中文版 | English
题名

超高转化数的不对称催化氢化反应及应用研究

其他题名
ASYMMETRIC HYDROGENATIONS WITH ULTRA-HIGH TURNOVER NUMBER AND THEIR APPLICATIONS
姓名
姓名拼音
YIN Congcong
学号
11930904
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
张绪穆
导师单位
理学院
论文答辩日期
2023-04-28
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

    手性现象广泛存在于自然界中,与我们的生活息息相关。在我们日常使用的大部分药物分子中含有手性结构,不对称催化反应是合成手性化合物最好的方法之一。不对称催化氢化反应发展至今仅五十余载,却已经成为最经典的不对称催化反应之一,原因在于其非常广泛的应用前景,特别适合工业上大批量生产手性药物,因此研究不对称催化氢化反应是极具意义的,也是当下的一个科学热点。
    我导师的研究理念是“要做重要且实用的化学”,研究的工艺能实际应用于药物合成,或者提高反应的转化数(TON),降低成本以更好地应用于工业生产中。因此我的博士生涯着力于各类具有药用价值底物的氢化反应的研究,不断突破反应极限,达到了氢化反应的最高TON纪录。此前,不对称氢化反应最高TON纪录是2011年周其林院士利用其发展的Ir-SpiroPAP催化体系,取得了4 550 000 TON。而利用课题组发展的Ir-f-phamidol四齿配体催化体系,此次直接将最高TON纪录做到了13 425 000!凭借丰富的高TON实验经验,结合阴离子配合物概念的理论计算,经过多次尝试和优化,最终突破记录实现千万级别新高度的TON,并且反应瞬时速率高达224次每秒,催化剂“又快又稳”,将化学反应速率做到了生物催化级别。
    此外,利用Ir-f-phamidol四齿配体催化体系对氨基酮底物进行不对氢化反应,最高也能达到1 000 000 TON,成为这类底物不对称氢化反应的TON最高纪录。目前,已经将该合成策略成功应用于合成各种手性药物或药物中间体,如手性药物尼古丁、拉罗替尼药物分子重要中间体以及葡萄糖激酶活化剂药物中间体。其中对尼古丁的合成共设计并完成了两条尼古丁全合成新路线,并将其中一条路线与制药公司合作进行了工业放大生产,目前已生产40吨具有单一手性的尼古丁产品,做到了产学研结合。
    最后,利用Rh/ZhaoPhos催化体系成功开发了一种高效的不对称氢化合成方法,用于构建各种手性N-未保护的2,3-二氢-1,5-苯并噻嗪骨架。反应得到了很高的收率(高达97%)和优异的ee值(>99%)。该方法显示出良好的官能团耐受性,氢化产物可用于合成抗抑郁药(R)-(-)-thiazesim,具有广阔的工业应用前景。

其他摘要

    Chirality exists widely in nature and is closely related to our life. Especially, most drug molecules we need in our daily life contain chiral structures. Asymmetric catalytic reaction is one of the most efficient methods to access chiral compounds. Asymmetric hydrogenation (AH) has only been developed for more than 50 years, but it has become one of the most classic reactions in organic synthetic chemistry. The reason is that asymmetric hydrogenation has a very broad application prospect and is particularly suitable for large-scale production of chiral drugs in industry. Therefore, research on asymmetric hydrogenation has always been a hot spot.
    The research tenet of my supervisor is always doing useful chemistry. It means either the reaction studied can be applied to the synthesis of drug, or the TON of the reaction can be improved as well as reducing the cost in industrial production. Following this tenet, my doctoral career has been devoted to the research on asymmetric hydrogenation of various substrates with medicinal value, which has been continuously broken the TON limit, reaching the highest TON record of AH. The previous record of the highest TON for AH is 4 550 000, which was reported by Qilin Zhou and his coauthor using the Ir-SpiroPAP catalytic system. Moreover, a tetradentate ligand catalytic system, Ir-f-phamidol developed by our group directly achieved the highest TON record of 13 425 000 this time! With rich experience in high-TON experiments and the theoretical calculation towards anionic complexes, the reaction conditions were optimized again and again. Finally, we broke the previous record of the highest TON and achieved tens-of-millions of levels new record. The instantaneous rate of the reaction was as high as 224 times per second. The catalyst was "fast and stable", and the chemical reaction rate satisfied the requirement of biocatalysis.
    In addition, we use Ir-f-phamidol tetradentate ligand catalytic system to carry out AH of aminoketones, giving 1 000 000 TON, which has become the highest TON record for AH of such substrates. This catalytic strategy has been successfully used to synthesize various chiral drugs or drug intermediates, such as Nicotine, Larotrectinib, and Glucokinase activator. For the synthesis of Nicotine, we have designed and accomplished two new routes, one of which has been subjected to industrial scale-up production in pharmaceutical companies. At present, 40 tons of enantioenriched Nicotine products have been produced, achieving the combination of production, education and research.
    In the final chapter, a highly efficient synthetic method for the construction of various chiral N-unprotected 2,3-dihydro-1,5-benzothiazepinones was successfully developed using Rh/ZhaoPhos catalytic system. The AH proceeded with high yields (up to 97%) and excellent ee values (up to >99%). This method exhibited a good tolerance of functionalities and great industrial application prospects, whose hydrogenated product can be used to further synthesize the antidepressant drug (R)-(-)-thiazesim.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] JOHNSON L N. Asymmetry at the molecular level in biology [J]. European Review, 2005, 13(S2): 77-95.
[2] BARRON L D. Chirality and Life [J]. Space Science Reviews, 2008, 135(1): 187-201.
[3] AKABORI S, SAKURAI S, IZUMI Y, FUJII Y. An Asymmetric Catalyst [J]. Nature, 1956, 178(4528): 323-4.
[4] XIE J-H, ZHU S-F, ZHOU Q-L. Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines [J]. Chemical Reviews, 2011, 111(3): 1713-60.
[5] OSBORN J A, JARDINE F H, YOUNG J F, WILKINSON G. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives [J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, 0): 1711-32.
[6] KNOWLES W S, SABACKY M J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex [J]. Chemical Communications (London), 1968, 22): 1445-6.
[7] HORNER L, SIEGEL H, BüTHE H. Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution [J]. Angewandte Chemie International Edition in English, 1968, 7(12): 942-.
[8] KAGAN H B, DANG T-P. Asymmetric catalytic reduction with transition metal complexes. I. Catalytic system of rhodium(I) with (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine [J]. Journal of the American Chemical Society, 1972, 94(18): 6429-33.
[9] KAGAN H B, LANGLOIS N, PHAT DANG T. Reduction asymetrique catalysee par des complexes de metaux de transition IV. synthese d'amines chirales au moyen d'un complexe de rhodium et d'isopropylidene dihydroxy-2,3 bis(diphenylphosphino)-1,4 butane (diop) [J]. Journal of Organometallic Chemistry, 1975, 90(3): 353-65.
[10] VINEYARD B D, KNOWLES W S, SABACKY M J, BACHMAN G L, WEINKAUFF D J. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst [J]. Journal of the American Chemical Society, 1977, 99(18): 5946-52.
[11] KNOWLES W S. Asymmetric hydrogenation [J]. Accounts of Chemical Research, 1983, 16(3): 106-12.
[12] KNOWLES W S. Application of organometallic catalysis to the commercial production of L-DOPA [J]. Journal of Chemical Education, 1986, 63(3): 222.
