中文版 | English
题名

磁性拓扑绝缘体Mn(Bi1-xSbx)2Te4的自旋分辨角分辨光电子能谱研究

其他题名
Spin- and Angle-Resolved Photoemission Spectroscopy Studies on Magnetic Topological Insulator Mn(Bi1-xSbx)2Te4
姓名
姓名拼音
MO Shu
学号
12032045
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
刘畅
导师单位
物理系
论文答辩日期
2023-05-17
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

本征反铁磁拓扑绝缘体 MnBi2Te4 因有望实现量子反常霍尔效应和轴子绝缘体相引发了学界对该体系的广泛研究。不同于理论预言和早期研究中报道的有能隙的拓扑表面态,高分辨率的基于激光光源的角分辨光电子能谱研究明确指出 MnBi2Te4 的 (0001) 面存在无能隙的狄拉克锥。对 Sb 掺杂的 MnBi2Te4 的角分辨光电子能谱研究进一步指出 Sb 掺杂不仅导致能带表现出了空穴掺杂行为,还使得表面态在狄拉克点打开了一个对体态磁性转变不敏感的能隙,且该能隙的大小随着掺杂浓度的增加而增大。在这里,我们使用助溶剂法生长了高质量的 Sb 掺杂 的 MnBi2Te4 单晶样品,利用基于同步辐射光源的自旋分辨角分辨光电子能谱研究了 Sb 掺杂的 MnBi2Te4 能带的自旋极化,并在其表面的中心高对称点处观测到了面外 z 方向的自旋翻转,这与我们随后的圆二色性角分辨光电子能谱实验中观察到的掺杂导致的二色性信号在能隙上下反号的现象一致。我们的研究结果指出 Mn(Bi1-xSbx)2Te4 表面存在由 Sb 掺杂导致的磁能隙,不仅表明磁性拓扑绝缘体 Sb 掺杂的 MnBi2Te4 是实现丰富拓扑相的潜在平台,也有助于进一步理解磁性拓扑体系中的磁与拓扑相互作用。

