[1] JOHNSON L N. Asymmetry at the molecular level in biology [J]. European Review, 2005, 13(S2): 77-95.
[2] BARRON L D. Chirality and Life [J]. Space Science Reviews, 2008, 135(1): 187-201.
[3] AKABORI S, SAKURAI S, IZUMI Y, FUJII Y. An Asymmetric Catalyst [J]. Nature, 1956, 178(4528): 323-4.
[4] XIE J-H, ZHU S-F, ZHOU Q-L. Transition Metal-Catalyzed Enantioselective Hydrogenation of Enamines and Imines [J]. Chemical Reviews, 2011, 111(3): 1713-60.
[5] OSBORN J A, JARDINE F H, YOUNG J F, WILKINSON G. The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives [J]. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1966, 0): 1711-32.
[6] KNOWLES W S, SABACKY M J. Catalytic asymmetric hydrogenation employing a soluble, optically active, rhodium complex [J]. Chemical Communications (London), 1968, 22): 1445-6.
[7] HORNER L, SIEGEL H, BüTHE H. Asymmetric Catalytic Hydrogenation with an Optically Active Phosphinerhodium Complex in Homogeneous Solution [J]. Angewandte Chemie International Edition in English, 1968, 7(12): 942-.
[8] KAGAN H B, DANG T-P. Asymmetric catalytic reduction with transition metal complexes. I. Catalytic system of rhodium(I) with (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine [J]. Journal of the American Chemical Society, 1972, 94(18): 6429-33.
[9] KAGAN H B, LANGLOIS N, PHAT DANG T. Reduction asymetrique catalysee par des complexes de metaux de transition IV. synthese d'amines chirales au moyen d'un complexe de rhodium et d'isopropylidene dihydroxy-2,3 bis(diphenylphosphino)-1,4 butane (diop) [J]. Journal of Organometallic Chemistry, 1975, 90(3): 353-65.
[10] VINEYARD B D, KNOWLES W S, SABACKY M J, BACHMAN G L, WEINKAUFF D J. Asymmetric hydrogenation. Rhodium chiral bisphosphine catalyst [J]. Journal of the American Chemical Society, 1977, 99(18): 5946-52.
[11] KNOWLES W S. Asymmetric hydrogenation [J]. Accounts of Chemical Research, 1983, 16(3): 106-12.
[12] KNOWLES W S. Application of organometallic catalysis to the commercial production of L-DOPA [J]. Journal of Chemical Education, 1986, 63(3): 222.
[13] MIYASHITA A, YASUDA A, TAKAYA H, TORIUMI K, ITO T, SOUCHI T, NOYORI R. Synthesis of 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenationof .alpha.-(acylamino)acrylic acids [J]. Journal of the American Chemical Society, 1980, 102(27): 7932-4.
[14] NOYORI R. Centenary Lecture. Chemical multiplication of chirality: science and applications [J]. Chemical Society Reviews, 1989, 18(0): 187-208.
[15] NOYORI R. Chiral Metal Complexes as Discriminating Molecular Catalysts [J]. Science, 1990, 248(4960): 1194-9.
[16] BURK M J, FEASTER J E, HARLOW R L. New electron-rich chiral phosphines for asymmetric catalysis [J]. Organometallics, 1990, 9(10): 2653-5.
[17] BURK M J. C2-symmetric bis(phospholanes) and their use in highly enantioselective hydrogenation reactions [J]. Journal of the American Chemical Society, 1991, 113(22): 8518-9.
[18] BURK M J, FEASTER J E. Enantioselective hydrogenation of the C:N group: a catalytic asymmetric reductive amination procedure [J]. Journal of the American Chemical Society, 1992, 114(15): 6266-7.
[19] BURK M J, FEASTER J E, NUGENT W A, HARLOW R L. Preparation and use of C2-symmetric bis(phospholanes): production of .alpha.-amino acid derivatives via highly enantioselective hydrogenation reactions [J]. Journal of the American Chemical Society, 1993, 115(22): 10125-38.
[20] BURK M J, ALLEN J G, KIESMAN W F. Highly Regio- and Enantioselective Catalytic Hydrogenation of Enamides in Conjugated Diene Systems: Synthesis and Application of γ,δ-Unsaturated Amino Acids [J]. Journal of the American Chemical Society, 1998, 120(4): 657-63.
[21] BURK M J, KALBERG C S, PIZZANO A. Rh−DuPHOS-Catalyzed Enantioselective Hydrogenation of Enol Esters. Application to the Synthesis of Highly Enantioenriched α-Hydroxy Esters and 1,2-Diols [J]. Journal of the American Chemical Society, 1998, 120(18): 4345-53.
[22] HAN Z, LIU G, ZHANG X, LI A, DONG X-Q, ZHANG X. Synthesis of Chiral β-Borylated Carboxylic Esters via Nickel-Catalyzed Asymmetric Hydrogenation [J]. Organic Letters, 2019, 21(11): 3923-6.
[23] LIU Y, YI Z, TAN X, DONG X-Q, ZHANG X. Nickel-Catalyzed Asymmetric Hydrogenation of Cyclic Sulfamidate Imines: Efficient Synthesis of Chiral Cyclic Sulfamidates [J]. iScience, 2019, 19(63-73.
[24] ZHAO X, ZHANG F, LIU K, ZHANG X, LV H. Nickel-Catalyzed Chemoselective Asymmetric Hydrogenation of α,β-Unsaturated Ketoimines: An Efficient Approach to Chiral Allylic Amines [J]. Organic Letters, 2019, 21(22): 8966-9.
[25] GRIDNEV I D, YASUTAKE M, HIGASHI N, IMAMOTO T. Asymmetric Hydrogenation of Enamides with Rh-BisP* and Rh-MiniPHOS Catalysts. Scope, Limitations, and Mechanism [J]. Journal of the American Chemical Society, 2001, 123(22): 5268-76.
[26] IMAMOTO T, ITOH T, YOSHIDA K, GRIDNEV I D. Marked Deuterium Isotope Effects on the Enantioselectivity in Rhodium-Catalyzed Asymmetric Hydrogenation of Enamides [J].Chemistry – An Asian Journal, 2008, 3(8-9): 1636-41.
[27] BLASER H-U, BRIEDEN W, PUGIN B, SPINDLER F, STUDER M, TOGNI A. Solvias Josiphos Ligands: From Discovery to Technical Applications [J]. Topics in Catalysis, 2002, 19(1): 3-16.
[28] DERHAMINE S A, KRACHKO T, MONTEIRO N, PILET G, SCHRANCK J, TLILI A, AMGOUNE A. Nickel-Catalyzed Mono-Selective α-Arylation of Acetone with Aryl Chlorides and Phenol Derivatives [J]. Angewandte Chemie International Edition, 2020, 59(43): 18948-53.
[29] SWIFT E C, SHEKHAR S, KOTECKI B J. Synthesis of Enantioenriched β-Aryl-β-aryloxy Esters via Sequential Photoisomerization and Enantioselective Hydrogenation [J]. Organic Letters, 2020, 22(14): 5363-8.
