[1] HUGHES S, YANG H, CHAN-LING T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis[J]. Investigative ophthalmology & visual science, 2000, 41(5): 1217-1228.
[2] VAHIA V N. Diagnostic and statistical manual of mental disorders 5: A quick glance[J]. Indian journal of psychiatry, 2013, 55(3): 220.
[3] REN R, QI J, LIN S, et al. The China Alzheimer Report 2022[J]. General Psychiatry, 2022, 35(1).
[4] JIA L, DU Y, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. The Lancet Public Health, 2020, 5(12): e661-e671.
[5] 贾建平, 王荫华, 李焰生, 等. 中国痴呆与认知障碍诊治指南 (二): 痴呆分型及诊断标准[J].中华医学杂志, 2011, 91(10): 651-655.
[6] MEIBURGER K M, SALVI M, ROTUNNO G, et al. Automatic segmentation and classification methods using optical coherence tomography angiography (OCTA): a review and handbook[J]. Applied Sciences, 2021, 11(20): 9734.
[7] BULUT M, KURTULUŞ F, GÖZKAYA O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia[J]. British Journal of Ophthalmology, 2018, 102(2): 233-237.
[8] ZHANG Y S, ZHOU N, KNOLL B M, et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s disease on optical coherence tomography angiography[J]. PloS one, 2019, 14(4): e0214685.
[9] YOON S P, THOMPSON A C, POLASCIK B W, et al. Correlation of OCTA and volumetric MRI in mild cognitive impairment and Alzheimer’s disease[J]. Ophthalmic Surgery, Lasers and Imaging Retina, 2019, 50(11): 709-718.
[10] SALOBRAR-GARCIA E, MÉNDEZ-HERNÁNDEZ C, HOZ R D, et al. Ocular vascularchanges in mild Alzheimer’s disease patients: Foveal avascular zone, choroidal thickness, and ONH hemoglobin analysis[J]. Journal of personalized medicine, 2020, 10(4): 231.
[11] ROBBINS C B, THOMPSON A C, BHULLAR P K, et al. Characterization of retinal microvascular and choroidal structural changes in Parkinson disease[J]. JAMA ophthalmology, 2021, 139(2): 182-188.
[12] SHI C, CHEN Y, KWAPONG W R, et al. Characterization by fractal dimension analysis of the retinal capillary network in Parkinson disease[J]. Retina, 2020, 40(8): 1483-1491.
[13] MUTLU U, COLIJN J M, IKRAM M A, et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study[J]. JAMA neurology, 2018, 75(10): 1256-1263.
[14] ZHANG S, KWAPONG W R, YANG T, et al. Choriocapillaris Changes Are Correlated With Disease Duration and MoCA Score in Early-Onset Dementia[J]. Frontiers in Aging Neuroscience, 2021, 13: 192.
[15] MOONS L, DE GROEF L. Multimodal retinal imaging to detect and understand Alzheimer’s and Parkinson’s disease[J]. Current opinion in neurobiology, 2022, 72: 1-7.
[16] LAU A Y, MOK V, LEE J, et al. Retinal image analytics detects white matter hyperintensitiesin healthy adults[J]. Annals of clinical and translational neurology, 2019, 6(1): 98-105.
[17] JEENA R, SUKESH KUMAR A, MAHADEVAN K. Stroke diagnosis from retinal fundus images using multi texture analysis[J]. Journal of Intelligent & Fuzzy Systems, 2019, 36(3): 2025-2032.
[18] RAVEENDRAN SUSHA J. Computation of retinal fundus parameters for stroke prediction[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2020, 8(4): 374-381.
[19] TIAN J, SMITH G, GUO H, et al. Modular machine learning for Alzheimer’s disease classification from retinal vasculature[J]. Scientific Reports, 2021, 11(1): 1-11.
[20] NUNES A, SILVA G, DUQUE C, et al. Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls[J]. PloS one, 2019, 14(6): e0218826.
[21] JEENA R, SHINY G, SUKESH KUMAR A, et al. A Comparative analysis of stroke diagnosis from retinal images using hand-crafted features and CNN[J]. Journal of Intelligent & Fuzzy Systems, 2021(Preprint): 1-9.
[22] SANDEEP C, KUMAR A S, MAHADEVAN K, et al. Classification of OCT images for the early diagnosis of Alzheimer’s disease[C]//2017 International Conference on Intelligent Computing and Control (I2C2). IEEE, 2017: 1-5.