[13] MIYASHITA A, YASUDA A, TAKAYA H, TORIUMI K, ITO T, SOUCHI T, NOYORI R. Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenationof .alpha.-(acylamino)acrylic acids [J]. Journal of the American Chemical Society, 1980, 102(27): 7932-4.
[14] NOYORI R. Centenary Lecture. Chemical multiplication of chirality: science and applications [J]. Chemical Society Reviews, 1989, 18(0): 187-208.
[15] NOYORI R. Chiral Metal Complexes as Discriminating Molecular Catalysts [J]. Science, 1990, 248(4960): 1194-9.
[16] BURK M J, FEASTER J E, HARLOW R L. New electron-rich chiral phosphines for asymmetric catalysis [J]. Organometallics, 1990, 9(10): 2653-5.
[17] BURK M J. C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions [J]. Journal of the American Chemical Society, 1991, 113(22): 8518-9.
[18] BURK M J, FEASTER J E. Enantioselective hydrogenation of the C:N group: a catalytic asymmetric reductive amination procedure [J]. Journal of the American Chemical Society, 1992, 114(15): 6266-7.
[19] BURK M J, FEASTER J E, NUGENT W A, HARLOW R L. Preparation and use of C2-symmetric bis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions [J]. Journal of the American Chemical Society, 1993, 115(22): 10125-38.
[20] BURK M J, ALLEN J G, KIESMAN W F. Highly Regio- and Enantioselective Catalytic Hydrogenation of Enamides in Conjugated Diene Systems: Synthesis and Application of γ,δ-Unsaturated Amino Acids [J]. Journal of the American Chemical Society, 1998, 120(4): 657-63.
[21] BURK M J, KALBERG C S, PIZZANO A. Rh−DuPHOS-Catalyzed Enantioselective Hydrogenation of Enol Esters. Application to the Synthesis of Highly Enantioenriched α-Hydroxy Esters and 1,2-Diols [J]. Journal of the American Chemical Society, 1998, 120(18): 4345-53.
[22] HAN Z, LIU G, ZHANG X, LI A, DONG X-Q, ZHANG X. Synthesis of Chiral β-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation [J]. Organic Letters, 2019, 21(11): 3923-6.
[23] LIU Y, YI Z, TAN X, DONG X-Q, ZHANG X. Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates [J]. iScience, 2019, 19(63-73.
[24] ZHAO X, ZHANG F, LIU K, ZHANG X, LV H. Nickel-Catalyzed Chemoselective Asymmetric Hydrogenation of α,β-Unsaturated Ketoimines: An Efficient Approach to Chiral Allylic Amines [J]. Organic Letters, 2019, 21(22): 8966-9.
[25] GRIDNEV I D, YASUTAKE M, HIGASHI N, IMAMOTO T. Asymmetric Hydrogenation of Enamides with Rh-BisP* and Rh-MiniPHOS Catalysts. Scope, Limitations, and Mechanism [J]. Journal of the American Chemical Society, 2001, 123(22): 5268-76.
[26] IMAMOTO T, ITOH T, YOSHIDA K, GRIDNEV I D. Marked Deuterium Isotope Effects on the Enantioselectivity in Rhodium-Catalyzed Asymmetric Hydrogenation of Enamides [J].Chemistry – An Asian Journal, 2008, 3(8-9): 1636-41.
[27] BLASER H-U, BRIEDEN W, PUGIN B, SPINDLER F, STUDER M, TOGNI A. Solvias Josiphos Ligands: From Discovery to Technical Applications [J]. Topics in Catalysis, 2002, 19(1): 3-16.
[28] DERHAMINE S A, KRACHKO T, MONTEIRO N, PILET G, SCHRANCK J, TLILI A, AMGOUNE A. Nickel-Catalyzed Mono-Selective α-Arylation of Acetone with Aryl Chlorides and Phenol Derivatives [J]. Angewandte Chemie International Edition, 2020, 59(43): 18948-53.
[29] SWIFT E C, SHEKHAR S, KOTECKI B J. Synthesis of Enantioenriched β-Aryl-β-aryloxy Esters via Sequential Photoisomerization and Enantioselective Hydrogenation [J]. Organic Letters, 2020, 22(14): 5363-8.
[30] LIU R, LI B, HAN J, ZHANG D, LI M, YAO L, ZHAO W, WANG Q, JIANG R, NIE H. Iridium-catalyzed enantioselective reductive amination of aromatic ketones [J]. Catalysis Science & Technology, 2020, 10(16): 5448-52.
[31] BRüNING F, NAGAE H, KäCH D, MASHIMA K, TOGNI A. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands [J]. Chemistry – A European Journal, 2019, 25(46): 10818-22.
[32] LIU X, WEN J, YAO L, NIE H, JIANG R, CHEN W, ZHANG X. Highly Chemo- and Enantioselective Hydrogenation of 2-Substituted-4-oxo-2-alkenoic Acids [J]. Organic Letters, 2020, 22(12): 4812-6.
[33] XIE J-H, WANG L-X, FU Y, ZHU S-F, FAN B-M, DUAN H-F, ZHOU Q-L. Synthesis of Spiro Diphosphines and Their Application in Asymmetric Hydrogenation of Ketones [J]. Journal of the American Chemical Society, 2003, 125(15): 4404-5.
[34] XIE J-H, GUO L-C, YANG X-H, WANG L-X, ZHOU Q-L. Enantioselective Synthesis of 2,6-cis-Disubstituted Tetrahydropyrans via a Tandem Catalytic Asymmetric Hydrogenation/Oxa-Michael Cyclization: An Efficient Approach to (−)-Centrolobine [J]. Organic Letters, 2012, 14(18): 4758-61.
[35] XIE J-H, LIU X-Y, XIE J-B, WANG L-X, ZHOU Q-L. An Additional Coordination Group Leads to Extremely Efficient Chiral Iridium Catalysts for Asymmetric Hydrogenation of Ketones [J]. Angewandte Chemie International Edition, 2011, 50(32): 7329-32.
[36] BAO D-H, WU H-L, LIU C-L, XIE J-H, ZHOU Q-L. Development of Chiral Spiro P-N-S Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of β-Alkyl-β-Ketoesters [J]. Angewandte Chemie International Edition, 2015, 54(30): 8791-4.
[37] HUA Y-Y, BIN H-Y, WEI T, CHENG H-A, LIN Z-P, FU X-F, LI Y-Q, XIE J-H, YAN P-C, ZHOU Q-L. Iridium-Catalyzed Asymmetric Hydrogenation of γ- and δ-Ketoacids for Enantioselective Synthesis of γ- and δ-Lactones [J]. Organic Letters, 2020, 22(3): 818-22.
[38] LIU Y, DING K. Modular Monodentate Phosphoramidite Ligands for Rhodium-Catalyzed Enantioselective Hydrogenation [J]. Journal of the American Chemical Society, 2005, 127(30): 10488-9.
[39] ZHANG J, DONG K, WANG Z, DING K. Asymmetric hydrogenation of α- or β-acyloxy α,β-unsaturated phosphonates catalyzed by a Rh(i) complex of monodentate phosphoramidite [J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1598-601.
[40] HAN Z, WANG Z, ZHANG X, DING K. Spiro
[4,4]-1,6-nonadiene-Based Phosphine–Oxazoline Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of Ketimines [J]. Angewandte Chemie International Edition, 2009, 48(29): 5345-9.