[30] LIU R, LI B, HAN J, ZHANG D, LI M, YAO L, ZHAO W, WANG Q, JIANG R, NIE H. Iridium-catalyzed enantioselective reductive amination of aromatic ketones [J]. Catalysis Science & Technology, 2020, 10(16): 5448-52.
[31] BRüNING F, NAGAE H, KäCH D, MASHIMA K, TOGNI A. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands [J]. Chemistry – A European Journal, 2019, 25(46): 10818-22.
[32] LIU X, WEN J, YAO L, NIE H, JIANG R, CHEN W, ZHANG X. Highly Chemo- and Enantioselective Hydrogenation of 2-Substituted-4-oxo-2-alkenoic Acids [J]. Organic Letters, 2020, 22(12): 4812-6.
[33] XIE J-H, WANG L-X, FU Y, ZHU S-F, FAN B-M, DUAN H-F, ZHOU Q-L. Synthesis of Spiro Diphosphines and Their Application in Asymmetric Hydrogenation of Ketones [J]. Journal of the American Chemical Society, 2003, 125(15): 4404-5.
[34] XIE J-H, GUO L-C, YANG X-H, WANG L-X, ZHOU Q-L. Enantioselective Synthesis of 2,6-cis-Disubstituted Tetrahydropyrans via a Tandem Catalytic Asymmetric Hydrogenation/Oxa-Michael Cyclization: An Efficient Approach to (−)-Centrolobine [J]. Organic Letters, 2012, 14(18): 4758-61.
[35] XIE J-H, LIU X-Y, XIE J-B, WANG L-X, ZHOU Q-L. An Additional Coordination Group Leads to Extremely Efficient Chiral Iridium Catalysts for Asymmetric Hydrogenation of Ketones [J]. Angewandte Chemie International Edition, 2011, 50(32): 7329-32.
[36] BAO D-H, WU H-L, LIU C-L, XIE J-H, ZHOU Q-L. Development of Chiral Spiro P-N-S Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of β-Alkyl-β-Ketoesters [J]. Angewandte Chemie International Edition, 2015, 54(30): 8791-4.
[37] HUA Y-Y, BIN H-Y, WEI T, CHENG H-A, LIN Z-P, FU X-F, LI Y-Q, XIE J-H, YAN P-C, ZHOU Q-L. Iridium-Catalyzed Asymmetric Hydrogenation of γ- and δ-Ketoacids for Enantioselective Synthesis of γ- and δ-Lactones [J]. Organic Letters, 2020, 22(3): 818-22.
[38] LIU Y, DING K. Modular Monodentate Phosphoramidite Ligands for Rhodium-Catalyzed Enantioselective Hydrogenation [J]. Journal of the American Chemical Society, 2005, 127(30): 10488-9.
[39] ZHANG J, DONG K, WANG Z, DING K. Asymmetric hydrogenation of α- or β-acyloxy α,β-unsaturated phosphonates catalyzed by a Rh(i) complex of monodentate phosphoramidite [J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1598-601.
[40] HAN Z, WANG Z, ZHANG X, DING K. Spiro
[4,4]-1,6-nonadiene-Based Phosphine–Oxazoline Ligands for Iridium-Catalyzed Enantioselective Hydrogenation of Ketimines [J]. Angewandte Chemie International Edition, 2009, 48(29): 5345-9.
[41] ZHANG Y, HAN Z, LI F, DING K, ZHANG A. Highly enantioselective hydrogenation of α-aryl-β-substituted acrylic acids catalyzed by Ir-SpinPHOX [J]. Chemical Communications, 2010, 46(1): 156-8.
[42] TANG W, QU B, CAPACCI A G, RODRIGUEZ S, WEI X, HADDAD N, NARAYANAN B, MA S, GRINBERG N, YEE N K, KRISHNAMURTHY D, SENANAYAKE C H. Novel, Tunable, and Efficient Chiral Bisdihydrobenzooxaphosphole Ligands for Asymmetric Hydrogenation [J]. Organic Letters, 2010, 12(1): 176-9.
[43] LIU G, LIU X, CAI Z, JIAO G, XU G, TANG W. Design of Phosphorus Ligands with Deep Chiral Pockets: Practical Synthesis of Chiral β-Arylamines by Asymmetric Hydrogenation [J]. Angewandte Chemie International Edition, 2013, 52(15): 4235-8.
[44] LI C, WAN F, CHEN Y, PENG H, TANG W, YU S, MCWILLIAMS J C, MUSTAKIS J, SAMP L, MAGUIRE R J. Stereoelectronic Effects in Ligand Design: Enantioselective Rhodium-Catalyzed Hydrogenation of Aliphatic Cyclic Tetrasubstituted Enamides and Concise Synthesis of (R)-Tofacitinib [J]. Angewandte Chemie International Edition, 2019, 58(38): 13573-83.
[45] CHEN M-W, DUAN Y, CHEN Q-A, WANG D-S, YU C-B, ZHOU Y-G. Enantioselective Pd-Catalyzed Hydrogenation of Fluorinated Imines: Facile Access to Chiral Fluorinated Amines [J]. Organic Letters, 2010, 12(21): 5075-7.
[46] WANG Y-Q, ZHOU Y-G. Highly Enantioselective Pd-Catalyzed Asymmetric Hydrogenation of N-Diphenylphosphinyl Ketimines [J]. Synlett, 2006, 2006(08): 1189-92.
[47] YU C-B, WANG D-W, ZHOU Y-G. Highly Enantioselective Synthesis of Sultams via Pd-Catalyzed Hydrogenation [J]. The Journal of Organic Chemistry, 2009, 74(15): 5633-5.
[48] WANG D-S, WANG D-W, ZHOU Y-G. Pd-Catalyzed Asymmetric Hydrogenation of C=C Bond of α,β-Unsaturated Ketones [J]. Synlett, 2011, 2011(07): 947-50.
[49] WANG Y-Q, LU S-M, ZHOU Y-G. Palladium-Catalyzed Asymmetric Hydrogenation of Functionalized Ketones [J]. Organic Letters, 2005, 7(15): 3235-8.
[50] WANG D-S, CHEN Q-A, LI W, YU C-B, ZHOU Y-G, ZHANG X. Pd-Catalyzed Asymmetric Hydrogenation of Unprotected Indoles Activated by Brønsted Acids [J]. Journal of the American Chemical Society, 2010, 132(26): 8909-11.
[51] WANG D-S, YE Z-S, CHEN Q-A, ZHOU Y-G, YU C-B, FAN H-J, DUAN Y. Highly Enantioselective Partial Hydrogenation of Simple Pyrroles: A Facile Access to Chiral 1-Pyrrolines [J]. Journal of the American Chemical Society, 2011, 133(23): 8866-9.
[52] JIA J, FAN D, ZHANG J, ZHANG Z, ZHANG W. An Atropos Biphenyl Bisphosphine Ligand with 2,2′′-tert-Butylmethylphosphino Groups for the Rhodium-Catalyzed AsymmetricHydrogenation of Enol Esters [J]. Advanced Synthesis & Catalysis, 2018, 360(19): 3793-800.
[53] ZHANG J, JIA J, ZENG X, WANG Y, ZHANG Z, GRIDNEV I D, ZHANG W. Chemo- and Enantioselective Hydrogenation of α-Formyl Enamides: An Efficient Access to Chiral α-Amido Aldehydes [J]. Angewandte Chemie International Edition, 2019, 58(33): 11505-12.
