[1] 苏海磊. 铪基铁电存储器理论研究[D]. 华中科技大学, 2019.
[2] 傅耀威, 丁莹, 薛堪豪, 等. 非易失半导体存储器技术发展状况浅析[J]. 科技中国, 2021.
[3] 贾梦华. 3D NAND 闪存存储器可靠性研究与系统优化[D]. 山东大学, 2021.
[4] 钟刊. 基于新型非易失性存储器的移动终端性能优化研究[D]. 重庆大学, 2018.
[5] 雷馨. 磁阻式随机存储器研究现状[J]. 重庆科技学院学报: 自然科学版, 2010(4): 145-148.
[6] 宋志昊, 张昆华, 闻明, 等. 相变存储材料的研究现状及未来发展趋势[J]. 材料导报, 2020,34(21): 21099-21104.
[7] CHEN A. A review of emerging non-volatile memory (NVM) technologies and applications[J]. Solid-State Electronics, 2016, 125: 25-38.
[8] WONG H S P, SALAHUDDIN S. Memory leads the way to better computing[J]. Nature Nanotechnology, 2015, 10(3): 191-194.
[9] 杨永菲. 基于氧化铪阻变存储器的特性研究[D]. 西安电子科技大学, 2020.
[10] 刘巧灵. 基于氧化铪的 FeFET 栅结构制备及其电学性能研究[D]. 湘潭大学, 2018.
[11] HICKMOTT T. Low-frequency negative resistance in thin anodic oxide films[J]. Journal of Applied Physics, 1962, 33(9): 2669-2682.
[12] BEAK I. Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses[J]. Tech. Dig. Int. Electron Devices Meet., San Francisco„2004: 587-590.
[13] YAN Z, LIU J M. Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures[J]. Scientific Reports, 2013, 3(1): 1-7.
[14] CHAE S C, LEE J S, KIM S, et al. Random circuit breaker network model for unipolar resistance switching[J]. Advanced Materials, 2008, 20(6): 1154-1159.
[15] PARK I S, KIM K R, LEE S, et al. Resistance switching characteristics for nonvolatile memory operation of binary metal oxides[J]. Japanese Journal of Applied Physics, 2007, 46(4S): 2172.
[16] SASSINE G, LA BARBERA S, NAJJARI N, et al. Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2016, 34(1): 012202.
[17] LIAN X, CARTOIXA X, MIRANDA E, et al. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices[J]. Journal of Applied Physics, 2014, 115(24): 244507.
[18] LIN C Y, CHEN P H, CHANG T C, et al. Attaining resistive switching characteristics and selector properties by varying forming polarities in a single HfO2-based RRAM device with a vanadium electrode[J]. Nanoscale, 2017, 9(25): 8586-8590.
[19] WU Q, BANERJEE W, CAO J, et al. Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices[J]. Applied Physics Letters, 2018, 113(2): 023105.
[20] YOON J H, KIM K M, SONG S J, et al. Pt/Ta2O5/HfO2-x/Ti resistive switching memory competing with multilevel NAND flash[J]. Advanced Materials, 2015, 27(25): 3811-3816.
[21] ROY S, NIU G, WANG Q, et al. Toward a reliable synaptic simulation using Al-doped HfO2 RRAM[J]. ACS Applied Materials & Interfaces, 2020, 12(9): 10648-10656.
[22] FOUSEK J. Joseph Valasek and the discovery of ferroelectricity[C]//Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics. IEEE, 1994: 1-5.
[23] BUCK D A. Ferroelectrics for digital information storage and switching.[R]. Massachusetts Inst of Tech Cambridge Digital Computer Lab, 1952.
[24] MOORE R, BENEDETTO J, ROD B. Total dose effect on ferroelectric PZT capacitors used as non-volatile storage elements[J]. IEEE Transactions on Nuclear Science, 1993, 40(6): 1591-1596.
