[1] ANIENTO F, SÁNCHEZ DE MEDINA HERNÁNDEZ V, DAGDAS Y, et al. Molecular mechanisms of endomembrane trafficking in plants[J]. The Plant Cell, 2022, 34(1): 146-173.
[2] SAITO C, UEDA T. Chapter 4: functions of RAB and SNARE proteins in plant life[J]. International Review of Cell and Molecular Biology, 2009, 274: 183-233.
[3] GALLWITZ D, DONATH C, SANDER C. A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product[J]. Nature, 1983, 306(5944): 704-707.
[4] GOUD B, ZAHRAOUI A, TAVITIAN A, et al. Small GTP-binding protein associated with Golgi cisternae[J]. Nature, 1990, 345(6275): 553-556.
[5] DIRAC-SVEJSTRUP A B, SUMIZAWA T, PFEFFER S R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab–GDI[J]. The EMBO Journal, 1997, 16(3): 465-472.
[6] YUAN W, SONG C. The emerging role of Rab5 in membrane receptor trafficking and signaling pathways[J]. Biochemistry Research International, 2020, 2020(2):1-10.
[7] RINK J, GHIGO E, KALAIDZIDIS Y, et al. Rab conversion as a mechanism of progression from early to late endosomes[J]. Cell, 2005, 122(5): 735-749.
[8] MATTERA R, TSAI Y C, WEISSMAN A M, et al. The Rab5 guanine nucleotide exchange factor Rabex-5 binds Ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain*[J]. Journal of Biological Chemistry, 2006, 281(10): 6874-6883.
[9] LEE S, TSAI Y C, MATTERA R, et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5[J]. Nature Structural & Molecular Biology, 2006, 13(3): 264-271.
[10] HUOTARI J, HELENIUS A. Endosome maturation[J]. The EMBO Journal, 2011, 30(17): 3481-3500.
[11] DEL CONTE-ZERIAL P, BRUSCH L, RINK J C, et al. Membrane identity and GTPase cascades regulated by toggle and cut-out switches[J]. Molecular Systems Biology, 2008, 4: 206.
[12] SCOTT C C, VACCA F, GRUENBERG J. Endosome maturation, transport and functions[J]. Seminars In Cell & Developmental Biology, 2014, 31: 2-10.
[13] SINGER-KRüGER B, STENMARK H, DüSTERHöFT A, et al. Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast[J]. Journal of Cell Biology, 1994, 125(2): 283-298.
[14] WICHMANN H, HENGST L, GALLWITZ D. Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p)[J]. Cell, 1992, 71(7): 1131-1142.
[15] DAY K J, CASLER J C, GLICK B S. Budding Yeast Has a Minimal Endomembrane System[J]. Developmental Biology, 2018, 44(1): 56-72.
[16] PEREIRA-LEAL J B. The Ypt/Rab family and the evolution of trafficking in fungi[J]. Traffic, 2008, 9(1): 27-38.
[17] GROSSHANS B L, ORTIZ D, NOVICK P. Rabs and their effectors: achieving specificity in membrane traffic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 11821-11827.
[18] BRENNWALD P, NOVICK P. Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4[J]. Nature, 1993, 362(6420): 560-563.
[19] CHAVRIER P, GORVEL J-P, STELZER E, et al. Hypervariable C-termmal domain of rab proteins acts as a targeting signal[J]. Nature, 1991, 353(6346): 769-772.
[20] UEDA T, YAMAGUCHI M, UCHIMIYA H, et al. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana[J]. The EMBO Journal, 2001, 20(17): 4730-4741.
[21] UEDA T, UEMURA T, SATO M H, et al. Functional differentiation of endosomes in Arabidopsis cells[J]. The Plant Journal, 2004, 40(5): 783-789.
[22] GELDNER N, ANDERS N, WOLTERS H, et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth[J]. Cell, 2003, 112(2): 219-230.
[23] HAAS T J, SLIWINSKI M K, MARTíNEZ D E, et al. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5[J]. The Plant Cell, 2007, 19(4): 1295-1312.
[24] SOHN E J, KIM E S, ZHAO M, et al. Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins[J]. The Plant Cell, 2003, 15(5): 1057-1070.
[25] KOTZER A M, BRANDIZZI F, NEUMANN U, et al. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells[J]. Journal Of Cell Science, 2004, 117(26): 6377-6389.
[26] DHONUKSHE P, BALUSKA F, SCHLICHT M, et al. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis[J]. Developmental Cell, 2006, 10(1): 137-150.
[27] HORIUCHI H, LIPPé R, MCBRIDE H M, et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function[J]. Cell, 1997, 90(6): 1149-1159.
[28] KäLIN S, HIRSCHMANN D T, BUSER D P, et al. Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation[J]. Journal of Cell Science, 2015, 128(22): 4126-4137.
[29] DE RENZIS S, SöNNICHSEN B, ZERIAL M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes[J]. Nature Cell Biology, 2002, 4(2): 124-133.