[41] ZHANG Y, HAN Z, LI F, DING K, ZHANG A. Highly enantioselective hydrogenation of α-aryl-β-substituted acrylic acids catalyzed by Ir-SpinPHOX [J]. Chemical Communications, 2010, 46(1): 156-8.
[42] TANG W, QU B, CAPACCI A G, RODRIGUEZ S, WEI X, HADDAD N, NARAYANAN B, MA S, GRINBERG N, YEE N K, KRISHNAMURTHY D, SENANAYAKE C H. Novel, Tunable, and Efficient Chiral Bisdihydrobenzooxaphosphole Ligands for Asymmetric Hydrogenation [J]. Organic Letters, 2010, 12(1): 176-9.
[43] LIU G, LIU X, CAI Z, JIAO G, XU G, TANG W. Design of Phosphorus Ligands with Deep Chiral Pockets: Practical Synthesis of Chiral β-Arylamines by Asymmetric Hydrogenation [J]. Angewandte Chemie International Edition, 2013, 52(15): 4235-8.
[44] LI C, WAN F, CHEN Y, PENG H, TANG W, YU S, MCWILLIAMS J C, MUSTAKIS J, SAMP L, MAGUIRE R J. Stereoelectronic Effects in Ligand Design: Enantioselective Rhodium-Catalyzed Hydrogenation of Aliphatic Cyclic Tetrasubstituted Enamides and Concise Synthesis of (R)-Tofacitinib [J]. Angewandte Chemie International Edition, 2019, 58(38): 13573-83.
[45] CHEN M-W, DUAN Y, CHEN Q-A, WANG D-S, YU C-B, ZHOU Y-G. Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines [J]. Organic Letters, 2010, 12(21): 5075-7.
[46] WANG Y-Q, ZHOU Y-G. Highly Enantioselective Pd-Catalyzed Asymmetric Hydrogenation of N-Diphenylphosphinyl Ketimines [J]. Synlett, 2006, 2006(08): 1189-92.
[47] YU C-B, WANG D-W, ZHOU Y-G. Highly Enantioselective Synthesis of Sultams via Pd-Catalyzed Hydrogenation [J]. The Journal of Organic Chemistry, 2009, 74(15): 5633-5.
[48] WANG D-S, WANG D-W, ZHOU Y-G. Pd-Catalyzed Asymmetric Hydrogenation of C=C Bond of α,β-Unsaturated Ketones [J]. Synlett, 2011, 2011(07): 947-50.
[49] WANG Y-Q, LU S-M, ZHOU Y-G. Palladium-Catalyzed Asymmetric Hydrogenation of Functionalized Ketones [J]. Organic Letters, 2005, 7(15): 3235-8.
[50] WANG D-S, CHEN Q-A, LI W, YU C-B, ZHOU Y-G, ZHANG X. Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by Brønsted Acids [J]. Journal of the American Chemical Society, 2010, 132(26): 8909-11.
[51] WANG D-S, YE Z-S, CHEN Q-A, ZHOU Y-G, YU C-B, FAN H-J, DUAN Y. Highly Enantioselective Partial Hydrogenation of Simple Pyrroles: A Facile Access to Chiral 1-Pyrrolines [J]. Journal of the American Chemical Society, 2011, 133(23): 8866-9.
[52] JIA J, FAN D, ZHANG J, ZHANG Z, ZHANG W. An Atropos Biphenyl Bisphosphine Ligand with 2,2′′-tert-Butylmethylphosphino Groups for the Rhodium-Catalyzed AsymmetricHydrogenation of Enol Esters [J]. Advanced Synthesis & Catalysis, 2018, 360(19): 3793-800.
[53] ZHANG J, JIA J, ZENG X, WANG Y, ZHANG Z, GRIDNEV I D, ZHANG W. Chemo- and Enantioselective Hydrogenation of α-Formyl Enamides: An Efficient Access to Chiral α-Amido Aldehydes [J]. Angewandte Chemie International Edition, 2019, 58(33): 11505-12.
[54] FAN D, ZHANG J, HU Y, ZHANG Z, GRIDNEV I D, ZHANG W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions [J]. ACS Catalysis, 2020, 10(5): 3232-40.
[55] ZHU G, CAO P, JIANG Q, ZHANG X. Highly Enantioselective Rh-Catalyzed Hydrogenations with a New Chiral 1,4-Bisphosphine Containing a Cyclic Backbone [J]. Journal of the American Chemical Society, 1997, 119(7): 1799-800.
[56] JIANG Q, JIANG Y, XIAO D, CAO P, ZHANG X. Highly Enantioselective Hydrogenation of Simple Ketones Catalyzed by a Rh–PennPhos Complex [J]. Angewandte Chemie International Edition, 1998, 37(8): 1100-3.
[57] ZHANG Z, QIAN H, LONGMIRE J, ZHANG X. Synthesis of Chiral Bisphosphines with Tunable Bite Angles and Their Applications in Asymmetric Hydrogenation of β-Ketoesters [J]. The Journal of Organic Chemistry, 2000, 65(19): 6223-6.
[58] XIAO D, ZHANG X. Highly Enantioselective Hydrogenation of Acyclic Imines Catalyzed by Ir–f-Binaphane Complexes [J]. Angewandte Chemie International Edition, 2001, 40(18): 3425-8.
[59] TANG W, ZHANG X. A Chiral 1,2-Bisphospholane Ligand with a Novel Structural Motif: Applications in Highly Enantioselective Rh-Catalyzed Hydrogenations [J]. Angewandte Chemie International Edition, 2002, 41(9): 1612-4.
[60] TANG W, WANG W, CHI Y, ZHANG X. A Bisphosphepine Ligand with Stereogenic Phosphorus Centers for the Practical Synthesis of β-Aryl-β-Amino Acids by Asymmetric Hydrogenation [J]. Angewandte Chemie International Edition, 2003, 42(30): 3509-11.
[61] LIU D, ZHANG X. Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation [J]. European Journal of Organic Chemistry, 2005, 2005(4): 646-9.
[62] GAO W, LV H, ZHANG X. Rh/DuanPhos-Catalyzed Asymmetric Hydrogenation of β-Acetylamino Vinylsulfides: An Approach to Chiral β-Acetylamino Sulfides [J]. Organic Letters, 2017, 19(11): 2877-80.
[63] YANG H, WANG E, YANG P, LV H, ZHANG X. Pyridine-Directed Asymmetric Hydrogenation of 1,1-Diarylalkenes [J]. Organic Letters, 2017, 19(19): 5062-5.
[64] ZHANG X, HUANG K, HOU G, CAO B, ZHANG X. Electron-Donating and Rigid P-Stereogenic Bisphospholane Ligands for Highly Enantioselective Rhodium-Catalyzed Asymmetric Hydrogenations [J]. Angewandte Chemie International Edition, 2010, 49(36): 6421-4.
[65] ZHAO Q, LI S, HUANG K, WANG R, ZHANG X. A Novel Chiral Bisphosphine-Thiourea Ligand for Asymmetric Hydrogenation of β,β-Disubstituted Nitroalkenes [J]. Organic Letters,2013, 15(15): 4014-7.
[66] HAN Z, LI P, ZHANG Z, CHEN C, WANG Q, DONG X-Q, ZHANG X. Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation [J]. ACS Catalysis, 2016, 6(9): 6214-8.
