高RRAM器件的稳定性和耐久性。相较之下,Y元素的掺杂对HfO2RRAM器件的性能影响很小。
  基于富氧缺铪的HfO2样品,采用Cu作为接触电极制备了Cu/HfO2/Cu 结构的RRAM 器件,系统研究了器件在25℃85℃条件下的阻变性能,并首次提出了铪空位在电场下移动所形成的导电细丝模型为器件的阻变机理,此外基于该RRAM器件模拟了人脑前后突触之间的电流传输行为,体现了其在人工突触器件方面的应用潜力。
关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] 苏海磊. 铪基铁电存储器理论研究[D]. 华中科技大学, 2019.
[2] 傅耀威, 丁莹, 薛堪豪, 等. 非易失半导体存储器技术发展状况浅析[J]. 科技中国, 2021.
[3] 贾梦华. 3D NAND 闪存存储器可靠性研究与系统优化[D]. 山东大学, 2021.
[4] 钟刊. 基于新型非易失性存储器的移动终端性能优化研究[D]. 重庆大学, 2018.
[5] 雷馨. 磁阻式随机存储器研究现状[J]. 重庆科技学院学报: 自然科学版, 2010(4): 145-148.
[6] 宋志昊, 张昆华, 闻明, 等. 相变存储材料的研究现状及未来发展趋势[J]. 材料导报, 2020,34(21): 21099-21104.
[7] CHEN A. A review of emerging non-volatile memory (NVM) technologies and applications[J]. Solid-State Electronics, 2016, 125: 25-38.
[8] WONG H S P, SALAHUDDIN S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3): 191-194.
[9] 杨永菲. 基于氧化铪阻变存储器的特性研究[D]. 西安电子科技大学, 2020.
[10] 刘巧灵. 基于氧化铪的 FeFET 栅结构制备及其电学性能研究[D]. 湘潭大学, 2018.
[11] HICKMOTT T. Low-frequency negative resistance in thin anodic oxide films[J]. Journal of Applied Physics, 1962, 33(9): 2669-2682.
[12] BEAK I. Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses[J]. Tech. Dig. Int. Electron Devices Meet., San Francisco„2004: 587-590.
[13] YAN Z, LIU J M. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures[J]. Scientific Reports, 2013, 3(1): 1-7.
[14] CHAE S C, LEE J S, KIM S, et al. Random circuit breaker network model for unipolar resistance switching[J]. Advanced Materials, 2008, 20(6): 1154-1159.
[15] PARK I S, KIM K R, LEE S, et al. Resistance switching characteristics for nonvolatile memory operation of binary metal oxides[J]. Japanese Journal of Applied Physics, 2007, 46(4S): 2172.
[16] SASSINE G, LA BARBERA S, NAJJARI N, et al. Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2016, 34(1): 012202.
[17] LIAN X, CARTOIXA X, MIRANDA E, et al. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices[J]. Journal of Applied Physics, 2014, 115(24): 244507.
[18] LIN C Y, CHEN P H, CHANG T C, et al. Attaining resistive switching characteristics and selector properties by varying forming polarities in a single HfO2-based RRAM device with a vanadium electrode[J]. Nanoscale, 2017, 9(25): 8586-8590.
[19] WU Q, BANERJEE W, CAO J, et al. Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices[J]. Applied Physics Letters, 2018, 113(2): 023105.
[20] YOON J H, KIM K M, SONG S J, et al. Pt/Ta2O5/HfO2-x/Ti resistive switching memory competing with multilevel NAND flash[J]. Advanced Materials, 2015, 27(25): 3811-3816.
[21] ROY S, NIU G, WANG Q, et al. Toward a reliable synaptic simulation using Al-doped HfO2 RRAM[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10648-10656.
[22] FOUSEK J. Joseph Valasek and the discovery of ferroelectricity[C]//Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics. IEEE, 1994: 1-5.
[23] BUCK D A. Ferroelectrics for digital information storage and switching.[R]. Massachusetts Inst of Tech Cambridge Digital Computer Lab, 1952.