[54] FAN D, ZHANG J, HU Y, ZHANG Z, GRIDNEV I D, ZHANG W. Asymmetric Hydrogenation of α-Boryl Enamides Enabled by Nonbonding Interactions [J]. ACS Catalysis, 2020, 10(5): 3232-40.
[55] ZHU G, CAO P, JIANG Q, ZHANG X. Highly Enantioselective Rh-Catalyzed Hydrogenations with a New Chiral 1,4-Bisphosphine Containing a Cyclic Backbone [J]. Journal of the American Chemical Society, 1997, 119(7): 1799-800.
[56] JIANG Q, JIANG Y, XIAO D, CAO P, ZHANG X. Highly Enantioselective Hydrogenation of Simple Ketones Catalyzed by a Rh–PennPhos Complex [J]. Angewandte Chemie International Edition, 1998, 37(8): 1100-3.
[57] ZHANG Z, QIAN H, LONGMIRE J, ZHANG X. Synthesis of Chiral Bisphosphines with Tunable Bite Angles and Their Applications in Asymmetric Hydrogenation of β-Ketoesters [J]. The Journal of Organic Chemistry, 2000, 65(19): 6223-6.
[58] XIAO D, ZHANG X. Highly Enantioselective Hydrogenation of Acyclic Imines Catalyzed by Ir–f-Binaphane Complexes [J]. Angewandte Chemie International Edition, 2001, 40(18): 3425-8.
[59] TANG W, ZHANG X. A Chiral 1,2-Bisphospholane Ligand with a Novel Structural Motif: Applications in Highly Enantioselective Rh-Catalyzed Hydrogenations [J]. Angewandte Chemie International Edition, 2002, 41(9): 1612-4.
[60] TANG W, WANG W, CHI Y, ZHANG X. A Bisphosphepine Ligand with Stereogenic Phosphorus Centers for the Practical Synthesis of β-Aryl-β-Amino Acids by Asymmetric Hydrogenation [J]. Angewandte Chemie International Edition, 2003, 42(30): 3509-11.
[61] LIU D, ZHANG X. Practical P-Chiral Phosphane Ligand for Rh-Catalyzed Asymmetric Hydrogenation [J]. European Journal of Organic Chemistry, 2005, 2005(4): 646-9.
[62] GAO W, LV H, ZHANG X. Rh/DuanPhos-Catalyzed Asymmetric Hydrogenation of β-Acetylamino Vinylsulfides: An Approach to Chiral β-Acetylamino Sulfides [J]. Organic Letters, 2017, 19(11): 2877-80.
[63] YANG H, WANG E, YANG P, LV H, ZHANG X. Pyridine-Directed Asymmetric Hydrogenation of 1,1-Diarylalkenes [J]. Organic Letters, 2017, 19(19): 5062-5.
[64] ZHANG X, HUANG K, HOU G, CAO B, ZHANG X. Electron-Donating and Rigid P-Stereogenic Bisphospholane Ligands for Highly Enantioselective Rhodium-Catalyzed Asymmetric Hydrogenations [J]. Angewandte Chemie International Edition, 2010, 49(36): 6421-4.
[65] ZHAO Q, LI S, HUANG K, WANG R, ZHANG X. A Novel Chiral Bisphosphine-Thiourea Ligand for Asymmetric Hydrogenation of β,β-Disubstituted Nitroalkenes [J]. Organic Letters,2013, 15(15): 4014-7.
[66] HAN Z, LI P, ZHANG Z, CHEN C, WANG Q, DONG X-Q, ZHANG X. Highly Enantioselective Synthesis of Chiral Succinimides via Rh/Bisphosphine-Thiourea-Catalyzed Asymmetric Hydrogenation [J]. ACS Catalysis, 2016, 6(9): 6214-8.
[67] LANG Q, GU G, CHENG Y, YIN Q, ZHANG X. Highly Enantioselective Synthesis of Chiral γ-Lactams by Rh-Catalyzed Asymmetric Hydrogenation [J]. ACS Catalysis, 2018, 8(6): 4824-8.
[68] LI X, YOU C, YANG Y, YANG Y, LI P, GU G, CHUNG L W, LV H, ZHANG X. Rhodium-catalyzed asymmetric hydrogenation of β-cyanocinnamic esters with the assistance of a single hydrogen bond in a precise position [J]. Chemical Science, 2018, 9(7): 1919-24.
[69] SUN Y, JIANG J, GUO X, WEN J, ZHANG X. Asymmetric hydrogenation of α,β-unsaturated sulfones by a rhodium/thiourea–bisphosphine complex [J]. Organic Chemistry Frontiers, 2019, 6(9): 1438-41.
[70] CHEN C, WANG H, ZHANG Z, JIN S, WEN S, JI J, CHUNG L W, DONG X-Q, ZHANG X. Ferrocenyl chiral bisphosphorus ligands for highly enantioselective asymmetric hydrogenation via noncovalent ion pair interaction [J]. Chemical Science, 2016, 7(11): 6669-73.
[71] CHEN C, WEN S, GENG M, JIN S, ZHANG Z, DONG X-Q, ZHANG X. A new ferrocenyl bisphosphorus ligand for the asymmetric hydrogenation of α-methylene-γ-keto-carboxylic acids [J]. Chemical Communications, 2017, 53(70): 9785-8.
[72] WEN S, CHEN C, DU S, ZHANG Z, HUANG Y, HAN Z, DONG X-Q, ZHANG X. Highly Enantioselective Asymmetric Hydrogenation of Carboxy-Directed α,α-Disubstituted Terminal Olefins via the Ion Pair Noncovalent Interaction [J]. Organic Letters, 2017, 19(24): 6474-7.
[73] YIN X, CHEN C, DONG X-Q, ZHANG X. Rh/Wudaphos-Catalyzed Asymmetric Hydrogenation of Sodium α-Arylethenylsulfonates: A Method To Access Chiral α-Arylethylsulfonic Acids [J]. Organic Letters, 2017, 19(10): 2678-81.
[74] CHEN C, ZHANG Z, JIN S, FAN X, GENG M, ZHOU Y, WEN S, WANG X, CHUNG L W, DONG X-Q, ZHANG X. Enzyme-Inspired Chiral Secondary-Phosphine-Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation [J]. Angewandte Chemie International Edition, 2017, 56(24): 6808-12.
[75] YIN X, CHEN C, LI X, DONG X-Q, ZHANG X. Rh/SPO-WudaPhos-Catalyzed Asymmetric Hydrogenation of α-Substituted Ethenylphosphonic Acids via Noncovalent Ion-Pair Interaction [J]. Organic Letters, 2017, 19(16): 4375-8.
[76] WU W, LIU S, DUAN M, TAN X, CHEN C, XIE Y, LAN Y, DONG X-Q, ZHANG X. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones [J]. Organic Letters, 2016, 18(12): 2938-41.
[77] WU W, YOU C, YIN C, LIU Y, DONG X-Q, ZHANG X. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution [J]. Organic Letters, 2017, 19(10): 2548-51.
