中文版 | English
题名

火星上游质子回旋波的特性及其对离子速度分布的影响

其他题名
PROPERTIES OF PROTON CYCLOTRON WAVES AND THEIR EFFECT ON ION VELOCITY DISTRIBUTION IN THE UPSTREAM REGION OF MARS
姓名
姓名拼音
GAI Chao
学号
12032531
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
叶生毅
导师单位
地球与空间科学系
论文答辩日期
2023-05-18
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

火星是太阳系中距离地球最近,同时也是与地球最为相似的一颗行星。和地球不同,火星没有全球性偶极磁场的保护。这一差别导致两颗行星的空间环境与地表环境存在着相当巨大的差异。通过对火星的研究,我们可以更好地理解偶极磁场对行星的保护作用与宜居行星的性质和特征。同时,这类研究也将为人类把目光投向系外行星奠定基础。
由于没有偶极磁场的保护,火星高层大气中的中性气体和离子直接暴露在太阳风中,因而火星的空间环境中会发生一些有别于地球的空间天气现象和等离子体过程。质子回旋波是火星上游空间中特征最鲜明的一种等离子体波动,其由太阳风离子和来自火星的离子所形成的不稳定分布激发而产生于太阳风中,而后受多普勒效应影响而在质子回旋频率被探测器观测到。由于多普勒效应和反常多普勒效应的影响,在被观测到时质子回旋波已经失去了其原本的性质。
我们通过对MAVEN号在轨火星探测器的数据分析来观察和推测质子回旋波的性质及其影响。一方面,我们通过对磁场数据的处理分辨质子回旋波事件并锁定对应时刻探测器的位置;另一方面,我们借助新开发的构建速度空间的算法来分析粒子数据,并在其中定位和波动相关的离子组群,分析其变化。通过数据分析的结果同理论和模型的对比,我们清晰的得出了质子回旋波的在垂直波矢方向振动、左旋圆极化且沿磁场传播的特性及其对离子速度分布造成的gyrophase-bunching的影响,该结果可以帮助我们更好地理解火星空间中等离子体的波粒相互作用过程。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] NEUGEBAUER G, MUNCH G, KIEFFER H, et al. Mariner-1969 Infrared Radiometer Results - Temperatures and Thermal Properties of Martian Surface [J]. Astronomical Journal, 1971, 76(8): 719-+.
[2] STEWART A I. Mariner 6 and 7 Ultraviolet Spectrometer Experiment - Implications of Co2+, Co, and O Airglow [J]. Journal of Geophysical Research, 1972, 77(1): 54-+.
[3] LUNDIN R, ZAKHAROV A, PELLINEN R, et al. 1st Measurements of The Ionospheric Plasma Escape from Mars [J]. Nature, 1989, 341(6243): 609-12.
[4] RIEDLER W, MOHLMANN D, ORAEVSKY V N, et al. Magnetic-Fields near Mars - 1st Results [J]. Nature, 1989, 341(6243): 604-7.
[5] PALLUCONI F D, ALBEE A L. Mars Global Surveyor: Ready for launch in November 1996 [J]. Acta Astronautica, 1997, 40(2-8): 511-6.
[6] ALBEE A L, PALLUCONI F D, ARVIDSON R E. Mars global surveyor mission: Overview and status [J]. Science, 1998, 279(5357): 1671-2.
[7] LEWIS J A, IEEE. Mars Odyssey relay operations development; proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, F 2005Mar 05-12, 2005 [C]. 2005.
[8] SPENCER D A, BELL J L, BEUTELSCHIES G, et al. 2001 mars odyssey mission design; proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Quebec City, Canada, F 2001 Jul 30-Aug 02, 2001 [C]. 2001.
[9] PAETZOLD M, HAEUSLER B, TYLER G L, et al. Mars Express 10 years at Mars: Observations by the Mars Express Radio Science Experiment (MaRS) [J]. Planetary and Space Science, 2016, 127: 44-90.
[10] JAKOSKY B M, LIN R P, GREBOWSKY J M, et al. The Mars Atmosphere and Volatile Evolution (MAVEN) Mission [J]. Space Science Reviews, 2015, 195(1-4): 3-48.
[11] FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 Mission Overview [J]. Space Science Reviews, 2020, 216(8).
[12] WAN W X, WANG C, LI C L, et al. China's first mission to Mars [J]. Nature Astronomy, 2020, 4(7): 721-.