[23] MA Y, HAO H, XIE J, et al. ROSE: a retinal OCT-angiography vessel segmentation dataset and new model[J]. IEEE transactions on medical imaging, 2020, 40(3): 928-939.
[24] WISELY C E, WANG D, HENAO R, et al. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging[J]. British Journal of Ophthalmology, 2022, 106(3): 388-395.
[25] DE FAUW J, LEDSAM J R, ROMERA-PAREDES B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nature medicine, 2018, 24(9): 1342-1350.
[26] RAJKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. New England Journal of Medicine, 2019, 380(14): 1347-1358.
[27] BADAR M, HARIS M, FATIMA A. Application of deep learning for retinal image analysis: A review[J]. Computer Science Review, 2020, 35: 100203.
[28] YANAGIHARA R T, LEE C S, TING D S W, et al. Methodological challenges of deep learning in optical coherence tomography for retinal diseases: a review[J]. Translational Vision Science & Technology, 2020, 9(2): 11-11.
[29] CHEN X, HOU P, JIN C, et al. Quantitative analysis of retinal layer optical intensities on three-dimensional optical coherence tomography[J]. Investigative ophthalmology & visual science, 2013, 54(10): 6846-6851.
[30] SUN M, ZHANG Z, MA C, et al. Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma[J]. PloS one, 2017, 12(6): e0179532.
[31] SUN Z, CHEN H, SHI F, et al. An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images[J]. Scientific reports, 2016, 6(1): 1-10.
[32] GUO J, ZHU W, SHI F, et al. A framework for classification and segmentation of branch retinal artery occlusion in SD-OCT[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3518-3527.
[33] CHENG J, LIU J, XU Y, et al. Superpixel classification based optic disc and optic cup segmentation for glaucoma screening[J]. IEEE transactions on medical imaging, 2013, 32(6): 1019-1032.
[34] TAN N M, XU Y, GOH W B, et al. Robust multi-scale superpixel classification for optic cup localization[J]. Computerized Medical Imaging and Graphics, 2015, 40: 182-193.
[35] LIU Z, WANG C, CAI X, et al. Discrimination of Diabetic Retinopathy From Optical Coherence Tomography Angiography Images Using Machine Learning Methods[J]. IEEE access, 2021, 9: 51689-51694.
[36] GULSHAN V, PENG L, CORAM M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. Jama, 2016, 316(22): 2402-2410.
[37] FU H, CHENG J, XU Y, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE transactions on medical imaging, 2018, 37(7): 1597-1605.
[38] ORLANDO J I, PROKOFYEVA E, DEL FRESNO M, et al. An ensemble deep learning based approach for red lesion detection in fundus images[J]. Computer methods and programs in biomedicine, 2018, 153: 115-127.
[39] ZHAO M, HAMARNEH G. Retinal Image Classification via Vasculature-Guided Sequential Attention[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (IC CVW). IEEE Computer Society, 2019: 381-387.
[40] SALMA A, BUSTAMAM A, YUDANTHA A R, et al. Diabetic Retinopathy Detection and Classification Using GoogleNet and Attention Mechanism Through Fundus Images[J]. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021, 12(14): 590-597.
[41] WANG W, XU Z, YU W, et al. Two-stream CNN with loose pair training for multimodal AMD categorization[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2019: 156-164.
[42] HEISLER M, KARST S, LO J, et al. Ensemble deep learning for diabetic retinopathy detection using optical coherence tomography angiography[J]. Translational Vision Science & Technology, 2020, 9(2): 20-20.
[43] HUA R, XIONG J, LI G, et al. Development and validation of a deep learning algorithm based on fundus photographs for estimating the CAIDE dementia risk score[J]. Age and Ageing, 2022, 51(12): 282.
[44] THAKOOR K, BORDBAR D, YAO J, et al. Hybrid 3d-2d Deep Learning For Detection Of Neovascularage-Related Macular Degeneration Using Optical Coherence Tomography B-Scans And Angiography Volumes[C]//2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021: 1600-1604.
[45] HE X, DENG Y, FANG L, et al. Multi-Modal Retinal Image Classification With Modality-Specific Attention Network[J]. IEEE Transactions on Medical Imaging, 2021, 40(6): 1591-1602.