[78] YIN C, WU W, HU Y, TAN X, YOU C, LIU Y, CHEN Z, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins [J]. Advanced Synthesis & Catalysis, 2018, 360(11): 2119-24.
[79] YU J, LONG J, YANG Y, WU W, XUE P, CHUNG L W, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands [J]. Organic Letters, 2017, 19(3): 690-3.
[80] GONG Q, WEN J, ZHANG X. Desymmetrization of cyclic 1,3-diketones via Ir-catalyzed hydrogenation: an efficient approach to cyclic hydroxy ketones with a chiral quaternary carbon [J]. Chemical Science, 2019, 10(25): 6350-3.
[81] GU G, YANG T, LU J, WEN J, DANG L, ZHANG X. Iridium/f-ampha-catalyzed asymmetric hydrogenation of aromatic α-keto esters [J]. Organic Chemistry Frontiers, 2018, 5(7): 1209-12.
[82] YU J, DUAN M, WU W, QI X, XUE P, LAN Y, DONG X-Q, ZHANG X. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones [J]. Chemistry – A European Journal, 2017, 23(4): 970-5.
[83] YIN C, DONG X-Q, ZHANG X. Iridium/f-Amphol-catalyzed Efficient Asymmetric Hydrogenation of Benzo-fused Cyclic Ketones [J]. Advanced Synthesis & Catalysis, 2018, 360(22): 4319-24.
[84] GU G, LU J, YU O, WEN J, YIN Q, ZHANG X. Enantioselective and Diastereoselective Ir-Catalyzed Hydrogenation of α-Substituted β-Ketoesters via Dynamic Kinetic Resolution [J]. Organic Letters, 2018, 20(7): 1888-92.
[85] TAO L, YIN C, DONG X-Q, ZHANG X. Efficient synthesis of chiral β-hydroxy sulfones via iridium-catalyzed hydrogenation [J]. Organic & Biomolecular Chemistry, 2019, 17(4): 785-8.
[86] LIANG Z, YANG T, GU G, DANG L, ZHANG X. Scope and Mechanism on Iridium-f-Amphamide Catalyzed Asymmetric Hydrogenation of Ketones [J]. Chinese Journal of Chemistry, 2018, 36(9): 851-6.
[87] WANG H, ZHANG Y, YANG T, GUO X, GONG Q, WEN J, ZHANG X. Chiral Electron-Rich PNP Ligand with a Phospholane Motif: Structural Features and Application in Asymmetric Hydrogenation [J]. Organic Letters, 2020, 22(22): 8796-801.
[88] ZENG L, YANG H, ZHAO M, WEN J, TUCKER J H R, ZHANG X. C1-Symmetric PNP Ligands for Manganese-Catalyzed Enantioselective Hydrogenation of Ketones: Reaction Scope and Enantioinduction Model [J]. ACS Catalysis, 2020, 10(23): 13794-9.
[89] DOUCET H, OHKUMA T, MURATA K, YOKOZAWA T, KOZAWA M, KATAYAMA E, ENGLAND A F, IKARIYA T, NOYORI R. trans-[RuCl2(phosphane)2(1,2-diamine)] and Chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: Shelf-Stable Precatalysts for the Rapid, Productive, and Stereoselective Hydrogenation of Ketones [J]. Angewandte Chemie International Edition, 1998, 37(12): 1703-7.
[90] HU A, NGO H L, LIN W. 4,4‘-Disubstituted BINAPs for Highly Enantioselective Ru-Catalyzed Asymmetric Hydrogenation of Ketones [J]. Organic Letters, 2004, 6(17): 2937-40.
[91] LI W, SUN X, ZHOU L, HOU G, YU S, ZHANG X. Highly Efficient and Highly Enantioselective Asymmetric Hydrogenation of Ketones with TunesPhos/1,2-Diamine−Ruthenium(II) Complexes [J]. The Journal of Organic Chemistry, 2009, 74(3): 1397-9.
[92] XIE J-H, LIU X-Y, YANG X-H, XIE J-B, WANG L-X, ZHOU Q-L. Chiral Iridium Catalysts Bearing Spiro Pyridine-Aminophosphine Ligands Enable Highly Efficient Asymmetric Hydrogenation of β-Aryl β-Ketoesters [J]. Angewandte Chemie International Edition, 2012, 51(1): 201-3.
[93] PATCHETT R, MAGPANTAY I, SAUDAN L, SCHOTES C, MEZZETTI A, SANTORO F. Asymmetric Hydrogenation of Ketones with H2 and Ruthenium Catalysts Containing Chiral Tetradentate S2N2 Ligands [J]. Angewandte Chemie International Edition, 2013, 52(39): 10352-5.
[94] WU W, XIE Y, LI P, LI X, LIU Y, DONG X-Q, ZHANG X. Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols [J]. Organic Chemistry Frontiers, 2017, 4(4): 555-9.
[95] MAGANO J, DUNETZ J R. Large-Scale Carbonyl Reductions in the Pharmaceutical Industry [J]. Org Process Res Dev, 2012, 16(6): 1156-84.
[96] SHI F, WANG H, DAI X. Carbonyl Compounds [M]. 2021.
[97] CAREY F A, SUNDBERG R J. Advanced Organic Chemistry [M]. 1995.
[98] WEN J, WANG F, ZHANG X. Asymmetric hydrogenation catalyzed by first-row transition metal complexes [J]. Chem Soc Rev, 2021, 50(5): 3211-37.
[99] CRABTREE R H, FELKIN H, FILLEBEEN-KHAN T, MORRIS G E. Dihydridoiridium diolefin complexes as intermediates in homogeneous hydrogenation [J]. J Organomet Chem, 1979, 168(2): 183-95.
[100] YOUNG J F, OSBORN J A, JARDINE F H, WILKINSON G. Hydride intermediates in homogeneous hydrogenation reactions of olefins and acetylenes using rhodium catalysts [J]. Chem Commun 1965, 7):
[101] MONTELATICI S, VAN DER ENT A, OSBORN J A, WILKINSON G. Further studies on the homogeneous hydrogenation of olefins by use of tris (tertiary phosphine)chlororhodium(I) complexes [J]. J Chem Soc A, 1968,
[102] HALPERN J. Mechanism and stereoselectivity of asymmetric hydrogenation [J]. Science, 1982, 217(4558): 401-7.
[103] FRIEDFELD M R, ZHONG H, RUCK R T, SHEVLIN M, CHIRIK P J. Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction [J]. Science, 2018, 360(6391): 888-93.
[104] FRIEDFELD M R, SHEVLIN M, HOYT J M, KRSKA S W, TUDGE M T, CHIRIK P J. Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts [J]. Science, 2013, 342(6162): 1076-80.
[105] BELL S, WUSTENBERG B, KAISER S, MENGES F, NETSCHER T, PFALTZ A. Asymmetrichydrogenation of unfunctionalized, purely alkyl-substituted olefins [J]. Science, 2006, 311(5761): 642-4.
[106] LI B, CHEN J, LIU D, GRIDNEV I D, ZHANG W. Nickel-catalysed asymmetric hydrogenation of oximes [J]. Nat Chem, 2022, 14(8): 920-7.