[67] LANG Q, GU G, CHENG Y, YIN Q, ZHANG X. Highly Enantioselective Synthesis of Chiral γ-Lactams by Rh-Catalyzed Asymmetric Hydrogenation [J]. ACS Catalysis, 2018, 8(6): 4824-8.
[68] LI X, YOU C, YANG Y, YANG Y, LI P, GU G, CHUNG L W, LV H, ZHANG X. Rhodium-catalyzed asymmetric hydrogenation of β-cyanocinnamic esters with the assistance of a single hydrogen bond in a precise position [J]. Chemical Science, 2018, 9(7): 1919-24.
[69] SUN Y, JIANG J, GUO X, WEN J, ZHANG X. Asymmetric hydrogenation of α,β-unsaturated sulfones by a rhodium/thiourea–bisphosphine complex [J]. Organic Chemistry Frontiers, 2019, 6(9): 1438-41.
[70] CHEN C, WANG H, ZHANG Z, JIN S, WEN S, JI J, CHUNG L W, DONG X-Q, ZHANG X. Ferrocenyl chiral bisphosphorus ligands for highly enantioselective asymmetric hydrogenation via noncovalent ion pair interaction [J]. Chemical Science, 2016, 7(11): 6669-73.
[71] CHEN C, WEN S, GENG M, JIN S, ZHANG Z, DONG X-Q, ZHANG X. A new ferrocenyl bisphosphorus ligand for the asymmetric hydrogenation of α-methylene-γ-keto-carboxylic acids [J]. Chemical Communications, 2017, 53(70): 9785-8.
[72] WEN S, CHEN C, DU S, ZHANG Z, HUANG Y, HAN Z, DONG X-Q, ZHANG X. Highly Enantioselective Asymmetric Hydrogenation of Carboxy-Directed α,α-Disubstituted Terminal Olefins via the Ion Pair Noncovalent Interaction [J]. Organic Letters, 2017, 19(24): 6474-7.
[73] YIN X, CHEN C, DONG X-Q, ZHANG X. Rh/Wudaphos-Catalyzed Asymmetric Hydrogenation of Sodium α-Arylethenylsulfonates: A Method To Access Chiral α-Arylethylsulfonic Acids [J]. Organic Letters, 2017, 19(10): 2678-81.
[74] CHEN C, ZHANG Z, JIN S, FAN X, GENG M, ZHOU Y, WEN S, WANG X, CHUNG L W, DONG X-Q, ZHANG X. Enzyme-Inspired Chiral Secondary-Phosphine-Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation [J]. Angewandte Chemie International Edition, 2017, 56(24): 6808-12.
[75] YIN X, CHEN C, LI X, DONG X-Q, ZHANG X. Rh/SPO-WudaPhos-Catalyzed Asymmetric Hydrogenation of α-Substituted Ethenylphosphonic Acids via Noncovalent Ion-Pair Interaction [J]. Organic Letters, 2017, 19(16): 4375-8.
[76] WU W, LIU S, DUAN M, TAN X, CHEN C, XIE Y, LAN Y, DONG X-Q, ZHANG X. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones [J]. Organic Letters, 2016, 18(12): 2938-41.
[77] WU W, YOU C, YIN C, LIU Y, DONG X-Q, ZHANG X. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution [J]. Organic Letters, 2017, 19(10): 2548-51.
[78] YIN C, WU W, HU Y, TAN X, YOU C, LIU Y, CHEN Z, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins [J]. Advanced Synthesis & Catalysis, 2018, 360(11): 2119-24.
[79] YU J, LONG J, YANG Y, WU W, XUE P, CHUNG L W, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands [J]. Organic Letters, 2017, 19(3): 690-3.
[80] GONG Q, WEN J, ZHANG X. Desymmetrization of cyclic 1,3-diketones via Ir-catalyzed hydrogenation: an efficient approach to cyclic hydroxy ketones with a chiral quaternary carbon [J]. Chemical Science, 2019, 10(25): 6350-3.
[81] GU G, YANG T, LU J, WEN J, DANG L, ZHANG X. Iridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic α-keto esters [J]. Organic Chemistry Frontiers, 2018, 5(7): 1209-12.
[82] YU J, DUAN M, WU W, QI X, XUE P, LAN Y, DONG X-Q, ZHANG X. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones [J]. Chemistry – A European Journal, 2017, 23(4): 970-5.
[83] YIN C, DONG X-Q, ZHANG X. Iridium/f-Amphol-catalyzed Efficient Asymmetric Hydrogenation of Benzo-fused Cyclic Ketones [J]. Advanced Synthesis & Catalysis, 2018, 360(22): 4319-24.
[84] GU G, LU J, YU O, WEN J, YIN Q, ZHANG X. Enantioselective and Diastereoselective Ir-Catalyzed Hydrogenation of α-Substituted β-Ketoesters via Dynamic Kinetic Resolution [J]. Organic Letters, 2018, 20(7): 1888-92.
[85] TAO L, YIN C, DONG X-Q, ZHANG X. Efficient synthesis of chiral β-hydroxy sulfones via iridium-catalyzed hydrogenation [J]. Organic & Biomolecular Chemistry, 2019, 17(4): 785-8.
[86] LIANG Z, YANG T, GU G, DANG L, ZHANG X. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones [J]. Chinese Journal of Chemistry, 2018, 36(9): 851-6.
[87] WANG H, ZHANG Y, YANG T, GUO X, GONG Q, WEN J, ZHANG X. Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation [J]. Organic Letters, 2020, 22(22): 8796-801.
[88] ZENG L, YANG H, ZHAO M, WEN J, TUCKER J H R, ZHANG X. C1-Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model [J]. ACS Catalysis, 2020, 10(23): 13794-9.
[89] DOUCET H, OHKUMA T, MURATA K, YOKOZAWA T, KOZAWA M, KATAYAMA E, ENGLAND A F, IKARIYA T, NOYORI R. trans-[RuCl2(phosphane)2(1,2-diamine)] and Chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: Shelf-Stable Precatalysts for the Rapid, Productive, and Stereoselective Hydrogenation of Ketones [J]. Angewandte Chemie International Edition, 1998, 37(12): 1703-7.
[90] HU A, NGO H L, LIN W. 4,4‘-Disubstituted BINAPs for Highly Enantioselective Ru-Catalyzed Asymmetric Hydrogenation of Ketones [J]. Organic Letters, 2004, 6(17): 2937-40.
[91] LI W, SUN X, ZHOU L, HOU G, YU S, ZHANG X. Highly Efficient and Highly Enantioselective Asymmetric Hydrogenation of Ketones with TunesPhos/1,2-Diamine−Ruthenium(II) Complexes [J]. The Journal of Organic Chemistry, 2009, 74(3): 1397-9.
[92] XIE J-H, LIU X-Y, YANG X-H, XIE J-B, WANG L-X, ZHOU Q-L. Chiral Iridium Catalysts Bearing Spiro Pyridine-Aminophosphine Ligands Enable Highly Efficient Asymmetric Hydrogenation of β-Aryl β-Ketoesters [J]. Angewandte Chemie International Edition, 2012, 51(1): 201-3.
[93] PATCHETT R, MAGPANTAY I, SAUDAN L, SCHOTES C, MEZZETTI A, SANTORO F. Asymmetric Hydrogenation of Ketones with H2 and Ruthenium Catalysts Containing Chiral Tetradentate S2N2 Ligands [J]. Angewandte Chemie International Edition, 2013, 52(39): 10352-5.