[25] AMANUMA K, HASE T, MIYASAKA Y. Preparation and ferroelectric properties ofSrBi2Ta2O9 thin films[J]. Applied Physics Letters, 1995, 66(2): 221-223.
[26] LEE H J, LEE M, LEE K, et al. Scale-free ferroelectricity induced by flat phonon bands in HfO2[J]. Science, 2020, 369(6509): 1343-1347.
[27] BÖSCKE T, MÜLLER J, BRÄUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Applied Physics Letters, 2011, 99(10): 102903.
[28] MULLER J, BOSCKE T S, SCHRODER U, et al. Ferroelectricity in simple binary ZrO2 and HfO2[J]. Nano Letters, 2012, 12(8): 4318-4323.
[29] 察明扬, 陈佩瑶, 陈琳, 等. 铪基铁电薄膜及其隧道结存储器件研究[J]. 湘潭大学学报 (自然科学版), 2019.
[30] PARK M H, SCHENK T, SCHROEDER U. Dopants in atomic layer deposited HfO2 thin films[M]//Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices. Elsevier,2019: 49-74.
[31] PARK M H, SCHENK T, FANCHER C M, et al. A comprehensive study on the structural evolution of HfO2 thin films doped with various dopants[J]. Journal of Materials Chemistry C,2017, 5(19): 4677-4690.
[32] MATERLIK R, KÜNNETH C, KERSCH A. The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model[J]. Journal of Applied Physics, 2015,117(13): 134109.
[33] PARK M H, LEE Y H, KIM H J, et al. Morphotropic phase boundary of Hf1-xZrxO2 thin films for dynamic random access memories[J]. ACS Applied Materials & Interfaces, 2018, 10(49):42666-42673.
[34] MIMURA T, SHIMIZU T, FUNAKUBO H. Ferroelectricity in YO1. 5-HfO2 films around 1um in thickness[J]. Applied Physics Letters, 2019, 115(3): 032901.
[35] PEŠIĆ M, FENGLER F P G, LARCHER L, et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors[J]. Advanced Functional Materials, 2016, 26(25): 4601-4612.
[36] GRIMLEY E D, SCHENK T, SANG X, et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films[J]. Advanced Electronic Materials, 2016, 2(9):1600173.
[37] SLESAZECK S, HAVEL V, BREYER E, et al. Uniting the trinity of ferroelectric HfO2 memory devices in a single memory cell[C]//2019 IEEE 11th International Memory Workshop (IMW).IEEE, 2019: 1-4.
[38] MIKOLAJICK T, SLESAZECK S, MULAOSMANOVIC H, et al. Next generation ferroelectric materials for semiconductor process integration and their applications[J]. Journal of Applied Physics, 2021, 129(10): 100901.
[39] CHEN H, TANG L, LIU L, et al. Significant improvement of ferroelectricity and reliability in Hf0. 5Zr0. 5O2 films by inserting an ultrathin Al2O3 buffer layer[J]. Applied Surface Science,2021, 542: 148737.
[40] KIM Y, MIN K K, YU J, et al. Lamination method for improved polarization-leakage current relation in HfO2-based metal/ferroelectric/insulator/semiconductor structure[J]. Semiconductor Science and Technology, 2022, 37(4): 045001.
[41] LUO Q, CHENG Y, YANG J, et al. A highly CMOS compatible hafnia-based ferroelectric diode[J]. Nature Communications, 2020, 11(1): 1391.
[42] KIM M K, KIM I J, LEE J S. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory[J]. Science Advances, 2021, 7(3): eabe1341.
[43] HOFFMANN M, SLESAZECK S, SCHROEDER U, et al. What's next for negative capacitance electronics?[J]. Nature Electronics, 2020, 3(9): 504-506.
[44] CHIU F C, et al. A review on conduction mechanisms in dielectric films[J]. Advances in Materials Science and Engineering, 2014, 2014.
[45] LEE C K, CHO E, LEE H S, et al. First-principles study on doping and phase stability of HfO2[J]. Physical Review B, 2008, 78(1): 012102.
