中文版 | English
题名

拟南芥Rab5鸟苷酸交换因子VPS9a响应盐胁迫和JA信号机制研究

其他题名
STUDY ON THE MECHANISM OF ARABIDOPSIS RAB5 GEF VPS9A IN SALT STRESS RESPONSE AND JA SIGNALING PATHWAY
姓名
姓名拼音
SUN Bingyan
学号
12032127
学位类型
硕士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
李瑞熙
导师单位
生命科学学院@生物系
论文答辩日期
2023-05-16
论文提交日期
2023-06-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

Rab5 GTP酶为真核生物保守的GTP酶,调控囊泡内吞途径。Rab5 GTP酶可在活性GTP结合状态和非活性GDP结合状态之间循环,这个过程由特异性的鸟苷酸交换因子(guanine nucleotide exchange factors, GEFs)催化。在模式植物拟南芥中,VPS9a作为营养生长时期唯一的GEF激活所有的Rab5 GTP酶。VPS9a蛋白N端为真核生物保守的GEF 结构域,而C端为大片段内在无序区域(intrinsically disordered region, IDR),仅在陆生植物广泛存在,但功能尚不清楚。本项目旨在研究VPS9a依赖于C端无序序列的植物特有功能。首先,生理学实验证实VPS9a能快速响应盐和渗透胁迫富集到细胞内凝聚物中,且该效应依赖于CIDR结构域。进一步细胞学实验表明VPS9a在盐胁迫下形成的凝聚物与下游Rab5 GTP ARA7明显分离,但与FM4-64染料标记的囊泡及RABA2a标记的反式高尔基体高度共定位,暗示VPS9a在盐胁迫下改变内膜分选途径

接下来,我们通过酵母双杂交实验筛选VPS9a互作蛋白。我们筛选到翻译延伸因子EF1AVPS9a互作因子,并通过生化实验证实VPS9a通过NGEF结构域与EF1A互作。进一步体外翻译实验表明,VPS9a蛋白强烈抑制翻译效率,最高可达90 %。然而,VPS9aEF1A在盐胁迫处理前后均没有显著共定位。因此,VPS9a抑制翻译的作用可能与盐胁迫响应没有直接关系。

我们也研究了VPS9a在激素信号通路中的作用。研究结果表明, VPS9a转录水平在茉莉酸(Jasmonate, JA)处理后明显下调。生信分析发现VPS9a启动子上存在JA信号途径关键转录因子MYC结合的G -box位点,并通过体外凝胶迁移阻滞实验得以证实。生理学实验表明VPS9a功能减弱会导致突变体幼苗对JA处理超敏感,主根明显缩短。因此,VPS9a也参与JA激素信号途径调控植物主根发育。

综上所述,本课题研究揭示了进化中保守的Rab5 GEF VPS9a通过CIDR结构域感知盐胁迫信号,可能以独立于Rab5途径的作用方式调控植物盐胁迫响应。同时,我们也意外发现VPS9a可通过NGEF结构域抑制翻译,虽然该结果的生理学意义尚不清楚。我们也初步探究了VPS9aJA激素信号通路中的重要作用。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] ANIENTO F, SÁNCHEZ DE MEDINA HERNÁNDEZ V, DAGDAS Y, et al. Molecular mechanisms of endomembrane trafficking in plants[J]. The Plant Cell, 2022, 34(1): 146-173.
[2] SAITO C, UEDA T. Chapter 4: functions of RAB and SNARE proteins in plant life[J]. International Review of Cell and Molecular Biology, 2009, 274: 183-233.
[3] GALLWITZ D, DONATH C, SANDER C. A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product[J]. Nature, 1983, 306(5944): 704-707.
[4] GOUD B, ZAHRAOUI A, TAVITIAN A, et al. Small GTP-binding protein associated with Golgi cisternae[J]. Nature, 1990, 345(6275): 553-556.
[5] DIRAC-SVEJSTRUP A B, SUMIZAWA T, PFEFFER S R. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab–GDI[J]. The EMBO Journal, 1997, 16(3): 465-472.