[94] WU W, XIE Y, LI P, LI X, LIU Y, DONG X-Q, ZHANG X. Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols [J]. Organic Chemistry Frontiers, 2017, 4(4): 555-9.
[95] MAGANO J, DUNETZ J R. Large-Scale Carbonyl Reductions in the Pharmaceutical Industry [J]. Org Process Res Dev, 2012, 16(6): 1156-84.
[96] SHI F, WANG H, DAI X. Carbonyl Compounds [M]. 2021.
[97] CAREY F A, SUNDBERG R J. Advanced Organic Chemistry [M]. 1995.
[98] WEN J, WANG F, ZHANG X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes [J]. Chem Soc Rev, 2021, 50(5): 3211-37.
[99] CRABTREE R H, FELKIN H, FILLEBEEN-KHAN T, MORRIS G E. Dihydridoiridium diolefin complexes as intermediates in homogeneous hydrogenation [J]. J Organomet Chem, 1979, 168(2): 183-95.
[100] YOUNG J F, OSBORN J A, JARDINE F H, WILKINSON G. Hydride intermediates in homogeneous hydrogenation reactions of olefins and acetylenes using rhodium catalysts [J]. Chem Commun 1965, 7):
[101] MONTELATICI S, VAN DER ENT A, OSBORN J A, WILKINSON G. Further studies on the homogeneous hydrogenation of olefins by use of tris (tertiary phosphine)chlororhodium(I) complexes [J]. J Chem Soc A, 1968,
[102] HALPERN J. Mechanism and stereoselectivity of asymmetric hydrogenation [J]. Science, 1982, 217(4558): 401-7.
[103] FRIEDFELD M R, ZHONG H, RUCK R T, SHEVLIN M, CHIRIK P J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction [J]. Science, 2018, 360(6391): 888-93.
[104] FRIEDFELD M R, SHEVLIN M, HOYT J M, KRSKA S W, TUDGE M T, CHIRIK P J. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts [J]. Science, 2013, 342(6162): 1076-80.
[105] BELL S, WUSTENBERG B, KAISER S, MENGES F, NETSCHER T, PFALTZ A. Asymmetrichydrogenation of unfunctionalized, purely alkyl-substituted olefins [J]. Science, 2006, 311(5761): 642-4.
[106] LI B, CHEN J, LIU D, GRIDNEV I D, ZHANG W. Nickel-catalysed asymmetric hydrogenation of oximes [J]. Nat Chem, 2022, 14(8): 920-7.
[107] LIU W, SAHOO B, JUNGE K, BELLER M. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations [J]. Acc Chem Res, 2018, 51(8): 1858-69.
[108] PETERS B B C, ANDERSSON P G. The Implications of the Bronsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins [J]. J Am Chem Soc, 2022, 144(36): 16252-61.
[109] MAS-ROSELLO J, SMEJKAL T, CRAMER N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines [J]. Science, 2020, 368(6495): 1098-102.
[110] ZUO W, LOUGH A J, LI Y F, MORRIS R H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines [J]. Science, 2013, 342(6162): 1080-3.
[111] OHKUMA T, OOKA H, HASHIGUCHI S, IKARIYA T, NOYORI R. Practical Enantioselective Hydrogenation of Aromatic Ketones [J]. J Am Chem Soc, 2002, 117(9): 2675-6.
[112] DUB P A, GORDON J C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts [J]. Nat Rev Chem, 2018, 2(12): 396-408.
[113] XIE J H, LIU X Y, YANG X H, XIE J B, WANG L X, ZHOU Q L. Chiral iridium catalysts bearing spiro pyridine-aminophosphine ligands enable highly efficient asymmetric hydrogenation of beta-aryl beta-ketoesters [J]. Angew Chem Int Ed 2012, 51(1): 201-3.
[114] HU A, NGO H L, LIN W. 4,4'-Disubstituted BINAPs for highly enantioselective Ru-catalyzed asymmetric hydrogenation of ketones [J]. Org Lett, 2004, 6(17): 2937-40.
[115] WU W, LIU S, DUAN M, TAN X, CHEN C, XIE Y, LAN Y, DONG X-Q, ZHANG X. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones [J]. Org Lett, 2016, 18(12): 2938-41.
[116] ZHAO B, HAN Z, DING K. The N-H functional group in organometallic catalysis [J]. Angew Chem, Int Ed, 2013, 52(18): 4744-88.
[117] ZHENG Z, CAO Y, CHONG Q, HAN Z, DING J, LUO C, WANG Z, ZHU D, ZHOU Q-L, DING K. Chiral Cyclohexyl-Fused Spirobiindanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis [J]. J Am Chem Soc, 2018, 140(32): 10374-81.
[118] WANG Y, LIU S, YANG H, LI H, LAN Y, LIU Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes [J]. Nature Chemistry, 2022, 14(11): 1233-41.
[119] RATOVELOMANANA VIDAL V, PHANSAVATH P. Asymmetric Hydrogenation and Transfer Hydrogenation [M]. 2021.
[120] Asymmetric Catalysis on Industrial Scale [M]. Verlag GmbH & Co. KGaA: Wiley VCH, 2010.
[121] WANG H, WEN J, ZHANG X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation [J]. Chem Rev, 2021, 121(13): 7530-67.
[122] WIEDNER E S, CHAMBERS M B, PITMAN C L, BULLOCK R M, MILLER A J, APPEL AM. Thermodynamic Hydricity of Transition Metal Hydrides [J]. Chem Rev, 2016, 116(15): 8655-92.
[123] XIE J-H, LIU X-Y, XIE J-B, WANG L-X, ZHOU Q-L. An Additional Coordination Group Leads to Extremely Efficient Chiral Iridium Catalysts for Asymmetric Hydrogenation of Ketones [J]. Angew Chem, Int Ed, 2011, 50(32): 7329-32.
[124] WANG L, MASON K A, ANG K K, BUCHHOLZ T, VALDECANAS D, MATHUR A, BUSER-DOEPNER C, TONIATTI C, MILAS L. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation [J]. Invest New Drugs, 2012, 30(6): 2113-20.
[125] BRYAN M C, BISWAS K, PETERKIN T A N, RZASA R M, ARIK L, LEHTO S G, SUN H, HSIEH F-Y, XU C, FREMEAU R T, ALLEN J R. Chromenones as potent bradykinin B1 antagonists [J]. Bioorg Med Chem Lett, 2012, 22(1): 619-22.
[126] LOOD C S, KOSKINEN A M P. Harmicine, a Tetracyclic Tetrahydro-β-Carboline: From the First Synthetic Precedent to Isolation from Natural Sources to Target-Oriented Synthesis (Review)* [J]. Chem Heterocycl Compd, 2015, 50(10): 1367-87.
[127] PINDER A R. Pyrrole, pyrrolidine, piperidine, pyridine, and azepine alkaloids [J]. Nat Prod Rep, 1992, 9(1): 17-23.
[128] HONG D S, BAUER T M, LEE J J, DOWLATI A, BROSE M S, FARAGO A F, TAYLOR M, SHAW A T, MONTEZ S, MERIC-BERNSTAM F, SMITH S, TUCH B B, EBATA K, CRUICKSHANK S, COX M C, BURRIS H A, DOEBELE R C. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study [J]. Ann Oncol, 2019, 30(2): 325-31.