[107] LIU W, SAHOO B, JUNGE K, BELLER M. Cobalt Complexes as an Emerging Class of Catalysts for Homogeneous Hydrogenations [J]. Acc Chem Res, 2018, 51(8): 1858-69.
[108] PETERS B B C, ANDERSSON P G. The Implications of the Bronsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins [J]. J Am Chem Soc, 2022, 144(36): 16252-61.
[109] MAS-ROSELLO J, SMEJKAL T, CRAMER N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines [J]. Science, 2020, 368(6495): 1098-102.
[110] ZUO W, LOUGH A J, LI Y F, MORRIS R H. Amine(imine)diphosphine iron catalysts for asymmetric transfer hydrogenation of ketones and imines [J]. Science, 2013, 342(6162): 1080-3.
[111] OHKUMA T, OOKA H, HASHIGUCHI S, IKARIYA T, NOYORI R. Practical Enantioselective Hydrogenation of Aromatic Ketones [J]. J Am Chem Soc, 2002, 117(9): 2675-6.
[112] DUB P A, GORDON J C. The role of the metal-bound N–H functionality in Noyori-type molecular catalysts [J]. Nat Rev Chem, 2018, 2(12): 396-408.
[113] XIE J H, LIU X Y, YANG X H, XIE J B, WANG L X, ZHOU Q L. Chiral iridium catalysts bearing spiro pyridine-aminophosphine ligands enable highly efficient asymmetric hydrogenation of beta-aryl beta-ketoesters [J]. Angew Chem Int Ed 2012, 51(1): 201-3.
[114] HU A, NGO H L, LIN W. 4,4'-Disubstituted BINAPs for highly enantioselective Ru-catalyzed asymmetric hydrogenation of ketones [J]. Org Lett, 2004, 6(17): 2937-40.
[115] WU W, LIU S, DUAN M, TAN X, CHEN C, XIE Y, LAN Y, DONG X-Q, ZHANG X. Iridium Catalysts with f-Amphox Ligands: Asymmetric Hydrogenation of Simple Ketones [J]. Org Lett, 2016, 18(12): 2938-41.
[116] ZHAO B, HAN Z, DING K. The N-H functional group in organometallic catalysis [J]. Angew Chem, Int Ed, 2013, 52(18): 4744-88.
[117] ZHENG Z, CAO Y, CHONG Q, HAN Z, DING J, LUO C, WANG Z, ZHU D, ZHOU Q-L, DING K. Chiral Cyclohexyl-Fused Spirobiindanes: Practical Synthesis, Ligand Development, and Asymmetric Catalysis [J]. J Am Chem Soc, 2018, 140(32): 10374-81.
[118] WANG Y, LIU S, YANG H, LI H, LAN Y, LIU Q. Structure, reactivity and catalytic properties of manganese-hydride amidate complexes [J]. Nature Chemistry, 2022, 14(11): 1233-41.
[119] RATOVELOMANANA VIDAL V, PHANSAVATH P. Asymmetric Hydrogenation and Transfer Hydrogenation [M]. 2021.
[120] Asymmetric Catalysis on Industrial Scale [M]. Verlag GmbH & Co. KGaA: Wiley VCH, 2010.
[121] WANG H, WEN J, ZHANG X. Chiral Tridentate Ligands in Transition Metal-Catalyzed Asymmetric Hydrogenation [J]. Chem Rev, 2021, 121(13): 7530-67.
[122] WIEDNER E S, CHAMBERS M B, PITMAN C L, BULLOCK R M, MILLER A J, APPEL AM. Thermodynamic Hydricity of Transition Metal Hydrides [J]. Chem Rev, 2016, 116(15): 8655-92.
[123] XIE J-H, LIU X-Y, XIE J-B, WANG L-X, ZHOU Q-L. An Additional Coordination Group Leads to Extremely Efficient Chiral Iridium Catalysts for Asymmetric Hydrogenation of Ketones [J]. Angew Chem, Int Ed, 2011, 50(32): 7329-32.
[124] WANG L, MASON K A, ANG K K, BUCHHOLZ T, VALDECANAS D, MATHUR A, BUSER-DOEPNER C, TONIATTI C, MILAS L. MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation [J]. Invest New Drugs, 2012, 30(6): 2113-20.
[125] BRYAN M C, BISWAS K, PETERKIN T A N, RZASA R M, ARIK L, LEHTO S G, SUN H, HSIEH F-Y, XU C, FREMEAU R T, ALLEN J R. Chromenones as potent bradykinin B1 antagonists [J]. Bioorg Med Chem Lett, 2012, 22(1): 619-22.
[126] LOOD C S, KOSKINEN A M P. Harmicine, a Tetracyclic Tetrahydro-β-Carboline: From the First Synthetic Precedent to Isolation from Natural Sources to Target-Oriented Synthesis (Review)* [J]. Chem Heterocycl Compd, 2015, 50(10): 1367-87.
[127] PINDER A R. Pyrrole, pyrrolidine, piperidine, pyridine, and azepine alkaloids [J]. Nat Prod Rep, 1992, 9(1): 17-23.
[128] HONG D S, BAUER T M, LEE J J, DOWLATI A, BROSE M S, FARAGO A F, TAYLOR M, SHAW A T, MONTEZ S, MERIC-BERNSTAM F, SMITH S, TUCH B B, EBATA K, CRUICKSHANK S, COX M C, BURRIS H A, DOEBELE R C. Larotrectinib in adult patients with solid tumours: a multi-centre, open-label, phase I dose-escalation study [J]. Ann Oncol, 2019, 30(2): 325-31.
[129] DOMI E, BARBIER E, AUGIER E, AUGIER G, GEHLERT D, BARCHIESI R, THORSELL A, HOLM L, HEILIG M. Preclinical evaluation of the kappa-opioid receptor antagonist CERC-501 as a candidate therapeutic for alcohol use disorders [J]. Neuropsychopharmacology, 2018, 43(9): 1805-12.
[130] LAETSCH T W, DUBOIS S G, MASCARENHAS L, TURPIN B, FEDERMAN N, ALBERT C M, NAGASUBRAMANIAN R, DAVIS J L, RUDZINSKI E, FERACO A M, TUCH B B, EBATA K T, REYNOLDS M, SMITH S, CRUICKSHANK S, COX M C, PAPPO A S, HAWKINS D S. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study [J]. Lancet Oncol, 2018, 19(5): 705-14.
[131] MEREDITH E L, KSANDER G, MONOVICH L G, PAPILLON J P N, LIU Q, MIRANDA K, MORRIS P, RAO C, BURGIS R, CAPPARELLI M, HU Q-Y, SINGH A, RIGEL D F, JENG A Y, BEIL M, FU F, HU C-W, LASALA D. Discovery and in Vivo Evaluation of Potent Dual CYP11B2 (Aldosterone Synthase) and CYP11B1 Inhibitors [J]. ACS MedChem Lett, 2013, 4(12): 1203-7.
[132] SPANGENBERG T, BREIT B, MANN A. Hydroformylation of Homoallylic Azides: A Rapid Approach toward Alkaloids [J]. Org Lett, 2009, 11(2): 261-4.