[6] YUAN W, SONG C. The emerging role of Rab5 in membrane receptor trafficking and signaling pathways[J]. Biochemistry Research International, 2020, 2020(2):1-10.
[7] RINK J, GHIGO E, KALAIDZIDIS Y, et al. Rab conversion as a mechanism of progression from early to late endosomes[J]. Cell, 2005, 122(5): 735-749.
[8] MATTERA R, TSAI Y C, WEISSMAN A M, et al. The Rab5 guanine nucleotide exchange factor Rabex-5 binds Ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain*[J]. Journal of Biological Chemistry, 2006, 281(10): 6874-6883.
[9] LEE S, TSAI Y C, MATTERA R, et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5[J]. Nature Structural & Molecular Biology, 2006, 13(3): 264-271.
[10] HUOTARI J, HELENIUS A. Endosome maturation[J]. The EMBO Journal, 2011, 30(17): 3481-3500.
[11] DEL CONTE-ZERIAL P, BRUSCH L, RINK J C, et al. Membrane identity and GTPase cascades regulated by toggle and cut-out switches[J]. Molecular Systems Biology, 2008, 4: 206.
[12] SCOTT C C, VACCA F, GRUENBERG J. Endosome maturation, transport and functions[J]. Seminars In Cell & Developmental Biology, 2014, 31: 2-10.
[13] SINGER-KRüGER B, STENMARK H, DüSTERHöFT A, et al. Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast[J]. Journal of Cell Biology, 1994, 125(2): 283-298.
[14] WICHMANN H, HENGST L, GALLWITZ D. Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p)[J]. Cell, 1992, 71(7): 1131-1142.
[15] DAY K J, CASLER J C, GLICK B S. Budding Yeast Has a Minimal Endomembrane System[J]. Developmental Biology, 2018, 44(1): 56-72. 
[16] PEREIRA-LEAL J B. The Ypt/Rab family and the evolution of trafficking in fungi[J]. Traffic, 2008, 9(1): 27-38.
[17] GROSSHANS B L, ORTIZ D, NOVICK P. Rabs and their effectors: achieving specificity in membrane traffic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 11821-11827.
[18] BRENNWALD P, NOVICK P. Interactions of three domains distinguishing the Ras-related GTP-binding proteins Ypt1 and Sec4[J]. Nature, 1993, 362(6420): 560-563.
[19] CHAVRIER P, GORVEL J-P, STELZER E, et al. Hypervariable C-termmal domain of rab proteins acts as a targeting signal[J]. Nature, 1991, 353(6346): 769-772.
[20] UEDA T, YAMAGUCHI M, UCHIMIYA H, et al. Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana[J]. The EMBO Journal, 2001, 20(17): 4730-4741.
[21] UEDA T, UEMURA T, SATO M H, et al. Functional differentiation of endosomes in Arabidopsis cells[J]. The Plant Journal, 2004, 40(5): 783-789.
[22] GELDNER N, ANDERS N, WOLTERS H, et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth[J]. Cell, 2003, 112(2): 219-230.
[23] HAAS T J, SLIWINSKI M K, MARTíNEZ D E, et al. The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5[J]. The Plant Cell, 2007, 19(4): 1295-1312.
[24] SOHN E J, KIM E S, ZHAO M, et al. Rha1, an Arabidopsis Rab5 homolog, plays a critical role in the vacuolar trafficking of soluble cargo proteins[J]. The Plant Cell, 2003, 15(5): 1057-1070.
[25] KOTZER A M, BRANDIZZI F, NEUMANN U, et al. AtRabF2b (Ara7) acts on the vacuolar trafficking pathway in tobacco leaf epidermal cells[J]. Journal Of Cell Science, 2004, 117(26): 6377-6389.
[26] DHONUKSHE P, BALUSKA F, SCHLICHT M, et al. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis[J]. Developmental Cell, 2006, 10(1): 137-150.