[13] ZOU Y, ZHU Y, BAI Y, et al. Scientific objectives and payloads of Tianwen-1, China's first Mars exploration mission [J]. Advances in Space Research, 2021, 67(2): 812-23.
[14] CONNERNEY J E P, ESPLEY J, LAWTON P, et al. The MAVEN Magnetic Field Investigation [J]. Space Science Reviews, 2015, 195(1-4): 257-91.
[15] ANDERSSON L, ERGUN R E, DELORY G T, et al. The Langmuir Probe and Waves (LPW) Instrument for MAVEN [J]. Space Science Reviews, 2015, 195(1-4): 173-98.
[16] HALEKAS J S, TAYLOR E R, DALTON G, et al. The Solar Wind Ion Analyzer for MAVEN [J]. Space Science Reviews, 2015, 195(1-4): 125-51.
[17] MCFADDEN J, KORTMANN O, CURTIS D, et al. MAVEN SupraThermal and Thermal Ion Compostion (STATIC) Instrument [J]. Space Science Reviews, 2015, 195(1-4): 199-256.
[18] MITCHELL D L, MAZELLE C, SAUVAUD J A, et al. The MAVEN Solar Wind Electron Analyzer [J]. Space Science Reviews, 2016, 200(1-4): 495-528.
[19] MAHAFFY P R, BENNA M, KING T, et al. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission [J]. Space Science Reviews, 2015, 195(1-4): 49-73.
[20] MCCLINTOCK W E, SCHNEIDER N M, HOLSCLAW G M, et al. The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission [J]. Space Science Reviews, 2015, 195(1-4): 75-124.
[21] RUSSELL C T, LUHMANN J G, SCHWINGENSCHUH K, et al. Upstream Waves at Mars - Phobos Observations [J]. Geophysical Research Letters, 1990, 17(6): 897-900.
[22] RUSSELL C T, MAYERBERGER S S, BLANCO-CANO X. Proton cyclotron waves at Mars and Venus; proceedings of the 35th COSPAR Scientific Assembly, Paris, FRANCE, F Jul 18-25, 2004 [C]. 2006.
[23] ZHANG M H G, LUHMANN J G, NAGY A F, et al. Oxygen ionization rates at Mars and Venus - relative contributions of impact ionization and charge-exchange [J]. Journal of Geophysical Research-Planets, 1993, 98(E2): 3311-8.
[24] HUDDLESTON D E, JOHNSTONE A D. Relationship between Wave Energy and Free-Energy From Pickup Ions in The Comet Halley Environment [J]. Journal of Geophysical Research-Space Physics, 1992, 97(A8): 12217-30.
[25] GARY S P. ELECTROMAGNETIC Ion Ion instabilities and their consequences in space plasmas - a review [J]. Space Science Reviews, 1991, 56(3-4): 373-415.
[26] LEISNER J S, RUSSELL C T, DOUGHERTY M K, et al. Ion cyclotron waves in Saturn's E ring: Initial Cassini observations [J]. Geophysical Research Letters, 2006, 33(11).
[27] VOLWERK M, KIVELSON M G, KHURANA K K. Wave activity in Europa's wake: Implications for ion pickup [J]. Journal of Geophysical Research-Space Physics, 2001, 106(A11): 26033-48.
[28] TSURUTANI B T, SMITH E J. Hydromagnetic-Waves and instabilities associated with cometary ion pickup - Ice observations [J]. Geophysical Research Letters, 1986, 13(3): 263-6.
[29] COWEE M M, GARY S P, WEI H Y, et al. An explanation for the lack of ion cyclotron wave generation by pickup ions at Titan: 1-D hybrid simulation results [J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10).
[30] BARABASH S, LUNDIN R. Reflected ions near mars - phobos-2 observations [J]. Geophysical Research Letters, 1993, 20(9): 787-90.
[31] CRAWFORD G K, STRANGEWAY R J, RUSSELL C T. VLF emissions in the Venus foreshock - comparison with terrestrial observations [J]. Journal of Geophysical Research-Space Physics, 1993, 98(A9): 15305-17.
[32] WATANABE Y, TERASAWA T. On the excitation mechanism of the low-frequency upstream waves [J]. Journal of Geophysical Research-Space Physics, 1984, 89(NA8): 6623-30.
[33] MAZELLE C, NEUBAUER F M. Discrete wave-packets at the proton cyclotron frequency at Comet P/Halley [J]. Geophysical Research Letters, 1993, 20(2): 153-6.