[129] DOMI E, BARBIER E, AUGIER E, AUGIER G, GEHLERT D, BARCHIESI R, THORSELL A, HOLM L, HEILIG M. Preclinical evaluation of the kappa-opioid receptor antagonist CERC-501 as a candidate therapeutic for alcohol use disorders [J]. Neuropsychopharmacology, 2018, 43(9): 1805-12.
[130] LAETSCH T W, DUBOIS S G, MASCARENHAS L, TURPIN B, FEDERMAN N, ALBERT C M, NAGASUBRAMANIAN R, DAVIS J L, RUDZINSKI E, FERACO A M, TUCH B B, EBATA K T, REYNOLDS M, SMITH S, CRUICKSHANK S, COX M C, PAPPO A S, HAWKINS D S. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study [J]. Lancet Oncol, 2018, 19(5): 705-14.
[131] MEREDITH E L, KSANDER G, MONOVICH L G, PAPILLON J P N, LIU Q, MIRANDA K, MORRIS P, RAO C, BURGIS R, CAPPARELLI M, HU Q-Y, SINGH A, RIGEL D F, JENG A Y, BEIL M, FU F, HU C-W, LASALA D. Discovery and in Vivo Evaluation of Potent Dual CYP11B2 (Aldosterone Synthase) and CYP11B1 Inhibitors [J]. ACS MedChem Lett, 2013, 4(12): 1203-7.
[132] SPANGENBERG T, BREIT B, MANN A. Hydroformylation of Homoallylic Azides: A Rapid Approach toward Alkaloids [J]. Org Lett, 2009, 11(2): 261-4.
[133] KLAPARS A, CAMPOS K R, WALDMAN J H, ZEWGE D, DORMER P G, CHEN C-Y.Enantioselective Pd-Catalyzed α-Arylation of N-Boc-Pyrrolidine: The Key to an Efficient and Practical Synthesis of a Glucokinase Activator [J]. J Org Chem, 2008, 73(13): 4986-93.
[134] CHEN F, DING Z, QIN J, WANG T, HE Y, FAN Q-H. Highly Effective Asymmetric Hydrogenation of Cyclic N-Alkyl Imines with Chiral Cationic Ru-MsDPEN Catalysts [J]. Org Lett, 2011, 13(16): 4348-51.
[135] PENNING T D, ZHU G-D, GONG J, THOMAS S, GANDHI V B, LIU X, SHI Y, KLINGHOFER V, JOHNSON E F, PARK C H, FRY E H, DONAWHO C K, FROST D J, BUCHANAN F G, BUKOFZER G T, RODRIGUEZ L E, BONTCHEVA-DIAZ V, BOUSKA J J, OSTERLING D J, OLSON A M, MARSH K C, LUO Y, GIRANDA V L. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor [J]. J Med Chem, 2010, 53(8): 3142-53.
[136] CHANG M, LI W, HOU G, ZHANG X. Iridium-Catalyzed Enantioselective Hydrogenation of Cyclic Imines [J]. Adv Synth Catal, 2010, 352(18): 3121-5.
[137] WĘGLARZ I, MICHALAK K, MLYNARSKI J. Zinc Catalyzed Asymmetric Hydrosilylation of Cyclic Imines: Synthesis of Chiral 2 Aryl Substituted Pyrrolidines as Pharmaceutical Building Blocks [J]. Adv Synth Catal, 2020, 363(5): 1317-21.
[138] ZHANG Y, KONG D, WANG R, HOU G. Synthesis of chiral cyclic amines via Ir-catalyzed enantioselective hydrogenation of cyclic imines [J]. Org Biomol Chem, 2017, 15(14): 3006-12.
[139] LUNDRIGAN T, WELSH E N, HYNES T, TIEN C-H, ADAMS M R, ROY K R, ROBERTSON K N, SPEED A W H. Enantioselective Imine Reduction Catalyzed by Phosphenium Ions [J]. J Am Chem Soc, 2019, 141(36): 14083-8.
[140] QUINTO T, SCHWIZER F, ZIMBRON J M, MORINA A, KöHLER V, WARD T R. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology [J]. ChemCatChem, 2014, 6(4): 1010-4.
[141] L. LARSON G, L. FRY J. Ionic and Organometallic-Catalyzed Organosilane Reductions [J]. Org React, 2008, 1-737.
[142] VERDAGUER X, LANGE U E W, REDING M T, BUCHWALD S L. Highly Enantioselective Imine Hydrosilylation Using (S,S)-Ethylenebis(η5-tetrahydroindenyl)titanium Difluoride [J]. J Am Chem Soc, 1996, 118(28): 6784-5.
[143] BUNRIT A, DAHLSTRAND C, OLSSON S K, SRIFA P, HUANG G, ORTHABER A, SJOBERG P J, BISWAS S, HIMO F, SAMEC J S. Bronsted acid-catalyzed intramolecular nucleophilic substitution of the hydroxyl group in stereogenic alcohols with chirality transfer [J]. J Am Chem Soc, 2015, 137(14): 4646-9.
[144] BUNRIT A, SRIFA P, RUKKIJAKAN T, DAHLSTRAND C, HUANG G, BISWAS S, WATILE R A, SAMEC J S M. H3PO2-Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Enantioenriched Secondary Alcohols by N-, O-, and S-Centered Nucleophiles to Generate Heterocycles [J]. ACS Catal, 2019, 10(2): 1344-52.
[145] SHORE E R, AWAIS M, KERSHAW N M, GIBSON R R, PANDALANENI S, LATAWIEC D,WEN L, JAVED M A, CRIDDLE D N, BERRY N, O'NEILL P M, LIAN L Y, SUTTON R. Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis [J]. J Med Chem, 2016, 59(6): 2596-611.
[146] WATILE R A, BUNRIT A, MARGALEF J, AKKARASAMIYO S, AYUB R, LAGERSPETS E, BISWAS S, REPO T, SAMEC J S M. Intramolecular substitutions of secondary and tertiary alcohols with chirality transfer by an iron(III) catalyst [J]. Nat Commun, 2019, 10(1): 3826.
[147] WILLOUGHBY C A, BUCHWALD S L. Asymmetric titanocene-catalyzed hydrogenation of imines [J]. J Am Chem Soc, 2002, 114(19): 7562-4.
[148] WILLOUGHBY C A, BUCHWALD S L. Catalytic Asymmetric Hydrogenation of Imines with a Chiral Titanocene Catalyst: Scope and Limitations [J]. J Am Chem Soc, 2002, 116(20): 8952-65.
[149] CHEN F, DING Z, QIN J, WANG T, HE Y, FAN Q H. Highly effective asymmetric hydrogenation of cyclic N-alkyl imines with chiral cationic Ru-MsDPEN catalysts [J]. Org Lett, 2011, 13(16): 4348-51.
[150] CHEN F, DING Z, HE Y, QIN J, WANG T, FAN Q-H. Asymmetric hydrogenation of N-alkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: the counteranion and solvent effects, and substrate scope [J]. Tetrahedron, 2012, 68(26): 5248-57.
[151] CHEN F, WANG T, HE Y, DING Z, LI Z, XU L, FAN Q H. Asymmetric hydrogenation of N-alkyl ketimines with phosphine-free, chiral, cationic Ru-MsDPEN catalysts [J]. Chem Eur J, 2011, 17(4): 1109-13.
[152] ZHU G, ZHANG X. Additive effects in Ir–BICP catalyzed asymmetric hydrogenation of imines [J]. Tetrahedron: Asymmetry, 1998, 9(14): 2415-8.