[27] HORIUCHI H, LIPPé R, MCBRIDE H M, et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function[J]. Cell, 1997, 90(6): 1149-1159.
[28] KäLIN S, HIRSCHMANN D T, BUSER D P, et al. Rabaptin5 is recruited to endosomes by Rab4 and Rabex5 to regulate endosome maturation[J]. Journal of Cell Science, 2015, 128(22): 4126-4137.
[29] DE RENZIS S, SöNNICHSEN B, ZERIAL M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes[J]. Nature Cell Biology, 2002, 4(2): 124-133.
[30] CHRISTOFORIDIS S, MCBRIDE H M, BURGOYNE R D, et al. The rab5 effector EEA1 is a core component of endosome docking[J]. Nature, 1999, 397(6720): 621-625.
[31] PERINI E D, SCHAEFER R, STöTER M, et al. Mammalian CORVET is required for fusion and conversion of distinct early endosome subpopulations[J]. Traffic, 2014, 15(12): 1366-1389.
[32] LACHMANN J, GLAUBKE E, MOORE P S, et al. The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET[J]. Cellular Logistics, 2014, 4(4): e970840.
[33] SHIN H-W, HAYASHI M, CHRISTOFORIDIS S, et al. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway[J]. Journal of Cell Biology, 2005, 170(4): 607-618.
[34] LAWE D C, CHAWLA A, MERITHEW E, et al. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1*210[J]. Journal of Biological Chemistry, 2002, 277(10): 8611-8617.
[35] CARNEY D S, DAVIES B A, HORAZDOVSKY B F. Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons[J]. Trends in Cell Biology, 2006, 16(1): 27-35.
[36] HAMA H, TALL G G, HORAZDOVSKY B F. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport[J]. Journal Of Biological Chemistry, 1999, 274(21): 15284-15291.
[37] BURD C G, MUSTOL P A, SCHU P V, et al. A yeast protein related to a mammalian Ras-binding protein, Vps9p, is required for localization of vacuolar proteins[J]. Molecular Biology Of The Cell, 1996, 16(5): 2369-2377.
[38] PENENGO L, MAPELLI M, MURACHELLI A G, et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin[J]. Cell, 2006, 124(6): 1183-1195.
[39] GOH T, UCHIDA W, ARAKAWA S, et al. VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana[J]. The Plant Cell, 2007, 19(11): 3504-3515.
[40] INOUE T, KONDO Y, NARAMOTO S, et al. RAB5 activation is required for multiple steps in Arabidopsis thaliana root development[J]. Plant Cell Physiol, 2013, 54(10): 1648-1659.
[41] BENKOVá E, MICHNIEWICZ M, SAUER M, et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation[J]. Cell, 2003, 115(5): 591-602.
[42] FRIML J, VIETEN A, SAUER M, et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis[J]. Nature, 2003, 426(6963): 147-153.
[43] NIELSEN M E, JURGENS G, THORDAL-CHRISTENSEN H. VPS9a activates the Rab5 GTPase ARA7 to confer distinct pre- and postinvasive plant innate immunity[J]. The Plant Cell, 2017, 29(8): 1927-1937.
[44] SASIKUMAR A N, PEREZ W B, KINZY T G. The many roles of the eukaryotic elongation factor 1 complex[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2012, 3(4): 543-555.
[45] JANSSEN G M, VAN DAMME H T, KRIEK J, et al. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex?[J]. Journal of Biological Chemistry, 1994, 269(50): 31410-31417.
[46] JEPPESEN M G, ORTIZ P, SHEPARD W, et al. The crystal structure of the glutathione S-transferase-like domain of elongation factor 1Bγ from Saccharomyces cerevisiae*[J]. Journal of Biological Chemistry, 2003, 278(47): 47190-47198.
[47] VITAGLIANO L, MASULLO M, SICA F, et al. The crystal structure of Sulfolobus solfataricus elongation factor 1 α in complex with GDP reveals novel features in nucleotide binding and exchange[J]. The EMBO Journal, 2001, 20(19): 5305-5311.