[34] MAZELLE C, WINTERHALTER D, SAUER K, et al. Bow shock and upstream phenomena at Mars [J]. Space Science Reviews, 2004, 111(1-2): 115-81.
[35] JIAN L K, RUSSELL C T, LUHMANN J G, et al. Ion cyclotron waves in the solar wind observed by STEREO near 1 au [J]. Astrophysical Journal Letters, 2009, 701(2): L105-L9.
[36] COATES A J, WILKEN B, JOHNSTONE A D, et al. Bulk properties and velocity distributions of water group ions at comet Halley - GIOTTO measurements [J]. Journal of Geophysical Research-Space Physics, 1990, 95(A7): 10249-60.
[37] HUDDLESTON D E, STRANGEWAY R J, WARNECKE J, et al. Ion cyclotron waves in the Io torus during the Galileo encounter: Warm plasma dispersion analysis [J]. Geophysical Research Letters, 1997, 24(17): 2143-6.
[38] WEI H Y, RUSSELL C T. Proton cyclotron waves at Mars: Exosphere structure and evidence for a fast neutral disk [J]. Geophysical Research Letters, 2006, 33(23).
[39] DELVA M, MAZELLE C, BERTUCCI C. Upstream Ion Cyclotron Waves at Venus and Mars [J]. Space Science Reviews, 2011, 162(1-4): 5-24.
[40] COWEE M M, WINSKE D, RUSSELL C T, et al. 1D hybrid simulations of planetary ion-pickup: Energy partition [J]. Geophysical Research Letters, 2007, 34(2).
[41] NAGY A F, KIM J, CRAVENS T E. Hot hydrogen and oxygen-atoms in the upper atmospheres of Venus and Mars [J]. Annales Geophysicae-Atmospheres Hydrospheres and Space Sciences, 1990, 8(4): 251-6.
[42] ZHANG T L, LUHMANN J G, RUSSELL C T. The solar-cycle dependence of the location and shape of the Venus bow shock [J]. Journal of Geophysical Research-Space Physics, 1990, 95(A9): 14961-7.
[43] ZHANG T L, DELVA M, BAUMJOHANN W, et al. Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum [J]. Planetary and Space Science, 2008, 56(6): 785-9.
[44] BARABASH S, SAUVAUD J A, GUNELL H, et al. The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission [J]. Planetary and Space Science, 2007, 55(12): 1772-92.
[45] DELVA M, ZHANG T L, VOLWERK M, et al. First upstream proton cyclotron wave observations at Venus [J]. Geophysical Research Letters, 2008, 35(3).
[46] DELVA M, ZHANG T L, VOLWERK M, et al. Upstream proton cyclotron waves at Venus [J]. Planetary and Space Science, 2008, 56(9): 1293-9.
[47] BRAIN D A, BAGENAL F, ACUNA M H, et al. Observations of low-frequency electromagnetic plasma waves upstream from the Martian shock [J]. Journal of Geophysical Research-Space Physics, 2002, 107(A6).
[48] DELVA M, MAZELLE C, BERTUCCI C, et al. Proton cyclotron wave generation mechanisms upstream of Venus [J]. Journal of Geophysical Research-Space Physics, 2011, 116.
[49] DELVA M, ZHANG T L, VOLWERK M, et al. Proton cyclotron waves in the solar wind at Venus [J]. Journal of Geophysical Research-Planets, 2008, 113.
[50] DELVA M, VOLWERK M, MAZELLE C, et al. Hydrogen in the extended Venus exosphere [J]. Geophysical Research Letters, 2009, 36.
[51] COWEE M M, RUSSELL C T, STRANGEWAY R J. One-dimensional hybrid simulations of planetary ion pickup: Effects of variable plasma and pickup conditions [J]. Journal of Geophysical Research-Space Physics, 2008, 113(A8).
[52] SAUER K, DUBININ E, MCKENZIE J F. New type of soliton in bi-ion plasmas and possible implications [J]. Geophysical Research Letters, 2001, 28(18): 3589-92.
[53] ACUNA M H, CONNERNEY J E P, WASILEWSKI P, et al. Magnetic field of Mars: Summary of results from the aerobraking and mapping orbits [J]. Journal of Geophysical Research-Planets, 2001, 106(E10): 23403-17.