[30] CHRISTOFORIDIS S, MCBRIDE H M, BURGOYNE R D, et al. The rab5 effector EEA1 is a core component of endosome docking[J]. Nature, 1999, 397(6720): 621-625.
[31] PERINI E D, SCHAEFER R, STöTER M, et al. Mammalian CORVET is required for fusion and conversion of distinct early endosome subpopulations[J]. Traffic, 2014, 15(12): 1366-1389.
[32] LACHMANN J, GLAUBKE E, MOORE P S, et al. The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET[J]. Cellular Logistics, 2014, 4(4): e970840.
[33] SHIN H-W, HAYASHI M, CHRISTOFORIDIS S, et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway[J]. Journal of Cell Biology, 2005, 170(4): 607-618.
[34] LAWE D C, CHAWLA A, MERITHEW E, et al. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1*210[J]. Journal of Biological Chemistry, 2002, 277(10): 8611-8617.
[35] CARNEY D S, DAVIES B A, HORAZDOVSKY B F. Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons[J]. Trends in Cell Biology, 2006, 16(1): 27-35.
[36] HAMA H, TALL G G, HORAZDOVSKY B F. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport[J]. Journal Of Biological Chemistry, 1999, 274(21): 15284-15291.
[37] BURD C G, MUSTOL P A, SCHU P V, et al. A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins[J]. Molecular Biology Of The Cell, 1996, 16(5): 2369-2377.
[38] PENENGO L, MAPELLI M, MURACHELLI A G, et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin[J]. Cell, 2006, 124(6): 1183-1195.
[39] GOH T, UCHIDA W, ARAKAWA S, et al. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana[J]. The Plant Cell, 2007, 19(11): 3504-3515.
[40] INOUE T, KONDO Y, NARAMOTO S, et al. RAB5 activation is required for multiple steps in Arabidopsis thaliana root development[J]. Plant Cell Physiol, 2013, 54(10): 1648-1659.
[41] BENKOVá E, MICHNIEWICZ M, SAUER M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5): 591-602.
[42] FRIML J, VIETEN A, SAUER M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963): 147-153.
[43] NIELSEN M E, JURGENS G, THORDAL-CHRISTENSEN H. VPS9a activates the Rab5 GTPase ARA7 to confer distinct pre- and postinvasive plant innate immunity[J]. The Plant Cell, 2017, 29(8): 1927-1937.
[44] SASIKUMAR A N, PEREZ W B, KINZY T G. The many roles of the eukaryotic elongation factor 1 complex[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2012, 3(4): 543-555.
[45] JANSSEN G M, VAN DAMME H T, KRIEK J, et al. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex?[J]. Journal of Biological Chemistry, 1994, 269(50): 31410-31417.
[46] JEPPESEN M G, ORTIZ P, SHEPARD W, et al. The crystal structure of the glutathione S-transferase-like domain of elongation factor 1Bγ from Saccharomyces cerevisiae*[J]. Journal of Biological Chemistry, 2003, 278(47): 47190-47198.
[47] VITAGLIANO L, MASULLO M, SICA F, et al. The crystal structure of Sulfolobus solfataricus elongation factor 1 α in complex with GDP reveals novel features in nucleotide binding and exchange[J]. The EMBO Journal, 2001, 20(19): 5305-5311.
[48] KAWASHIMA T, BERTHET-COLOMINAS C, WULFF M, et al. The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution[J]. Nature, 1996, 379(6565): 511-518.
[49] NISSEN P, THIRUP S, KJELDGAARD M, et al. The crystal structure of Cys-tRNACys–EF-Tu–GDPNP reveals general and specific features in the ternary complex and in tRNA[J]. Structure, 1999, 7(2): 143-156.
[50] CARVALHO M D G D C, CARVALHO J F, MERRICK W C. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes[J]. Archives of Biochemistry and Biophysics, 1984, 234(2): 603-611.
[51] WILSON D N, DOUDNA J H. The structure and function of the eukaryotic ribosome[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(5):a011536.
[52] PITTMAN Y R, VALENTE L, JEPPESEN M G, et al. Mg2+ and a key lysine modulate exchange activity of eukaryotic translation elongation factor 1B alpha[J]. Journal of Biological Chemistry, 2006, 281(28): 19457-19468.
[53] JANSSEN G M, MöLLER W. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis[J]. Journal of Biological Chemistry, 1988, 263(4): 1773-1778.
[54] SANDERS J, BRANDSMA M, JANSSEN G M, et al. Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 beta gamma delta in the endoplasmic reticulum[J]. Journal of Cell Science, 1996, 109 (5): 1113-1117.
[55] YANG F, DEMMA M, WARREN V, et al. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a[J]. Nature, 1990, 347(6292): 494-496.
[56] MUNSHI R, KANDL K A, CARR-SCHMID A, et al. Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast[J]. Genetics, 2001, 157(4): 1425-1436.