[133] KLAPARS A, CAMPOS K R, WALDMAN J H, ZEWGE D, DORMER P G, CHEN C-Y.Enantioselective Pd-Catalyzed α-Arylation of N-Boc-Pyrrolidine: The Key to an Efficient and Practical Synthesis of a Glucokinase Activator [J]. J Org Chem, 2008, 73(13): 4986-93.
[134] CHEN F, DING Z, QIN J, WANG T, HE Y, FAN Q-H. Highly Effective Asymmetric Hydrogenation of Cyclic N-Alkyl Imines with Chiral Cationic Ru-MsDPEN Catalysts [J]. Org Lett, 2011, 13(16): 4348-51.
[135] PENNING T D, ZHU G-D, GONG J, THOMAS S, GANDHI V B, LIU X, SHI Y, KLINGHOFER V, JOHNSON E F, PARK C H, FRY E H, DONAWHO C K, FROST D J, BUCHANAN F G, BUKOFZER G T, RODRIGUEZ L E, BONTCHEVA-DIAZ V, BOUSKA J J, OSTERLING D J, OLSON A M, MARSH K C, LUO Y, GIRANDA V L. Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor [J]. J Med Chem, 2010, 53(8): 3142-53.
[136] CHANG M, LI W, HOU G, ZHANG X. Iridium-Catalyzed Enantioselective Hydrogenation of Cyclic Imines [J]. Adv Synth Catal, 2010, 352(18): 3121-5.
[137] WĘGLARZ I, MICHALAK K, MLYNARSKI J. Zinc Catalyzed Asymmetric Hydrosilylation of Cyclic Imines: Synthesis of Chiral 2 Aryl Substituted Pyrrolidines as Pharmaceutical Building Blocks [J]. Adv Synth Catal, 2020, 363(5): 1317-21.
[138] ZHANG Y, KONG D, WANG R, HOU G. Synthesis of chiral cyclic amines via Ir-catalyzed enantioselective hydrogenation of cyclic imines [J]. Org Biomol Chem, 2017, 15(14): 3006-12.
[139] LUNDRIGAN T, WELSH E N, HYNES T, TIEN C-H, ADAMS M R, ROY K R, ROBERTSON K N, SPEED A W H. Enantioselective Imine Reduction Catalyzed by Phosphenium Ions [J]. J Am Chem Soc, 2019, 141(36): 14083-8.
[140] QUINTO T, SCHWIZER F, ZIMBRON J M, MORINA A, KöHLER V, WARD T R. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology [J]. ChemCatChem, 2014, 6(4): 1010-4.
[141] L. LARSON G, L. FRY J. Ionic and Organometallic-Catalyzed Organosilane Reductions [J]. Org React, 2008, 1-737.
[142] VERDAGUER X, LANGE U E W, REDING M T, BUCHWALD S L. Highly Enantioselective Imine Hydrosilylation Using (S,S)-Ethylenebis(η5-tetrahydroindenyl)titanium Difluoride [J]. J Am Chem Soc, 1996, 118(28): 6784-5.
[143] BUNRIT A, DAHLSTRAND C, OLSSON S K, SRIFA P, HUANG G, ORTHABER A, SJOBERG P J, BISWAS S, HIMO F, SAMEC J S. Bronsted acid-catalyzed intramolecular nucleophilic substitution of the hydroxyl group in stereogenic alcohols with chirality transfer [J]. J Am Chem Soc, 2015, 137(14): 4646-9.
[144] BUNRIT A, SRIFA P, RUKKIJAKAN T, DAHLSTRAND C, HUANG G, BISWAS S, WATILE R A, SAMEC J S M. H3PO2-Catalyzed Intramolecular Stereospecific Substitution of the Hydroxyl Group in Enantioenriched Secondary Alcohols by N-, O-, and S-Centered Nucleophiles to Generate Heterocycles [J]. ACS Catal, 2019, 10(2): 1344-52.
[145] SHORE E R, AWAIS M, KERSHAW N M, GIBSON R R, PANDALANENI S, LATAWIEC D,WEN L, JAVED M A, CRIDDLE D N, BERRY N, O'NEILL P M, LIAN L Y, SUTTON R. Small Molecule Inhibitors of Cyclophilin D To Protect Mitochondrial Function as a Potential Treatment for Acute Pancreatitis [J]. J Med Chem, 2016, 59(6): 2596-611.
[146] WATILE R A, BUNRIT A, MARGALEF J, AKKARASAMIYO S, AYUB R, LAGERSPETS E, BISWAS S, REPO T, SAMEC J S M. Intramolecular substitutions of secondary and tertiary alcohols with chirality transfer by an iron(III) catalyst [J]. Nat Commun, 2019, 10(1): 3826.
[147] WILLOUGHBY C A, BUCHWALD S L. Asymmetric titanocene-catalyzed hydrogenation of imines [J]. J Am Chem Soc, 2002, 114(19): 7562-4.
[148] WILLOUGHBY C A, BUCHWALD S L. Catalytic Asymmetric Hydrogenation of Imines with a Chiral Titanocene Catalyst: Scope and Limitations [J]. J Am Chem Soc, 2002, 116(20): 8952-65.
[149] CHEN F, DING Z, QIN J, WANG T, HE Y, FAN Q H. Highly effective asymmetric hydrogenation of cyclic N-alkyl imines with chiral cationic Ru-MsDPEN catalysts [J]. Org Lett, 2011, 13(16): 4348-51.
[150] CHEN F, DING Z, HE Y, QIN J, WANG T, FAN Q-H. Asymmetric hydrogenation of N-alkyl and N-aryl ketimines using chiral cationic Ru(diamine) complexes as catalysts: the counteranion and solvent effects, and substrate scope [J]. Tetrahedron, 2012, 68(26): 5248-57.
[151] CHEN F, WANG T, HE Y, DING Z, LI Z, XU L, FAN Q H. Asymmetric hydrogenation of N-alkyl ketimines with phosphine-free, chiral, cationic Ru-MsDPEN catalysts [J]. Chem Eur J, 2011, 17(4): 1109-13.
[152] ZHU G, ZHANG X. Additive effects in Ir–BICP catalyzed asymmetric hydrogenation of imines [J]. Tetrahedron: Asymmetry, 1998, 9(14): 2415-8.
[153] SCHNIDER P, KOCH G, PRéTôT R, WANG G, BOHNEN F M, KRüGER C, PFALTZ A. Enantioselective Hydrogenation of Imines with Chiral (Phosphanodihydrooxazole)iridium Catalysts [J]. Chem Eur J, 1997, 3(6): 887-92.
[154] GUO C, SUN D W, YANG S, MAO S J, XU X H, ZHU S F, ZHOU Q L. Iridium-catalyzed asymmetric hydrogenation of 2-pyridyl cyclic imines: a highly enantioselective approach to nicotine derivatives [J]. J Am Chem Soc, 2015, 137(1): 90-3.
[155] ZHANG Y, YAN Q, ZI G, HOU G. Enantioselective Direct Synthesis of Free Cyclic Amines via Intramolecular Reductive Amination [J]. Org Lett, 2017, 19(16): 4215-8.
[156] ZHOU H, ZHAO W, ZHANG T, GUO H, HUANG H, CHANG M. Enantioselective Synthesis of 2-Substituted Pyrrolidines via Intramolecular- Reductive Amination [J]. Synthesis, 2019, 51(13): 2713-9.