[24] MOORE R, BENEDETTO J, ROD B. Total dose effect on ferroelectric PZT capacitors used as non-volatile storage elements[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1591-1596.
[25] AMANUMA K, HASE T, MIYASAKA Y. Preparation and ferroelectric properties ofSrBi2Ta2O9 thin films[J]. Applied Physics Letters, 1995, 66(2): 221-223.
[26] LEE H J, LEE M, LEE K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2[J]. Science, 2020, 369(6509): 1343-1347.
[27] BÖSCKE T, MÜLLER J, BRÄUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[28] MULLER J, BOSCKE T S, SCHRODER U, et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano Letters, 2012, 12(8): 4318-4323.
[29] 察明扬, 陈佩瑶, 陈琳, 等. 铪基铁电薄膜及其隧道结存储器件研究[J]. 湘潭大学学报 (自然科学版), 2019.
[30] PARK M H, SCHENK T, SCHROEDER U. Dopants in atomic layer deposited HfO2 thin films[M]//Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier,2019: 49-74.
[31] PARK M H, SCHENK T, FANCHER C M, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants[J]. Journal of Materials Chemistry C,2017, 5(19): 4677-4690.
[32] MATERLIK R, KÜNNETH C, KERSCH A. The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model[J]. Journal of Applied Physics, 2015,117(13): 134109.
[33] PARK M H, LEE Y H, KIM H J, et al. Morphotropic phase boundary of Hf1-xZrxO2 thin films for dynamic random access memories[J]. ACS Applied Materials & Interfaces, 2018, 10(49):42666-42673.
[34] MIMURA T, SHIMIZU T, FUNAKUBO H. Ferroelectricity in YO1. 5-HfO2 films around 1um in thickness[J]. Applied Physics Letters, 2019, 115(3): 032901.
[35] PEŠIĆ M, FENGLER F P G, LARCHER L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors[J]. Advanced Functional Materials, 2016, 26(25): 4601-4612.
[36] GRIMLEY E D, SCHENK T, SANG X, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films[J]. Advanced Electronic Materials, 2016, 2(9):1600173.
[37] SLESAZECK S, HAVEL V, BREYER E, et al. Uniting the trinity of ferroelectric HfO2 memory devices in a single memory cell[C]//2019 IEEE 11th International Memory Workshop (IMW).IEEE, 2019: 1-4.
[38] MIKOLAJICK T, SLESAZECK S, MULAOSMANOVIC H, et al. Next generation ferroelectric materials for semiconductor process integration and their applications[J]. Journal of Applied Physics, 2021, 129(10): 100901.
[39] CHEN H, TANG L, LIU L, et al. Significant improvement of ferroelectricity and reliability in Hf0. 5Zr0. 5O2 films by inserting an ultrathin Al2O3 buffer layer[J]. Applied Surface Science,2021, 542: 148737.
[40] KIM Y, MIN K K, YU J, et al. Lamination method for improved polarization-leakage current relation in HfO2-based metal/ferroelectric/insulator/semiconductor structure[J]. Semiconductor Science and Technology, 2022, 37(4): 045001.
[41] LUO Q, CHENG Y, YANG J, et al. A highly CMOS compatible hafnia-based ferroelectric diode[J]. Nature Communications, 2020, 11(1): 1391.
[42] KIM M K, KIM I J, LEE J S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory[J]. Science Advances, 2021, 7(3): eabe1341.
[43] HOFFMANN M, SLESAZECK S, SCHROEDER U, et al. What's next for negative capacitance electronics?[J]. Nature Electronics, 2020, 3(9): 504-506.
[44] CHIU F C, et al. A review on conduction mechanisms in dielectric films[J]. Advances in Materials Science and Engineering, 2014, 2014.
[45] LEE C K, CHO E, LEE H S, et al. First-principles study on doping and phase stability of HfO2[J]. Physical Review B, 2008, 78(1): 012102.
[46] HUAN T D, SHARMA V, ROSSETTI JR G A, et al. Pathways towards ferroelectricity in hafnia[J]. Physical Review B, 2014, 90(6): 064111.
