[1] HALL E H. On a new action of the magnet on electric currents[J]. Am. J. Math., 1879, 2: 287-292.
[2] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Phys. Rev. Lett., 1980, 45: 494-497.
[3] TSUI D C, STORMER H L, GOSSARD A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J]. Phys. Rev. Lett., 1982, 48: 1559-1562.
[4] HE K. The Quantum Hall Effect Gets More Practical[J]. Physics, 2015, 8: 41.
[5] HALDANE F D M. Model for a Quantum Hall Effect without Landau Levels: CondensedMatter Realization of the "Parity Anomaly"[J]. Phys. Rev. Lett., 1988, 61: 2015-2018.
[6] ONODA M, NAGAOSA N. Quantized Anomalous Hall Effect in Two-Dimensional Ferromagnets: Quantum Hall Effect in Metals[J]. Phys. Rev. Lett., 2003, 90: 206601.
[7] KANE C L, MELE E J. Z2 Topological Order and the Quantum Spin Hall Effect[J]. Phys. Rev. Lett., 2005, 95: 146802.
[8] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Rev. Mod. Phys., 2010, 82: 3045-3067.
[9] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Rev. Mod. Phys., 2011, 83: 1057-1110.
[10] FU L, KANE C L, MELE E J. Topological Insulators in Three Dimensions[J]. Phys. Rev. Lett., 2007, 98: 106803.
[11] FU L, KANE C L. Topological insulators with inversion symmetry[J]. Phys. Rev. B, 2007, 76: 045302.
[12] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452: 970-974.
[13] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nat. Phys., 2009, 5: 438-442.
[14] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nat. Phys., 2009, 5: 398-402.
[15] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J]. Science, 2009, 325: 178-181.
[16] HSIEH D, XIA Y, QIAN D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J]. Nature, 2009, 460: 1101-1105.
[17] CHEN Y L, CHU J H, ANALYTIS J G, et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator[J]. Science, 2010, 329: 659-662.
[18] KURODA K, ARITA M, MIYAMOTO K, et al. Hexagonally Deformed Fermi Surface of the 3D Topological Insulator Bi2Se3[J]. Phys. Rev. Lett., 2010, 105: 076802.
[19] NEUPANE M, XU S Y, WRAY L A, et al. Topological surface states and Dirac point tuning in ternary topological insulators[J]. Phys. Rev. B, 2012, 85: 235406.
[20] ARAKANE T, SATO T, SOUMA S, et al. Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey[J]. Nat. Commun., 2012, 3: 636.
[21] YU R, ZHANG W, ZHANG H J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010, 329: 61-64.
[22] CHANG C Z, ZHANG J, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J]. Science, 2013, 340: 167-170.
[23] MOGI M, KAWAMURA M, YOSHIMI R, et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator[J]. Nat. Mater., 2017, 16: 516-521.
[24] HIRAHARA T, EREMEEV S V, SHIRASAWA T, et al. Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer[J]. Nano Lett., 2017, 17: 3493-3500.
[25] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J]. J. Alloys Compd., 2019, 789: 443-450.
[26] YAN J Q, ZHANG Q, HEITMANN T, et al. Crystal growth and magnetic structure of MnBi2Te4[J]. Phys. Rev. Materials, 2019, 3: 064202.
[27] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367: 895-900.
[28] OTROKOV M M, RUSINOV I P, BLANCO-REY M, et al. Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4[J]. Phys. Rev. Lett., 2019, 122: 107202.
[29] LIU C, WANG Y, LI H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator[J]. Nat. Phys., 2020, 19: 522-527.
[30] LIU C X, ZHANG S C, QI X L. The Quantum Anomalous Hall Effect: Theory and Experiment[J]. Annu. Rev. Condens. Matter Phys., 2016, 7: 301-321.
[31] HAO Y J, LIU P, FENG Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Phys. Rev. X, 2019, 9: 041038.
[32] LEE S H, ZHU Y, WANG Y, et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4[J]. Phys. Rev. Res., 2019, 1: 012011.
[33] ZEUGNER A, NIETSCHKE F, WOLTER A U B, et al. Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4[J]. Chem. Mater., 2019, 31: 2795-2806.
[34] VIDAL R C, BENTMANN H, PEIXOTO T R F, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4(0001)[J]. Phys. Rev. B, 2019, 100: 121104.