[54] ROMANELLI N, MAZELLE C, CHAUFRAY J Y, et al. Proton cyclotron waves occurrence rate upstream from Mars observed by MAVEN: Associated variability of the Martian upper atmosphere [J]. Journal of Geophysical Research-Space Physics, 2016, 121(11): 11113-28.
[55] LIU D, YAO Z, WEI Y, et al. Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars - from MAVEN observations [J]. Earth and Planetary Physics, 2020, 4(1): 51-61.
[56] ANDRES N, ROMANELLI N, HADID L Z, et al. Solar Wind Turbulence Around Mars: Relation between the Energy Cascade Rate and the Proton Cyclotron Waves Activity [J]. Astrophysical Journal, 2020, 902(2).
[57] ROMEO O M, ROMANELLI N, ESPLEY J R, et al. Variability of Upstream Proton Cyclotron Wave Properties and Occurrence at Mars Observed by MAVEN [J]. Journal of Geophysical Research-Space Physics, 2021, 126(2).
[58] YUN X, FU S, NI B, et al. Coexistence of Martian Proton Aurorae and Proton Cyclotron Waves during the Enhancement of Solar Wind Activity [J]. Astrophysical Journal, 2022, 929(1).
[59] LIN H, GUO J, MASUNAGA K, et al. In Situ Observation of Solar-flare-induced Proton Cyclotron Waves Upstream from Mars [J]. Astrophysical Journal, 2022, 934(2).
[60] ANDERSON R R, PARKS G K, EASTMAN T E, et al. Plasma-waves associated with energetic particles streaming into the solar-wind from the Earths bow shock [J]. Journal of Geophysical Research-Space Physics, 1981, 86(NA6): 4493-510.
[61] GARY S P, THOMSEN M F, FUSELIER S A. Electromagnetic instabilities and gyrophase‐bunched particles [J]. The Physics of Fluids, 1986, 29(2): 531-5.
[62] HOSHINO M, TERASAWA T. Numerical study of the upstream wave excitation mechanism: 1. Nonlinear phase bunching of beam ions [J]. Journal of Geophysical Research: Space Physics, 1985, 90(A1): 57-64.
[63] MAZELLE C, LE QUEAU D, MEZIANE K. Nonlinear wave-particle interaction upstream from the Earth's bow shock [J]. Nonlinear Processes in Geophysics, 2000, 7(3-4): 185-90.
[64] MEZIANE K, MAZELLE C, DUSTON C, et al. Wind observation of gyrating-like ion distributions and low frequency waves upstream from the earth's bow shock [M]//RUSSELL C T. Results of the Iastp Program. 1997: 703-6.
[65] MAZELLE C, MEZIANE K, LEQUéAU D, et al. Production of gyrating ions from nonlinear wave–particle interaction upstream from the Earth's bow shock: A case study from Cluster-CIS [J]. Planetary and Space Science, 2003, 51(12): 785-95.
[66] ROMANELLI N, MAZELLE C, MEZIANE K. Nonlinear Wave-Particle Interaction: Implications for Newborn Planetary and Backstreaming Proton Velocity Distribution Functions [J]. Journal of Geophysical Research-Space Physics, 2018, 123(2): 1100-17.
[67] SANTOLíK O, PARROT M, LEFEUVRE F. Singular value decomposition methods for wave propagation analysis [J]. Radio Science, 2003, 38(1).
[68] LARSON D E, LILLIS R J, LEE C O, et al. The MAVEN Solar Energetic Particle Investigation [J]. Space Science Reviews, 2015, 195(1-4): 153-72.
[69] HALEKAS J S, RUHUNUSIRI S, VAISBERG O L, et al. Properties of Plasma Waves Observed Upstream From Mars [J]. Journal of Geophysical Research-Space Physics, 2020, 125(9).
[70] VIGNES D, MAZELLE C, RME H, et al. The Solar Wind interaction with Mars: locations and shapes of the Bow Shock and the Magnetic Pile-up Boundary from the observations of the MAG/ER experiment onboard Mars Global Surveyor [J]. Geophysical Research Letters, 2000, 27(1): 49-52.

所在学位评定分委会
物理学
国内图书分类号
P185.3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543945
专题理学院_地球与空间科学系
推荐引用方式
GB/T 7714
盖超. 火星上游质子回旋波的特性及其对离子速度分布的影响[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032531-盖超-地球与空间科学系(6426KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[盖超]的文章
百度学术
百度学术中相似的文章
[盖超]的文章
必应学术
必应学术中相似的文章
[盖超]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。