[153] SCHNIDER P, KOCH G, PRéTôT R, WANG G, BOHNEN F M, KRüGER C, PFALTZ A. Enantioselective Hydrogenation of Imines with Chiral (Phosphanodihydrooxazole)iridium Catalysts [J]. Chem Eur J, 1997, 3(6): 887-92.
[154] GUO C, SUN D W, YANG S, MAO S J, XU X H, ZHU S F, ZHOU Q L. Iridium-catalyzed asymmetric hydrogenation of 2-pyridyl cyclic imines: a highly enantioselective approach to nicotine derivatives [J]. J Am Chem Soc, 2015, 137(1): 90-3.
[155] ZHANG Y, YAN Q, ZI G, HOU G. Enantioselective Direct Synthesis of Free Cyclic Amines via Intramolecular Reductive Amination [J]. Org Lett, 2017, 19(16): 4215-8.
[156] ZHOU H, ZHAO W, ZHANG T, GUO H, HUANG H, CHANG M. Enantioselective Synthesis of 2-Substituted Pyrrolidines via Intramolecular- Reductive Amination [J]. Synthesis, 2019, 51(13): 2713-9.
[157] BARRIOS-RIVERA J, XU Y, WILLS M. Probing the Effects of Heterocyclic Functionality in [(Benzene)Ru(TsDPENR)Cl] Catalysts for Asymmetric Transfer Hydrogenation [J]. Org Lett, 2019, 21(18): 7223-7.
[158] XIE J H, LIU X Y, XIE J B, WANG L X, ZHOU Q L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones [J].Angew Chem, Int Ed, 2011, 50(32): 7329-32.
[159] ARAI N, OHKUMA T. Design of molecular catalysts for achievement of high turnover number in homogeneous hydrogenation [J]. Chem Rec, 2012, 12(2): 284-9.
[160] WU W, XIE Y, LI P, LI X, LIU Y, DONG X-Q, ZHANG X. Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols [J]. Org Chem Front, 2017, 4(4): 555-9.
[161] WU W, YOU C, YIN C, LIU Y, DONG X-Q, ZHANG X. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution [J]. Org Lett, 2017, 19(10): 2548-51.
[162] YIN C, WU W, HU Y, TAN X, YOU C, LIU Y, CHEN Z, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins [J]. Adv Synth Catal, 2018, 360(11): 2119-24.
[163] WANG J, SHAO P-L, LIN X, MA B, WEN J, ZHANG X. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined [J]. Angew Chem, Int Ed, 2020, 59(41): 18166-71.
[164] YU J, DUAN M, WU W, QI X, XUE P, LAN Y, DONG X-Q, ZHANG X. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones [J]. Chem Eur J, 2017, 23(4): 970-5.
[165] ALVAREZ E, CONEJERO S, LARA P, LOPEZ J A, PANEQUE M, PETRONILHO A, POVEDA M L, DEL RIO D, SERRANO O, CARMONA E. Rearrangement of pyridine to its 2-carbene tautomer mediated by iridium [J]. J Am Chem Soc, 2007, 129(46): 14130-1.
[166] GUO C, SUN D-W, YANG S, MAO S-J, XU X-H, ZHU S-F, ZHOU Q-L. Iridium-Catalyzed Asymmetric Hydrogenation of 2-Pyridyl Cyclic Imines: A Highly Enantioselective Approach to Nicotine Derivatives [J]. J Am Chem Soc, 2015, 137(1): 90-3.
[167] SONG B, XIE P, LI Y, HAO J, WANG L, CHEN X, XU Z, QUAN H, LOU L, XIA Y, HOUK K N, YANG W. Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors [J]. J Am Chem Soc, 2020, 142(22): 9982-92.
[168] NENAJDENKO V G, ZAKURDAEV E P, PRUSOV E V, BALENKOVA E S. Convenient synthesis of melatonin analogues: 2- and 3-substituted -N-acetylindolylalkylamines [J]. Tetrahedron, 2004, 60(51): 11719-24.
[169] HOOPER J F, YOUNG R D, WELLER A S, WILLIS M C. Traceless Chelation-Controlled Rhodium-Catalyzed Intermolecular Alkene and Alkyne Hydroacylation [J]. Chem Eur J, 2013, 19(9): 3125-30.
[170] ZHANG Z, WU L, LIAO J, WU W, JIANG H, LI J, LI J. Amide Oxygen-Assisted Palladium-Catalyzed Hydration of Alkynes [J]. J Org Chem, 2015, 80(15): 7594-603.
[171] GIOVANNINI A, SAVOIA D, UMANI-RONCHI A. Organometallic ring-opening reactions of N-acyl and N-alkoxycarbonyl lactams. Synthesis of cyclic imines [J]. J Org Chem, 1989, 54(1): 228-34.
[172] LV X, ZHENG Y, PAN J, CHEN L, LIN K, YE D, ZHOU W. Assignment of NMR data and Conformational analysis of larotrectinib and its precursors [J]. Tetrahedron, 2021, 85(132064.
[173] BARIWAL J B, UPADHYAY K D, MANVAR A T, TRIVEDI J C, SINGH J S, JAIN K S, SHAH A K. 1,5-Benzothiazepine, a versatile pharmacophore: A review [J]. European Journal of Medicinal Chemistry, 2008, 43(11): 2279-90.
[174] KRAPCHO J, SPITZMILLER E R, TURK C F. Substituted 2,3-Dihydro-1,5-benzothiazepin-4(5H)-ones and 3,4-Dihydro-2-phenyl-(2H)-1,6-benzothiazocin-5(6H)-ones [J]. Journal of Medicinal Chemistry, 1963, 6(5): 544-6.
[175] KRAPCHO J, TURK C F. Substituted 2,3-Dihydro-1,5-benzothiazepin-4(5H)-one and Related Compounds. II. A New Class of Antidepressants1 [J]. Journal of Medicinal Chemistry, 1966, 9(2): 191-5.
[176] KRAPCHO J, TURK C F, PIALA J J. Syntheses and pharmacological activity of compounds related to the antidepressant, 5-(2-dimethylaminoethyl)-2,3-di-hydro-2-phenyl-1,5-benzothiazepin-4(5H)-one (thiazesim). III [J]. Journal of Medicinal Chemistry, 1968, 11(2): 361-4.
[177] KUGITA H, INOUE H, IKEZAKI M, KONDA M, TAKEO S. Synthesis of 1, 5-Benzothiazepine Derivatives. II [J]. CHEMICAL & PHARMACEUTICAL BULLETIN, 1970, 18(11): 2284-9.
[178] NAGAO T, SATO M, NAKAJIMA H, KIYOMOTO A. Studies on a New 1, 5-Benzothiazepine Derivative (CRD-401). IV. Coronary Vasodilating Effect and Structure-Activity Relationship [J]. CHEMICAL & PHARMACEUTICAL BULLETIN, 1973, 21(1): 92-7.
[179] NARITA H, KABURAKI M, DOI H, YASOSHIMA A, MURATA S. Antithrombotic Effect of TA-993, a Novel 1, 5-Benzothiazepine Derivative, in Conscious Rats [J]. The Japanese Journal of Pharmacology, 1995, 68(4): 397-404.