[157] BARRIOS-RIVERA J, XU Y, WILLS M. Probing the Effects of Heterocyclic Functionality in [(Benzene)Ru(TsDPENR)Cl] Catalysts for Asymmetric Transfer Hydrogenation [J]. Org Lett, 2019, 21(18): 7223-7.
[158] XIE J H, LIU X Y, XIE J B, WANG L X, ZHOU Q L. An additional coordination group leads to extremely efficient chiral iridium catalysts for asymmetric hydrogenation of ketones [J].Angew Chem, Int Ed, 2011, 50(32): 7329-32.
[159] ARAI N, OHKUMA T. Design of molecular catalysts for achievement of high turnover number in homogeneous hydrogenation [J]. Chem Rec, 2012, 12(2): 284-9.
[160] WU W, XIE Y, LI P, LI X, LIU Y, DONG X-Q, ZHANG X. Asymmetric hydrogenation of α-hydroxy ketones with an iridium/f-amphox catalyst: efficient access to chiral 1,2-diols [J]. Org Chem Front, 2017, 4(4): 555-9.
[161] WU W, YOU C, YIN C, LIU Y, DONG X-Q, ZHANG X. Enantioselective and Diastereoselective Construction of Chiral Amino Alcohols by Iridium–f-Amphox-Catalyzed Asymmetric Hydrogenation via Dynamic Kinetic Resolution [J]. Org Lett, 2017, 19(10): 2548-51.
[162] YIN C, WU W, HU Y, TAN X, YOU C, LIU Y, CHEN Z, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Halogenated Ketones for the Efficient Construction of Chiral Halohydrins [J]. Adv Synth Catal, 2018, 360(11): 2119-24.
[163] WANG J, SHAO P-L, LIN X, MA B, WEN J, ZHANG X. Facile Synthesis of Enantiopure Sugar Alcohols: Asymmetric Hydrogenation and Dynamic Kinetic Resolution Combined [J]. Angew Chem, Int Ed, 2020, 59(41): 18166-71.
[164] YU J, DUAN M, WU W, QI X, XUE P, LAN Y, DONG X-Q, ZHANG X. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones [J]. Chem Eur J, 2017, 23(4): 970-5.
[165] ALVAREZ E, CONEJERO S, LARA P, LOPEZ J A, PANEQUE M, PETRONILHO A, POVEDA M L, DEL RIO D, SERRANO O, CARMONA E. Rearrangement of pyridine to its 2-carbene tautomer mediated by iridium [J]. J Am Chem Soc, 2007, 129(46): 14130-1.
[166] GUO C, SUN D-W, YANG S, MAO S-J, XU X-H, ZHU S-F, ZHOU Q-L. Iridium-Catalyzed Asymmetric Hydrogenation of 2-Pyridyl Cyclic Imines: A Highly Enantioselective Approach to Nicotine Derivatives [J]. J Am Chem Soc, 2015, 137(1): 90-3.
[167] SONG B, XIE P, LI Y, HAO J, WANG L, CHEN X, XU Z, QUAN H, LOU L, XIA Y, HOUK K N, YANG W. Pd-Catalyzed Decarboxylative Olefination: Stereoselective Synthesis of Polysubstituted Butadienes and Macrocyclic P-glycoprotein Inhibitors [J]. J Am Chem Soc, 2020, 142(22): 9982-92.
[168] NENAJDENKO V G, ZAKURDAEV E P, PRUSOV E V, BALENKOVA E S. Convenient synthesis of melatonin analogues: 2- and 3-substituted -N-acetylindolylalkylamines [J]. Tetrahedron, 2004, 60(51): 11719-24.
[169] HOOPER J F, YOUNG R D, WELLER A S, WILLIS M C. Traceless Chelation-Controlled Rhodium-Catalyzed Intermolecular Alkene and Alkyne Hydroacylation [J]. Chem Eur J, 2013, 19(9): 3125-30.
[170] ZHANG Z, WU L, LIAO J, WU W, JIANG H, LI J, LI J. Amide Oxygen-Assisted Palladium-Catalyzed Hydration of Alkynes [J]. J Org Chem, 2015, 80(15): 7594-603.
[171] GIOVANNINI A, SAVOIA D, UMANI-RONCHI A. Organometallic ring-opening reactions of N-acyl and N-alkoxycarbonyl lactams. Synthesis of cyclic imines [J]. J Org Chem, 1989, 54(1): 228-34.
[172] LV X, ZHENG Y, PAN J, CHEN L, LIN K, YE D, ZHOU W. Assignment of NMR data and Conformational analysis of larotrectinib and its precursors [J]. Tetrahedron, 2021, 85(132064.
[173] BARIWAL J B, UPADHYAY K D, MANVAR A T, TRIVEDI J C, SINGH J S, JAIN K S, SHAH A K. 1,5-Benzothiazepine, a versatile pharmacophore: A review [J]. European Journal of Medicinal Chemistry, 2008, 43(11): 2279-90.
[174] KRAPCHO J, SPITZMILLER E R, TURK C F. Substituted 2,3-Dihydro-1,5-benzothiazepin-4(5H)-ones and 3,4-Dihydro-2-phenyl-(2H)-1,6-benzothiazocin-5(6H)-ones [J]. Journal of Medicinal Chemistry, 1963, 6(5): 544-6.
[175] KRAPCHO J, TURK C F. Substituted 2,3-Dihydro-1,5-benzothiazepin-4(5H)-one and Related Compounds. II. A New Class of Antidepressants1 [J]. Journal of Medicinal Chemistry, 1966, 9(2): 191-5.
[176] KRAPCHO J, TURK C F, PIALA J J. Syntheses and pharmacological activity of compounds related to the antidepressant, 5-(2-dimethylaminoethyl)-2,3-di-hydro-2-phenyl-1,5-benzothiazepin-4(5H)-one (thiazesim). III [J]. Journal of Medicinal Chemistry, 1968, 11(2): 361-4.
[177] KUGITA H, INOUE H, IKEZAKI M, KONDA M, TAKEO S. Synthesis of 1, 5-Benzothiazepine Derivatives. II [J]. CHEMICAL & PHARMACEUTICAL BULLETIN, 1970, 18(11): 2284-9.
[178] NAGAO T, SATO M, NAKAJIMA H, KIYOMOTO A. Studies on a New 1, 5-Benzothiazepine Derivative (CRD-401). IV. Coronary Vasodilating Effect and Structure-Activity Relationship [J]. CHEMICAL & PHARMACEUTICAL BULLETIN, 1973, 21(1): 92-7.
[179] NARITA H, KABURAKI M, DOI H, YASOSHIMA A, MURATA S. Antithrombotic Effect of TA-993, a Novel 1, 5-Benzothiazepine Derivative, in Conscious Rats [J]. The Japanese Journal of Pharmacology, 1995, 68(4): 397-404.
[180] INADA Y, ITOH K, KAMIYA K, SUGIHARA H, NISHIKAWA K. (R)-3-[(S)-1-Carboxy-5-(4-Piperidyl)pentyl]amino-4-Oxo-2, 3, 4, 5-Tetrahydro-1, 5-Benzothiazepine-5-Acetic Acid (CV-5975): A New Potent and Long-Lasting Inhibitor of Angiotensin Converting Enzyme [J]. The Japanese Journal of Pharmacology, 1988, 47(2): 135-41.