[46] LI M, CHEN Y, JI Z, et al. Image projection network: 3D to 2D image segmentation in OCTA images[J]. IEEE Transactions on Medical Imaging, 2020, 39(11): 3343-3354.
[47] LIN L, WANG Z, WU J, et al. BSDA-Net: A Boundary Shape and Distance Aware Joint Learning Framework for Segmenting and Classifying OCTA Images[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2021: 65-75.
[48] HUANG D, SWANSON E A, LIN C P, et al. Optical coherence tomography[J]. science, 1991, 254(5035): 1178-1181.
[49] LE D, ALAM M N, LIM J I, et al. Deep learning for objective OCTA detection of diabetic retinopathy[C]//Ophthalmic Technologies: volume 11218. SPIE, 2020: 98-103.
[50] ZANG P, GAO L, HORMEL T T, et al. Dcardnet: Diabetic retinopathy classification at multiple levels based on structural and angiographic optical coherence tomography[J]. IEEE Transactions on Biomedical Engineering, 2020, 68(6): 1859-1870.
[51] DE CARLO T E, ROMANO A, WAHEED N K, et al. A review of optical coherence tomography angiography (OCTA)[J]. International journal of retina and vitreous, 2015, 1: 1-15.
[52] PELLEGRINI M, VAGGE A, FERRO DESIDERI L, et al. Optical coherence tomography angiography in neurodegenerative disorders[J]. Journal of clinical medicine, 2020, 9(6): 1706.
[53] ALAM M, LE D, SON T, et al. AV-Net: deep learning for fully automated artery-vein classification in optical coherence tomography angiography[J]. Biomedical optics express, 2020, 11(9): 5249.
[54] AOYAMA Y, MARUKO I, KAWANO T, et al. Diagnosis of central serous chorioretinopathy by deep learning analysis of en face images of choroidal vasculature: A pilot study[J]. PLoS One, 2021, 16(6): e0244469.
[55] PRENTAŠIĆ P, HEISLER M, MAMMO Z, et al. Segmentation of the foveal microvasculature using deep learning networks[J]. Journal of biomedical optics, 2016, 21(7): 075008-075008.
[56] MOU L, ZHAO Y, CHEN L, et al. CS-Net: channel and spatial attention network for curvilinear structure segmentation[C]//Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I 22. Springer, 2019: 721-730.
[57] PISSAS T, BLOCH E, CARDOSO M J, et al. Deep iterative vessel segmentation in OCT angiography[J]. Biomedical Optics Express, 2020, 11(5): 2490-2510.
[58] GIARRATANO Y, BIANCHI E, GRAY C, et al. Automated segmentation of optical coherence tomography angiography images: benchmark data and clinically relevant metrics[J]. Translational vision science & technology, 2020, 9(13): 5-5.
[59] LO J, HEISLER M, VANZAN V, et al. Microvasculature segmentation and intercapillary area quantification of the deep vascular complex using transfer learning[J]. Translational Vision Science & Technology, 2020, 9(2): 38-38.
[60] KIRZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25: 1097-1105.
[61] DENG J, DONG W, SOCHER R, et al. Imagenet: A large-scale hierarchical image database[C]//2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009: 248-255.
[62] AJIT A, ACHARYA K, SAMANTA A. A review of convolutional neural networks[C]//2020 international conference on emerging trends in information technology and engineering (ic ETITE). IEEE, 2020: 1-5.
[63] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[64] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[65] ROSENBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, 2015: 234-241.
[66] RAO A, PARK J, WOO S, et al. Studying the effects of self-attention for medical image analysis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3416-3425.
[67] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J]. Computational Visual Media, 2022, 8(3): 331-368.
[68] CHEN L, ZHANG H, XIAO J, et al. Sca-cnn: Spatial and channel-wise attention in convolutional networks for image captioning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 5659-5667.
[69] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7132-7141.
[70] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[J]. Advances in neural information processing systems, 2014, 27: 2204-2212.
[71] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[J]. Advances in neural information processing systems, 2015, 28: 2017-2025.
[72] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7794-7803.
[73] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[74] PARK J, WOO S, LEE J Y, et al. Bam: Bottleneck attention module[A/OL]. 2018. arXiv: 1807.06514. https://arxiv.org/abs/1807.06514.
[75] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 45(1): 87-110.
[76] MA Y, HAO H, XIE J, et al. ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New Model[J]. IEEE transactions on medical imaging, 2020, 40(3): 928-939.