[48] KAWASHIMA T, BERTHET-COLOMINAS C, WULFF M, et al. The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution[J]. Nature, 1996, 379(6565): 511-518.
[49] NISSEN P, THIRUP S, KJELDGAARD M, et al. The crystal structure of Cys-tRNACys–EF-Tu–GDPNP reveals general and specific features in the ternary complex and in tRNA[J]. Structure, 1999, 7(2): 143-156.
[50] CARVALHO M D G D C, CARVALHO J F, MERRICK W C. Biological characterization of various forms of elongation factor 1 from rabbit reticulocytes[J]. Archives of Biochemistry and Biophysics, 1984, 234(2): 603-611.
[51] WILSON D N, DOUDNA J H. The structure and function of the eukaryotic ribosome[J]. Cold Spring Harbor Perspectives in Biology, 2012, 4(5):a011536.
[52] PITTMAN Y R, VALENTE L, JEPPESEN M G, et al. Mg2+ and a key lysine modulate exchange activity of eukaryotic translation elongation factor 1B alpha[J]. Journal of Biological Chemistry, 2006, 281(28): 19457-19468.
[53] JANSSEN G M, MöLLER W. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis[J]. Journal of Biological Chemistry, 1988, 263(4): 1773-1778.
[54] SANDERS J, BRANDSMA M, JANSSEN G M, et al. Immunofluorescence studies of human fibroblasts demonstrate the presence of the complex of elongation factor-1 beta gamma delta in the endoplasmic reticulum[J]. Journal of Cell Science, 1996, 109 (5): 1113-1117.
[55] YANG F, DEMMA M, WARREN V, et al. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a[J]. Nature, 1990, 347(6292): 494-496.
[56] MUNSHI R, KANDL K A, CARR-SCHMID A, et al. Overexpression of translation elongation factor 1A affects the organization and function of the actin cytoskeleton in yeast[J]. Genetics, 2001, 157(4): 1425-1436.
[57] GROSSHANS H, HURT E, SIMOS G. An aminoacylation-dependent nuclear tRNA export pathway in yeast[J]. Genes & Development, 2000, 14(7): 830-840.
[58] HOTOKEZAKA Y, TöBBEN U, HOTOKEZAKA H, et al. Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides*[J]. Journal of Biological Chemistry, 2002, 277(21): 18545-18551. 
[59] CHUANG S-M, CHEN L, LAMBERTSON D, et al. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A[J]. Molecular and Cellular Biology, 2005, 25(1): 403-413.
[60] DE NOVA-OCAMPO M, VILLEGAS-SEPúLVEDA N, DEL ANGEL R M. Translation elongation factor-1α, La, and PTB interact with the 3′untranslated region of dengue 4 virus RNA[J]. Virology, 2002, 295(2): 337-347.
[61] WASTERNACK C, HAUSE B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Annals of Botany, 2013, 111(6): 1021-1058.
[62] WASTERNACK C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681-697.
[63] HUANG H, LIU B, LIU L, et al. Jasmonate action in plant growth and development[J]. Journal of Experimental Botany, 2017, 68(6): 1349-1359.
[64] WASTERNACK C, STRNAD M. Jasmonate signaling in plant stress responses and development – active and inactive compounds[J]. New Biotechnology, 2016, 33(5): 604-613.
[65] LI Q, ZHENG J, LI S, et al. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling[J]. Molecular Plant, 2017, 10(5): 695-708.
[66] QI T, SONG S, REN Q, et al. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. The Plant Cell, 2011, 23(5): 1795-1814.
[67] BROWSE J. Jasmonate passes muster: a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60: 183-205.
[68] CHEN R, JIANG H, LI L, et al. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. The Plant Cell, 2012, 24(7): 2898-2916.
[69] KIM J, CHANG C, TUCKER M L. To grow old: regulatory role of ethylene and jasmonic acid in senescence[J]. Frontiers in Plant Science, 2015, 6: 20.
[70] QI T, HUANG H, WU D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. The Plant Cell, 2014, 26(3): 1118-1133.