[47] DOGAN M, GONG N, MA T P, et al. Causes of ferroelectricity in HfO2-based thin films: an ab initio perspective[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12150-12162.
[48] TARAN G, BARANCHIKOV A, IVANOVA O, et al. Hydrothermal Synthesis of Aqueous Sols of Nanocrystalline HfO2[J]. Russian Journal of Inorganic Chemistry, 2020, 65: 800-804.
[49] 万盈盈. 二氧化铪纳米材料的水热合成, 晶型控制及其性质[D]. 东华大学, 2017.
[50] JAYARAMAN V, BHAVESH G, CHINNATHAMBI S, et al. Synthesis and characterization of hafnium oxide nanoparticles for bio-safety[J]. Materials Express, 2014, 4(5): 375-383.
[51] MÜLLER J, BÖSCKE T, BRÄUHAUS D, et al. Ferroelectric Zr0. 5Hf0.5O2 thin films for nonvolatile memory applications[J]. Applied Physics Letters, 2011, 99(11): 112901.
[52] XU X, HUANG F T, QI Y, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2: Y[J]. Nature Materials, 2021, 20(6): 826-832.
[53] STARSCHICH S, MENZEL S, BÖTTGER U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide[J]. Applied Physics Letters, 2016, 108(3): 032903.
[54] MITTMANN T, MATERANO M, LOMENZO P D, et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering[J]. Advanced Materials Interfaces, 2019, 6(11):1900042.
[55] HE R, WU H, LIU S, et al. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies[J]. Physical Review B, 2021, 104(18): L180102.
[56] BARRECA D, MILANOV A, FISCHER R A, et al. Hafnium oxide thin film grown by ALD:An XPS study[J]. Surface Science Spectra, 2007, 14(1): 34-40.
[57] PEREGO M, SEGUINI G, FANCIULLI M. XPS and IPE analysis of HfO2 band alignment with high-mobility semiconductors[J]. Materials Science in Semiconductor Processing, 2008,11(5-6): 221-225.
[58] IATSUNSKYI I, KEMPIŃSKI M, JANCELEWICZ M, et al. Structural and XPS characterization of ALD Al2O3 coated porous silicon[J]. Vacuum, 2015, 113: 52-58.
[59] KU B, ABBAS Y, SOKOLOV A S, et al. Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors[J]. Journal of Alloys and Compounds, 2018, 735: 1181-1188.
[60] YUAN F Y, DENG N, SHIH C C, et al. Conduction mechanism and improved endurance in HfO2-based RRAM with nitridation treatment[J]. Nanoscale Research Letters, 2017, 12: 1-6.
[61] ZHANG J, WANG F, LI C, et al. Insight into interface behavior and microscopic switching mechanism for flexible HfO2 RRAM[J]. Applied Surface Science, 2020, 526: 146723.
[62] ZHAO X, CHANG K, LIU B, et al. Electrochemical-tunable and mesostructure-dependent abrupt-to-progressive conversion in fibroin-based transient memristor[J]. Applied Physics Letters, 2022, 121(2): 023301.
[63] CHANG C F, CHEN J Y, HUANG G M, et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM[J]. Nano Energy, 2018, 53: 871-879.
[64] CHANG T, JO S H, LU W. Short-term memory to long-term memory transition in a nanoscale memristor[J]. ACS Nano, 2011, 5(9): 7669-7676.
[65] WIXTED J T, EBBESEN E B. On the form of forgetting[J]. Psychological Science, 1991, 2(6):409-415.

所在学位评定分委会
材料与化工
国内图书分类号
TN389
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543940
专题南方科技大学-香港科技大学深港微电子学院筹建办公室
推荐引用方式
GB/T 7714
陈孝璋. 氧化铪纳米晶的可控合成及其在存储器件中的应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132435-陈孝璋-南方科技大学-(8375KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陈孝璋]的文章
百度学术
百度学术中相似的文章
[陈孝璋]的文章
必应学术
必应学术中相似的文章
[陈孝璋]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。