[77] CHENG H X, HAN X F, XIAO G Q. CENet: Toward Concise and Efficient LiDAR Semantic Segmentation for Autonomous Driving[M]//2022 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2022: 01-06.
[78] PIAO S, LIU J. Accuracy Improvement of UNet Based on Dilated Convolution[M]//Journal of Physics Conference Series: volume 1345. 2019: 052066.
[79] CAO Y, LIU S, PENG Y, et al. DenseUNet: densely connected UNet for electron microscopy image segmentation[J]. IET Image Processing, 2020, 14(12): 2682-2689.
[80] ZHUANG J. LadderNet: Multi-path networks based on U-Net for medical image segmentation[A/OL]. 2018. arXiv: 1810.07810. http://arxiv.org/abs/1810.07810.
[81] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: Learning Where to Look for the Pancreas[A/OL]. 2018. arXiv: 1804.03999. https://arxiv.org/abs/1804.03999.
[82] XING G, CHEN L, WANG H, et al. Multi-scale pathological fluid segmentation in OCT with a novel curvature loss in convolutional neural network.[J]. IEEE Transactions on Medical Imaging, 2022, 41(6): 1547-1559.
[83] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[J]. medical image computing and computer assisted intervention, 2015: 234-241.
[84] ZHAO Y, ZHANG J, PEREIRA E, et al. Automated tortuosity analysis of nerve fibers in corneal confocal microscopy[J]. IEEE transactions on medical imaging, 2020, 39(9): 2725-2737.
[85] DE JESUS D A, BREA L S, BREDA J B, et al. OCTA multilayer and multisector peripapillary microvascular modeling for diagnosing and staging of glaucoma[J]. Translational Vision Science & Technology, 2020, 9(2): 58-58.
[86] FU H, GENG Y, ZHANG C, et al. Red-nets: Redistribution networks for multi-view classification[J]. Information Fusion, 2021, 65: 119-127.
[87] LI S Y, JIANG Y, ZHOU Z H. Partial multi-view clustering[C]//Proceedings of the AAAI conference on artificial intelligence: volume 28. 2014: 1968-1974.
[88] CHEN C F R, FAN Q, PANDA R. Crossvit: Cross-attention multi-scale vision transformer for image classification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 357-366.
[89] YAN S, XIONG X, ARNAB A, et al. Multiview Transformers for Video Recognition[M]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 3333-3343.
[90] HERMESSI H, MOURALI O, ZAGROUBA E. Multimodal medical image fusion review: Theoretical background and recent advances[J]. Signal Processing, 2021, 183: 108036.
[91] WANG X, SHU K, KUANG H, et al. The Role of Spatial Alignment in Multimodal Medical Image Fusion Using Deep Learning for Diagnostic Problems[C]//2021 the 3rd International Conference on Intelligent Medicine and Health. 2021: 40-46.
[92] ZHOU T, CANU S, VERA P, et al. 3D Medical Multi-modal Segmentation Network Guided by Multi-source Correlation Constraint[C]//2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021: 10243-10250.
[93] ZHANG N, DING S, LIAO H, et al. Multimodal correlation deep belief networks for multi-view classification[J]. Applied Intelligence, 2019, 49(5): 1925-1936.
[94] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE international conference on computer vision. 2017: 618-626.
[95] LYNCH C J, LISTON C. New machine-learning technologies for computer-aided diagnosis[J]. Nature medicine, 2018, 24(9): 1304-1305.
[96] LIU J, JIANG Y, LI Z, et al. Partially shared latent factor learning with multiview data[J]. IEEE transactions on neural networks and learning systems, 2014, 26(6): 1233-1246.
[97] HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J. Canonical correlation analysis: An overview with application to learning methods[J]. Neural computation, 2004, 16(12): 2639-2664.
[98] TISHBY N, ZASLAVSKY N. Deep learning and the information bottleneck principle[C]//2015 ieee information theory workshop (itw). IEEE, 2015: 1-5.
[99] WAN Z, ZHANG C, ZHU P, et al. Multi-View Information-Bottleneck Representation Learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence: volume 35. 2021: 10085-10092.
[100] SMITH S M, JENKINSON M, WOOLRICH M W, et al. Advances in functional and structural MR image analysis and implementation as FSL[J]. Neuroimage, 2004, 23: 208-219.
修改评论