[71] MOSBLECH A, THUROW C, GATZ C, et al. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana[J]. The Plant Journal, 2011, 65(6): 949-957.
[72] CHEN Q, SUN J, ZHAI Q, et al. The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. The Plant Cell, 2011, 23(9): 3335-3352.
[73] ZHOU W, LOZANO-TORRES J L, BLILOU I, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4): 942-956. 
[74] NAKATA M, MITSUDA N, HERDE M, et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. The Plant Cell, 2013, 25(5): 1641-1656.
[75] ZHU Z, AN F, FENG Y, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12539-12544.
[76] ZHAO S, ZHANG Q, LIU M, et al. Regulation of plant responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 22(9):4609.
[77] LUU D T, MARTINIèRE A, SORIEUL M, et al. Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress[J]. Plant Biotechnology Journal, 2012, 69(5): 894-905.
[78] DINNENY J R, LONG T A, WANG J Y, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress[J]. Science, 2008, 320(5878): 942-945.
[79] EBINE K, FUJIMOTO M, OKATANI Y, et al. A membrane trafficking pathway regulated by the plant-specific RAB GTPase ARA6[J]. Nature Reviews Molecular Cell Biology, 2011, 13(7): 853-859.
[80] ITO E, EBINE K, CHOI S W, et al. Integration of two RAB5 groups during endosomal transport in plants[J]. Elife, 2018, 7:e34064.
[81] MAZEL A, LESHEM Y, TIWARI B, et al. Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e)[J]. Plant physiology, 2004, 134: 118-128.
[82] KIM S-J, BASSHAM D C. TNO1 is involved in salt tolerance and vacuolar trafficking in Arabidopsis[J]. Plant Physiology, 2011, 156(2): 514-526.
[83] SUNADA M, GOH T, UEDA T, et al. Functional analyses of the plant-specific C-terminal region of VPS9a: the activating factor for RAB5 in Arabidopsis thaliana[J]. Journal of Plant Research, 2016, 129(1): 93-102.
[84] HRABAK E M, CHAN C W M, GRIBSKOV M, et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiology, 2003, 132(2): 666-680.
[85] YAN C, YAN Z, WANG Y, et al. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(20): 5933-5944.
[86] LI R, RODRIGUEZ-FURLAN C, WANG J, et al. Different endomembrane trafficking pathways establish apical and basal polarities[J]. The Plant Cell, 2016, 29(1): 90-108.
[87] LAM S K, CAI Y, TSE Y C, et al. BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells[J]. Plant Biotechnology Journal, 2009, 60(5): 865-881. 
[88] WANG B, ZHANG H, HUAI J, et al. Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis[J]. Nature Chemical Biology, 2022, 18(12): 1361-1369.
[89] KROSCHWALD S, MAHARANA S, ALBERTI S. Hexanediol: a chemical probe to investigate the material properties of membrane-less compartments[J]. Matters, 2017, e201702000010.
[90] UEJIMA T, IHARA K, GOH T, et al. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5.Vps9 system[J]. Journal of Biological Chemistry, 2010, 285(47): 36689-36697.
[91] YADAV V, MALLAPPA C, GANGAPPA S N, et al. A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth[J]. Plant Cell, 2005, 17(7): 1953-1966.
[92] NAGANO M, TOSHIMA J Y, SIEKHAUS D E, et al. Rab5-mediated endosome formation is regulated at the trans-Golgi network[J]. Communications Biology, 2019, 2: 419.

所在学位评定分委会
生物学
国内图书分类号
Q942.5
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543943
专题生命科学学院_生物系
推荐引用方式
GB/T 7714
孙兵艳. 拟南芥Rab5鸟苷酸交换因子VPS9a响应盐胁迫和JA信号机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032127-孙兵艳-生物系.pdf(5294KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙兵艳]的文章
百度学术
百度学术中相似的文章
[孙兵艳]的文章
必应学术
必应学术中相似的文章
[孙兵艳]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。