[46] HUAN T D, SHARMA V, ROSSETTI JR G A, et al. Pathways towards ferroelectricity in hafnia[J]. Physical Review B, 2014, 90(6): 064111.
[47] DOGAN M, GONG N, MA T P, et al. Causes of ferroelectricity in HfO2-based thin films: an ab initio perspective[J]. Physical Chemistry Chemical Physics, 2019, 21(23): 12150-12162.
[48] TARAN G, BARANCHIKOV A, IVANOVA O, et al. Hydrothermal Synthesis of Aqueous Sols of Nanocrystalline HfO2[J]. Russian Journal of Inorganic Chemistry, 2020, 65: 800-804.
[49] 万盈盈. 二氧化铪纳米材料的水热合成, 晶型控制及其性质[D]. 东华大学, 2017.
[50] JAYARAMAN V, BHAVESH G, CHINNATHAMBI S, et al. Synthesis and characterization of hafnium oxide nanoparticles for bio-safety[J]. Materials Express, 2014, 4(5): 375-383.
[51] MÜLLER J, BÖSCKE T, BRÄUHAUS D, et al. Ferroelectric Zr0. 5Hf0.5O2 thin films for nonvolatile memory applications[J]. Applied Physics Letters, 2011, 99(11): 112901.
[52] XU X, HUANG F T, QI Y, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2: Y[J]. Nature Materials, 2021, 20(6): 826-832.
[53] STARSCHICH S, MENZEL S, BÖTTGER U. Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide[J]. Applied Physics Letters, 2016, 108(3): 032903.
[54] MITTMANN T, MATERANO M, LOMENZO P D, et al. Origin of ferroelectric phase in undoped HfO2 films deposited by sputtering[J]. Advanced Materials Interfaces, 2019, 6(11):1900042.
[55] HE R, WU H, LIU S, et al. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies[J]. Physical Review B, 2021, 104(18): L180102.
[56] BARRECA D, MILANOV A, FISCHER R A, et al. Hafnium oxide thin film grown by ALD:An XPS study[J]. Surface Science Spectra, 2007, 14(1): 34-40.
[57] PEREGO M, SEGUINI G, FANCIULLI M. XPS and IPE analysis of HfO2 band alignment with high-mobility semiconductors[J]. Materials Science in Semiconductor Processing, 2008,11(5-6): 221-225.
[58] IATSUNSKYI I, KEMPIŃSKI M, JANCELEWICZ M, et al. Structural and XPS characterization of ALD Al2O3 coated porous silicon[J]. Vacuum, 2015, 113: 52-58.
[59] KU B, ABBAS Y, SOKOLOV A S, et al. Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors[J]. Journal of Alloys and Compounds, 2018, 735: 1181-1188.
[60] YUAN F Y, DENG N, SHIH C C, et al. Conduction mechanism and improved endurance in HfO2-based RRAM with nitridation treatment[J]. Nanoscale Research Letters, 2017, 12: 1-6.
[61] ZHANG J, WANG F, LI C, et al. Insight into interface behavior and microscopic switching mechanism for flexible HfO2 RRAM[J]. Applied Surface Science, 2020, 526: 146723.
[62] ZHAO X, CHANG K, LIU B, et al. Electrochemical-tunable and mesostructure-dependent abrupt-to-progressive conversion in fibroin-based transient memristor[J]. Applied Physics Letters, 2022, 121(2): 023301.
[63] CHANG C F, CHEN J Y, HUANG G M, et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM[J]. Nano Energy, 2018, 53: 871-879.
[64] CHANG T, JO S H, LU W. Short-term memory to long-term memory transition in a nanoscale memristor[J]. ACS Nano, 2011, 5(9): 7669-7676.
[65] WIXTED J T, EBBESEN E B. On the form of forgetting[J]. Psychological Science, 1991, 2(6):409-415.
修改评论