[35] LI H, GAO S Y, DUAN S F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J]. Phys. Rev. X, 2019, 9: 041039.
[36] CHEN Y J, XU L X, LI J H, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Phys. Rev. X, 2019, 9: 041040.
[37] SWATEK P, WU Y, WANG L L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. Phys. Rev. B, 2020, 101: 161109.
[38] TAN H, YAN B. Distinct Magnetic Gaps between Antiferromagnetic and Ferromagnetic Orders Driven by Surface Defects in the Topological Magnet MnBi2Te4[J]. Phys. Rev. Lett., 2023, 130: 126702.
[39] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576: 416-422.
[40] SHIKIN A M, ESTYUNIN D A, KLIMOVSKIKH I I, et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4[J]. Sci. Rep., 2020, 10: 13226.
[41] NEVOLA D, LI H X, YAN J Q, et al. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4[J]. Phys. Rev. Lett., 2020, 125: 117205.
[42] YAN C, FERNANDEZ-MULLIGAN S, MEI R, et al. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4[J]. Phys. Rev. B, 2021, 104: L041102.
[43] LIANG A, CHEN C, ZHENG H, et al. Approaching a Minimal Topological Electronic Structure in Antiferromagnetic Topological Insulator MnBi2Te4 via Surface Modification[J]. Nano Lett., 2022, 22: 4307-4314.
[44] CHEN B, FEI F, ZHANG D, et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes[J]. Nat. Commun., 2019, 10: 4469.
[45] MA X M, ZHAO Y, ZHANG K, et al. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4[J]. Phys. Rev. B, 2021, 103: L121112.
[46] YAN J Q, OKAMOTO S, MCGUIRE M A, et al. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4[J]. Phys. Rev. B, 2019, 100: 104409.
[47] CHEN Y, CHUANG Y W, LEE S H, et al. Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4[J]. Phys. Rev. Mater., 2020, 4: 064411.
[48] ZHOU L, TAN Z, YAN D, et al. Topological phase transition in the layered magnetic compound MnSb2Te4: Spin-orbit coupling and interlayer coupling dependence[J]. Phys. Rev. B, 2020, 102: 085114.
[49] LIU Y, WANG L L, ZHENG Q, et al. Site Mixing for Engineering Magnetic Topological Insulators[J]. Phys. Rev. X, 2021, 11: 021033.
[50] WIMMER S, SÁNCHEZ-BARRIGA J, KÜPPERS P, et al. Mn-Rich MnSb2Te4: A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K[J]. Adv. Mater., 2021, 33: 2102935.
[51] MURAKAMI T, NAMBU Y, KORETSUNE T, et al. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state[J]. Phys. Rev. B, 2019, 100: 195103.
[52] ZANG Z, ZHU Y, XI M, et al. Layer-Number-Dependent Antiferromagnetic and Ferromagnetic Behavior in MnSb2Te4[J]. Phys. Rev. Lett., 2022, 128: 017201.
[53] EREMEEV S V, RUSINOV I P, KOROTEEV Y M, et al. Topological Magnetic Materials of the (MnSb2Te4)⋅(Sb2Te3)n van der Waals Compounds Family[J]. J. Phys. Chem. Lett., 2021, 12: 4268-4277.
[54] ZHU J, NAVEED M, CHEN B, et al. Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4[J]. Phys. Rev. B, 2021, 103: 144407.
[55] XU S Y, NEUPANE M, LIU C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator[J]. Nat. Phys., 2012, 8: 616-622.
[56] YANG H, LIANG A, CHEN C, et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy[J]. Nat. Rev. Mater., 2018, 3: 341-353.
[57] SOBOTA J A, HE Y, SHEN Z X. Angle-resolved photoemission studies of quantum materials[J]. Rev. Mod. Phys., 2021, 93: 025006.
[58] DAMASCELLI A, HUSSAIN Z, SHEN Z X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Rev. Mod. Phys., 2003, 75: 473-541.
[59] HÜFNER S. Photoelectron Spectroscopy[M]. 3rd ed. Springer Berlin, Heidelberg, 2003.
[60] HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Ann. Phys. (Leipzig), 1887, 267: 983-1000.