[180] INADA Y, ITOH K, KAMIYA K, SUGIHARA H, NISHIKAWA K. (R)-3-[(S)-1-Carboxy-5-(4-Piperidyl)pentyl]amino-4-Oxo-2, 3, 4, 5-Tetrahydro-1, 5-Benzothiazepine-5-Acetic Acid (CV-5975): A New Potent and Long-Lasting Inhibitor of Angiotensin Converting Enzyme [J]. The Japanese Journal of Pharmacology, 1988, 47(2): 135-41.
[181] TYAGI V, BONN R B, FASAN R. Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts [J]. Chemical Science, 2015, 6(4): 2488-94.
[182] ASANO K, MATSUBARA S. Catalytic Approaches to Optically Active 1,5-Benzothiazepines [J]. ACS Catalysis, 2018, 8(7): 6273-82.
[183] JACOBSEN E N, DENG L, FURUKAWA Y, MARTíNEZ L E. Enantioselective catalytic epoxidation of cinnamate esters [J]. Tetrahedron, 1994, 50(15): 4323-34.
[184] PEI Q-L, SUN H-W, WU Z-J, DU X-L, ZHANG X-M, YUAN W-C. Catalytic Asymmetric 1,6-Michael Addition of Arylthiols to 3-Methyl-4-nitro-5-alkenyl-isoxazoles with BifunctionalCatalysts [J]. The Journal of Organic Chemistry, 2011, 76(19): 7849-59.
[185] OGAWA T, KUMAGAI N, SHIBASAKI M. Catalytic Asymmetric Conjugate Addition of Thiols to α,β-Unsaturated Thioamides: Expeditious Access to Enantioenriched 1,5-Benzothiazepines [J]. Angewandte Chemie International Edition, 2012, 51(34): 8551-4.
[186] FANG X, LI J, WANG C-J. Organocatalytic Asymmetric Sulfa-Michael Addition of Thiols to α,β-Unsaturated Hexafluoroisopropyl Esters: Expeditious Access to (R)-Thiazesim [J]. Organic Letters, 2013, 15(13): 3448-51.
[187] FUKATA Y, ASANO K, MATSUBARA S. Facile Net Cycloaddition Approach to Optically Active 1,5-Benzothiazepines [J]. Journal of the American Chemical Society, 2015, 137(16): 5320-3.
[188] FUKATA Y, YAO K, MIYAJI R, ASANO K, MATSUBARA S. Asymmetric Net Cycloaddition for Access to Diverse Substituted 1,5-Benzothiazepines [J]. The Journal of Organic Chemistry, 2017, 82(23): 12655-68.
[189] FANG C, LU T, ZHU J, SUN K, DU D. Formal
[3 + 4] Annulation of α,β-Unsaturated Acyl Azoliums: Access to Enantioenriched N–H-Free 1,5-Benzothiazepines [J]. Organic Letters, 2017, 19(13): 3470-3.
[190] MENINNO S, VOLPE C, LATTANZI A. Catalytic Enantioselective Synthesis of Protecting-Group-Free 1,5-Benzothiazepines [J]. Chemistry – A European Journal, 2017, 23(19): 4547-50.
[191] WANG G, TANG Y, ZHANG Y, LIU X, LIN L, FENG X. Enantioselective Synthesis of N−H-Free 1,5-Benzothiazepines [J]. Chemistry – A European Journal, 2017, 23(3): 554-7.
[192] LI W, SCHLEPPHORST C, DANILIUC C, GLORIUS F. Asymmetric Hydrogenation of Vinylthioethers: Access to Optically Active 1,5-Benzothiazepine Derivatives [J]. Angewandte Chemie International Edition, 2016, 55(10): 3300-3.
[193] WEN J, JIANG J, ZHANG X. Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding [J]. Organic Letters, 2016, 18(18): 4451-3.
[194] LI P, ZHOU M, ZHAO Q, WU W, HU X, DONG X-Q, ZHANG X. Synthesis of Chiral β-Amino Nitroalkanes via Rhodium-Catalyzed Asymmetric Hydrogenation [J]. Organic Letters, 2016, 18(1): 40-3.
[195] LI P, HU X, DONG X-Q, ZHANG X. Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles [J]. Chemical Communications, 2016, 52(78): 11677-80.
[196] HAN Z, WANG R, GU G, DONG X-Q, ZHANG X. Asymmetric hydrogenation of maleic anhydrides catalyzed by Rh/bisphosphine-thiourea: efficient construction of chiral succinic anhydrides [J]. Chemical Communications, 2017, 53(30): 4226-9.
[197] LIU G, HAN Z, DONG X-Q, ZHANG X. Rh-Catalyzed Asymmetric Hydrogenation of β-Substituted-β-thio-α,β-unsaturated Esters: Expeditious Access to Chiral Organic Sulfides [J]. Organic Letters, 2018, 20(18): 5636-9.
[198] HAN Z, GUAN Y-Q, LIU G, WANG R, YIN X, ZHAO Q, CONG H, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Tetrasubstituted α-Fluoro-β-enamino Esters: Efficient Access to Chiral α-Fluoro-β-amino Esters with Two Adjacent Tertiary Stereocenters [J]. Organic Letters, 2018, 20(20): 6349-53.
[199] MEINDERTSMA A F, POLLARD M M, FERINGA B L, DE VRIES J G, MINNAARD A J. Asymmetric hydrogenation of alkyl(vinyl)thioethers: a promising approach to α-chiral thioethers [J]. Tetrahedron: Asymmetry, 2007, 18(24): 2849-58.
[200] VALLA C, BAEZA A, MENGES F, PFALTZ A. Enantioselective Synthesis of Chromanes by Iridium-Catalyzed Asymmetric Hydrogenation of 4H-Chromenes [J]. Synlett, 2008, 2008(20): 3167-71.
[201] URBAN S, BEIRING B, ORTEGA N, PAUL D, GLORIUS F. Asymmetric Hydrogenation of Thiophenes and Benzothiophenes [J]. Journal of the American Chemical Society, 2012, 134(37): 15241-4.
[202] MANFRONI G, MESCHINI F, BARRECA M L, LEYSSEN P, SAMUELE A, IRACI N, SABATINI S, MASSARI S, MAGA G, NEYTS J, CECCHETTI V. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase [J]. Bioorganic & Medicinal Chemistry, 2012, 20(2): 866-76.
[203] PARK K, HEO Y, LEE S. Metal-Free Decarboxylative Three-Component Coupling Reaction for the Synthesis of Propargylamines [J]. Organic Letters, 2013, 15(13): 3322-5.
[204] FENG Q, YANG K, SONG Q. Highly selective copper-catalyzed trifunctionalization of alkynyl carboxylic acids: an efficient route to bis-deuterated β-borylated α,β-styrene [J]. Chemical Communications, 2015, 51(84): 15394-7.
[205] RIED W, MARX W. Über heterocyclische Siebenringsysteme, VIII. Synthesen Kondensierter 7-Gliedriger Heterocyclen mit 1 Stickstoff- und 1 Schwefelatom [J]. Chemische Berichte, 1957, 90(11): 2683-7.

所在学位评定分委会
生物学
国内图书分类号
O625.34
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543946
专题理学院_化学系
推荐引用方式
GB/T 7714
尹聪聪. 超高转化数的不对称催化氢化反应及应用研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930904-尹聪聪-化学系.pdf(17890KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[尹聪聪]的文章
百度学术
百度学术中相似的文章
[尹聪聪]的文章
必应学术
必应学术中相似的文章
[尹聪聪]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。