[181] TYAGI V, BONN R B, FASAN R. Intermolecular carbene S–H insertion catalysed by engineered myoglobin-based catalysts [J]. Chemical Science, 2015, 6(4): 2488-94.
[182] ASANO K, MATSUBARA S. Catalytic Approaches to Optically Active 1,5-Benzothiazepines [J]. ACS Catalysis, 2018, 8(7): 6273-82.
[183] JACOBSEN E N, DENG L, FURUKAWA Y, MARTíNEZ L E. Enantioselective catalytic epoxidation of cinnamate esters [J]. Tetrahedron, 1994, 50(15): 4323-34.
[184] PEI Q-L, SUN H-W, WU Z-J, DU X-L, ZHANG X-M, YUAN W-C. Catalytic Asymmetric 1,6-Michael Addition of Arylthiols to 3-Methyl-4-nitro-5-alkenyl-isoxazoles with BifunctionalCatalysts [J]. The Journal of Organic Chemistry, 2011, 76(19): 7849-59.
[185] OGAWA T, KUMAGAI N, SHIBASAKI M. Catalytic Asymmetric Conjugate Addition of Thiols to α,β-Unsaturated Thioamides: Expeditious Access to Enantioenriched 1,5-Benzothiazepines [J]. Angewandte Chemie International Edition, 2012, 51(34): 8551-4.
[186] FANG X, LI J, WANG C-J. Organocatalytic Asymmetric Sulfa-Michael Addition of Thiols to α,β-Unsaturated Hexafluoroisopropyl Esters: Expeditious Access to (R)-Thiazesim [J]. Organic Letters, 2013, 15(13): 3448-51.
[187] FUKATA Y, ASANO K, MATSUBARA S. Facile Net Cycloaddition Approach to Optically Active 1,5-Benzothiazepines [J]. Journal of the American Chemical Society, 2015, 137(16): 5320-3.
[188] FUKATA Y, YAO K, MIYAJI R, ASANO K, MATSUBARA S. Asymmetric Net Cycloaddition for Access to Diverse Substituted 1,5-Benzothiazepines [J]. The Journal of Organic Chemistry, 2017, 82(23): 12655-68.
[189] FANG C, LU T, ZHU J, SUN K, DU D. Formal
[3 + 4] Annulation of α,β-Unsaturated Acyl Azoliums: Access to Enantioenriched N–H-Free 1,5-Benzothiazepines [J]. Organic Letters, 2017, 19(13): 3470-3.
[190] MENINNO S, VOLPE C, LATTANZI A. Catalytic Enantioselective Synthesis of Protecting-Group-Free 1,5-Benzothiazepines [J]. Chemistry – A European Journal, 2017, 23(19): 4547-50.
[191] WANG G, TANG Y, ZHANG Y, LIU X, LIN L, FENG X. Enantioselective Synthesis of N−H-Free 1,5-Benzothiazepines [J]. Chemistry – A European Journal, 2017, 23(3): 554-7.
[192] LI W, SCHLEPPHORST C, DANILIUC C, GLORIUS F. Asymmetric Hydrogenation of Vinylthioethers: Access to Optically Active 1,5-Benzothiazepine Derivatives [J]. Angewandte Chemie International Edition, 2016, 55(10): 3300-3.
[193] WEN J, JIANG J, ZHANG X. Rhodium-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated Carbonyl Compounds via Thiourea Hydrogen Bonding [J]. Organic Letters, 2016, 18(18): 4451-3.
[194] LI P, ZHOU M, ZHAO Q, WU W, HU X, DONG X-Q, ZHANG X. Synthesis of Chiral β-Amino Nitroalkanes via Rhodium-Catalyzed Asymmetric Hydrogenation [J]. Organic Letters, 2016, 18(1): 40-3.
[195] LI P, HU X, DONG X-Q, ZHANG X. Rhodium/bisphosphine-thiourea-catalyzed enantioselective hydrogenation of α,β-unsaturated N-acylpyrazoles [J]. Chemical Communications, 2016, 52(78): 11677-80.
[196] HAN Z, WANG R, GU G, DONG X-Q, ZHANG X. Asymmetric hydrogenation of maleic anhydrides catalyzed by Rh/bisphosphine-thiourea: efficient construction of chiral succinic anhydrides [J]. Chemical Communications, 2017, 53(30): 4226-9.
[197] LIU G, HAN Z, DONG X-Q, ZHANG X. Rh-Catalyzed Asymmetric Hydrogenation of β-Substituted-β-thio-α,β-unsaturated Esters: Expeditious Access to Chiral Organic Sulfides [J]. Organic Letters, 2018, 20(18): 5636-9.
[198] HAN Z, GUAN Y-Q, LIU G, WANG R, YIN X, ZHAO Q, CONG H, DONG X-Q, ZHANG X. Iridium-Catalyzed Asymmetric Hydrogenation of Tetrasubstituted α-Fluoro-β-enamino Esters: Efficient Access to Chiral α-Fluoro-β-amino Esters with Two Adjacent Tertiary Stereocenters [J]. Organic Letters, 2018, 20(20): 6349-53.
[199] MEINDERTSMA A F, POLLARD M M, FERINGA B L, DE VRIES J G, MINNAARD A J. Asymmetric hydrogenation of alkyl(vinyl)thioethers: a promising approach to α-chiral thioethers [J]. Tetrahedron: Asymmetry, 2007, 18(24): 2849-58.
[200] VALLA C, BAEZA A, MENGES F, PFALTZ A. Enantioselective Synthesis of Chromanes by Iridium-Catalyzed Asymmetric Hydrogenation of 4H-Chromenes [J]. Synlett, 2008, 2008(20): 3167-71.
[201] URBAN S, BEIRING B, ORTEGA N, PAUL D, GLORIUS F. Asymmetric Hydrogenation of Thiophenes and Benzothiophenes [J]. Journal of the American Chemical Society, 2012, 134(37): 15241-4.
[202] MANFRONI G, MESCHINI F, BARRECA M L, LEYSSEN P, SAMUELE A, IRACI N, SABATINI S, MASSARI S, MAGA G, NEYTS J, CECCHETTI V. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase [J]. Bioorganic & Medicinal Chemistry, 2012, 20(2): 866-76.
[203] PARK K, HEO Y, LEE S. Metal-Free Decarboxylative Three-Component Coupling Reaction for the Synthesis of Propargylamines [J]. Organic Letters, 2013, 15(13): 3322-5.
[204] FENG Q, YANG K, SONG Q. Highly selective copper-catalyzed trifunctionalization of alkynyl carboxylic acids: an efficient route to bis-deuterated β-borylated α,β-styrene [J]. Chemical Communications, 2015, 51(84): 15394-7.
[205] RIED W, MARX W. Über heterocyclische Siebenringsysteme, VIII. Synthesen Kondensierter 7-Gliedriger Heterocyclen mit 1 Stickstoff- und 1 Schwefelatom [J]. Chemische Berichte, 1957, 90(11): 2683-7.
修改评论