[61] EINSTEIN A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt[J]. Ann. Phys. (Leipzig), 1905, 322: 132-148.
[62] LV B, QIAN T, DING H. Angle-resolved photoemission spectroscopy and its application to topological materials[J]. Nat. Rev. Phys., 2019, 1: 609-626.
[63] ZHANG H, PINCELLI T, JOZWIAK C, et al. Angle-resolved photoemission spectroscopy[J]. Nat. Rev. Methods Primers, 2022, 2: 54.
[64] BERGLUND C N, SPICER W E. Photoemission Studies of Copper and Silver: Theory[J]. Phys. Rev., 1964, 136: A1030-A1044.
[65] SANTARELLI J F. Schéma de principe du synchrotron[EB/OL]. 2005
[2023-04-06]. https://commons.wikimedia.org/wiki/File:Sch%C3%A9ma_de_principe_du_synchrotron.jpg.
[66] GAY T J, DUNNING F B. Mott electron polarimetry[J]. Rev. Sci. Instrum., 1992, 63: 16351651.
[67] HILLEBRECHT F U, JUNGBLUT R M, WIEBUSCH L, et al. High-efficiency spin polarimetry by very-low-energy electron scattering from Fe(100) for spin-resolved photoemission[J]. Rev. Sci. Instrum., 2002, 73: 1229-1234.
[68] KURODA K, YAJI K, HARASAWA A, et al. Experimental Methods for Spin- and Angle-Resolved Photoemission Spectroscopy Combined with Polarization-Variable Laser[J]. J. Vis. Exp., 2018, 136: e57090.
[69] JI F, SHI T, YE M, et al. Multichannel Exchange-Scattering Spin Polarimetry[J]. Phys. Rev. Lett., 2016, 116: 177601.
[70] JOZWIAK C, PARK C H, GOTLIEB K, et al. Photoelectron spin-flipping and texture manipulation in a topological insulator[J]. Nat. Phys., 2013, 9: 293-298.
[71] SÁNCHEZ-BARRIGA J, VARYKHALOV A, BRAUN J, et al. Photoemission of Bi2Se3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?[J]. Phys. Rev. X, 2014, 4: 011046.
[72] PARK S R, HAN J, KIM C, et al. Chiral Orbital-Angular Momentum in the Surface States of Bi2Se3[J]. Phys. Rev. Lett., 2012, 108: 046805.
[73] JUNG W, KIM Y, KIM B, et al. Warping effects in the band and angular-momentum structures of the topological insulator Bi2Te3[J]. Phys. Rev. B, 2011, 84: 245435.
[74] WANG Y H, HSIEH D, PILON D, et al. Observation of a Warped Helical Spin Texture in Bi2Se3 from Circular Dichroism Angle-Resolved Photoemission Spectroscopy[J]. Phys. Rev. Lett., 2011, 107: 207602.
[75] FU L. Hexagonal Warping Effects in the Surface States of the Topological Insulator Bi2Te3[J]. Phys. Rev. Lett., 2009, 103: 266801.
[76] BASAK S, LIN H, WRAY L A, et al. Spin texture on the warped Dirac-cone surface states in topological insulators[J]. Phys. Rev. B, 2011, 84: 121401.
[77] SCHOLZ M R, SÁNCHEZ-BARRIGA J, BRAUN J, et al. Reversal of the Circular Dichroism in Angle-Resolved Photoemission from Bi2Te3[J]. Phys. Rev. Lett., 2013, 110: 216801.
[78] ISHIDA Y, KANTO H, KIKKAWA A, et al. Common Origin of the Circular-Dichroism Pattern in Angle-Resolved Photoemission Spectroscopy of SrTiO3 and CuxBi2Se3[J]. Phys. Rev. Lett., 2011, 107: 077601.
[79] KONDO T, NAKASHIMA Y, ISHIDA Y, et al. Visualizing the evolution of surface localization in the topological state of Bi2Se3 by circular dichroism in laser-based angle-resolved photoemission spectroscopy[J]. Phys. Rev. B, 2017, 96: 241413.
[80] ZHANG K, ZHAO S, HAO Z, et al. Observation of Spin-Momentum-Layer Locking in a Centrosymmetric Crystal[J]. Phys. Rev. Lett., 2021, 127: 126402.
修改评论