[57] GROSSHANS H, HURT E, SIMOS G. An aminoacylation-dependent nuclear tRNA export pathway in yeast[J]. Genes & Development, 2000, 14(7): 830-840.
[58] HOTOKEZAKA Y, TöBBEN U, HOTOKEZAKA H, et al. Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides*[J]. Journal of Biological Chemistry, 2002, 277(21): 18545-18551.
[59] CHUANG S-M, CHEN L, LAMBERTSON D, et al. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A[J]. Molecular and Cellular Biology, 2005, 25(1): 403-413.
[60] DE NOVA-OCAMPO M, VILLEGAS-SEPúLVEDA N, DEL ANGEL R M. Translation elongation factor-1α, La, and PTB interact with the 3′untranslated region of dengue 4 virus RNA[J]. Virology, 2002, 295(2): 337-347.
[61] WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6): 1021-1058.
[62] WASTERNACK C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681-697.
[63] HUANG H, LIU B, LIU L, et al. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 2017, 68(6): 1349-1359.
[64] WASTERNACK C, STRNAD M. Jasmonate signaling in plant stress responses and development – active and inactive compounds[J]. New Biotechnology, 2016, 33(5): 604-613.
[65] LI Q, ZHENG J, LI S, et al. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling[J]. Molecular Plant, 2017, 10(5): 695-708.
[66] QI T, SONG S, REN Q, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(5): 1795-1814.
[67] BROWSE J. Jasmonate passes muster: a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60: 183-205.
[68] CHEN R, JIANG H, LI L, et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24(7): 2898-2916.
[69] KIM J, CHANG C, TUCKER M L. To grow old: regulatory role of ethylene and jasmonic acid in senescence[J]. Frontiers in Plant Science, 2015, 6: 20.
[70] QI T, HUANG H, WU D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. The Plant Cell, 2014, 26(3): 1118-1133.
[71] MOSBLECH A, THUROW C, GATZ C, et al. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana[J]. The Plant Journal, 2011, 65(6): 949-957.
[72] CHEN Q, SUN J, ZHAI Q, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3335-3352.
[73] ZHOU W, LOZANO-TORRES J L, BLILOU I, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4): 942-956.
[74] NAKATA M, MITSUDA N, HERDE M, et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. The Plant Cell, 2013, 25(5): 1641-1656.
[75] ZHU Z, AN F, FENG Y, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12539-12544.
[76] ZHAO S, ZHANG Q, LIU M, et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9):4609.
[77] LUU D T, MARTINIèRE A, SORIEUL M, et al. Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress[J]. Plant Biotechnology Journal, 2012, 69(5): 894-905.
[78] DINNENY J R, LONG T A, WANG J Y, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress[J]. Science, 2008, 320(5878): 942-945.
[79] EBINE K, FUJIMOTO M, OKATANI Y, et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6[J]. Nature Reviews Molecular Cell Biology, 2011, 13(7): 853-859.
[80] ITO E, EBINE K, CHOI S W, et al. Integration of two RAB5 groups during endosomal transport in plants[J]. Elife, 2018, 7:e34064.
[81] MAZEL A, LESHEM Y, TIWARI B, et al. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e)[J]. Plant physiology, 2004, 134: 118-128.
[82] KIM S-J, BASSHAM D C. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis[J]. Plant Physiology, 2011, 156(2): 514-526.
[83] SUNADA M, GOH T, UEDA T, et al. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana[J]. Journal of Plant Research, 2016, 129(1): 93-102.
[84] HRABAK E M, CHAN C W M, GRIBSKOV M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2): 666-680.
[85] YAN C, YAN Z, WANG Y, et al. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(20): 5933-5944.
[86] LI R, RODRIGUEZ-FURLAN C, WANG J, et al. Different endomembrane trafficking pathways establish apical and basal polarities[J]. The Plant Cell, 2016, 29(1): 90-108.
[87] LAM S K, CAI Y, TSE Y C, et al. BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells[J]. Plant Biotechnology Journal, 2009, 60(5): 865-881.
[88] WANG B, ZHANG H, HUAI J, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis[J]. Nature Chemical Biology, 2022, 18(12): 1361-1369.
[89] KROSCHWALD S, MAHARANA S, ALBERTI S. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments[J]. Matters, 2017, e201702000010.
[90] UEJIMA T, IHARA K, GOH T, et al. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5.Vps9 system[J]. Journal of Biological Chemistry, 2010, 285(47): 36689-36697.
[91] YADAV V, MALLAPPA C, GANGAPPA S N, et al. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth[J]. Plant Cell, 2005, 17(7): 1953-1966.
[92] NAGANO M, TOSHIMA J Y, SIEKHAUS D E, et al. Rab5-mediated endosome formation is regulated at the trans-Golgi network[J]. Communications Biology, 2019, 2: 419.
修改评论