其他摘要

The intrinsic antiferromagnetic topological insulator MnBi2Te4 has triggered extensive research due to the prospect of realizing the quantum anomalous Hall effect and the axion insulator phase. In contrast to the gapped topological surface state reported in theoretical predictions and previous studies, high-resolution laser-based angle-resolved photoemission spectroscopy studies unambiguously revealed a gapless Dirac cone on the (0001) surface of MnBi2Te4. Furthermore, angle-resolved photoemission spectroscopy studies on Sb-doped MnBi2Te4 demonstrated that Sb doping not only leads to the p-doping behavior in the band but also results in a gap at the Dirac point that is insensitive to the bulk magnetism; the gap size increases with higher doping levels. Here, we synthesize high-quality Sb-doped MnBi2Te4 single crystals using the flux method and investigate the spin polarization of Sb-doped MnBi2Te4 utilizing synchrotron-based spin- and angle-resolved photoemission spectroscopy. We observe spin flipping along the out-of-plane z direction at the central high symmetry point on the surface, consistent with the circular dichroism sign inversion across the gap observed in our circular dichroism angle-resolved photoemission spectroscopy experiments. Our work points to a magnetic gap on the surface of Mn(Bi1-xSbx)2Te4 induced by Sb doping, not only indicating that the magnetic topological insulator Sb-doped MnBi2Te4 is a potential platform for hosting rich topological phases but also shedding light on the understanding of interactions between magnetism and topological properties in magnetic topological systems.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] HALL E H. On a new action of the magnet on electric currents[J]. Am. J. Math., 1879, 2: 287-292.
[2] KLITZING K V, DORDA G, PEPPER M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance[J]. Phys. Rev. Lett., 1980, 45: 494-497.
[3] TSUI D C, STORMER H L, GOSSARD A C. Two-Dimensional Magnetotransport in the Extreme Quantum Limit[J]. Phys. Rev. Lett., 1982, 48: 1559-1562.
[4] HE K. The Quantum Hall Effect Gets More Practical[J]. Physics, 2015, 8: 41.
[5] HALDANE F D M. Model for a Quantum Hall Effect without Landau Levels: CondensedMatter Realization of the "Parity Anomaly"[J]. Phys. Rev. Lett., 1988, 61: 2015-2018.
[6] ONODA M, NAGAOSA N. Quantized Anomalous Hall Effect in Two-Dimensional Ferromagnets: Quantum Hall Effect in Metals[J]. Phys. Rev. Lett., 2003, 90: 206601.
[7] KANE C L, MELE E J. Z2 Topological Order and the Quantum Spin Hall Effect[J]. Phys. Rev. Lett., 2005, 95: 146802.
[8] HASAN M Z, KANE C L. Colloquium: Topological insulators[J]. Rev. Mod. Phys., 2010, 82: 3045-3067.
[9] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Rev. Mod. Phys., 2011, 83: 1057-1110.
[10] FU L, KANE C L, MELE E J. Topological Insulators in Three Dimensions[J]. Phys. Rev. Lett., 2007, 98: 106803.
[11] FU L, KANE C L. Topological insulators with inversion symmetry[J]. Phys. Rev. B, 2007, 76: 045302.
[12] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature, 2008, 452: 970-974.
[13] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nat. Phys., 2009, 5: 438-442.
[14] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nat. Phys., 2009, 5: 398-402.
[15] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3[J]. Science, 2009, 325: 178-181.
[16] HSIEH D, XIA Y, QIAN D, et al. A tunable topological insulator in the spin helical Dirac transport regime[J]. Nature, 2009, 460: 1101-1105.
[17] CHEN Y L, CHU J H, ANALYTIS J G, et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator[J]. Science, 2010, 329: 659-662.
[18] KURODA K, ARITA M, MIYAMOTO K, et al. Hexagonally Deformed Fermi Surface of the 3D Topological Insulator Bi2Se3[J]. Phys. Rev. Lett., 2010, 105: 076802.
[19] NEUPANE M, XU S Y, WRAY L A, et al. Topological surface states and Dirac point tuning in ternary topological insulators[J]. Phys. Rev. B, 2012, 85: 235406.
[20] ARAKANE T, SATO T, SOUMA S, et al. Tunable Dirac cone in the topological insulator Bi2-xSbxTe3-ySey[J]. Nat. Commun., 2012, 3: 636.
[21] YU R, ZHANG W, ZHANG H J, et al. Quantized Anomalous Hall Effect in Magnetic Topological Insulators[J]. Science, 2010, 329: 61-64.
[22] CHANG C Z, ZHANG J, FENG X, et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator[J]. Science, 2013, 340: 167-170.
[23] MOGI M, KAWAMURA M, YOSHIMI R, et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator[J]. Nat. Mater., 2017, 16: 516-521.
[24] HIRAHARA T, EREMEEV S V, SHIRASAWA T, et al. Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer[J]. Nano Lett., 2017, 17: 3493-3500.
[25] ALIEV Z S, AMIRASLANOV I R, NASONOVA D I, et al. Novel ternary layered manganese bismuth tellurides of the MnTe-Bi2Te3 system: Synthesis and crystal structure[J]. J. Alloys Compd., 2019, 789: 443-450.
[26] YAN J Q, ZHANG Q, HEITMANN T, et al. Crystal growth and magnetic structure of MnBi2Te4[J]. Phys. Rev. Materials, 2019, 3: 064202.
[27] DENG Y, YU Y, SHI M Z, et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 2020, 367: 895-900.
[28] OTROKOV M M, RUSINOV I P, BLANCO-REY M, et al. Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi2Te4[J]. Phys. Rev. Lett., 2019, 122: 107202.
[29] LIU C, WANG Y, LI H, et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator[J]. Nat. Phys., 2020, 19: 522-527.
[30] LIU C X, ZHANG S C, QI X L. The Quantum Anomalous Hall Effect: Theory and Experiment[J]. Annu. Rev. Condens. Matter Phys., 2016, 7: 301-321.
[31] HAO Y J, LIU P, FENG Y, et al. Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Phys. Rev. X, 2019, 9: 041038.
[32] LEE S H, ZHU Y, WANG Y, et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4[J]. Phys. Rev. Res., 2019, 1: 012011.
[33] ZEUGNER A, NIETSCHKE F, WOLTER A U B, et al. Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4[J]. Chem. Mater., 2019, 31: 2795-2806.
[34] VIDAL R C, BENTMANN H, PEIXOTO T R F, et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4(0001)[J]. Phys. Rev. B, 2019, 100: 121104.
[35] LI H, GAO S Y, DUAN S F, et al. Dirac Surface States in Intrinsic Magnetic Topological Insulators EuSn2As2 and MnBi2nTe3n+1[J]. Phys. Rev. X, 2019, 9: 041039.
[36] CHEN Y J, XU L X, LI J H, et al. Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4[J]. Phys. Rev. X, 2019, 9: 041040.
[37] SWATEK P, WU Y, WANG L L, et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4[J]. Phys. Rev. B, 2020, 101: 161109.
[38] TAN H, YAN B. Distinct Magnetic Gaps between Antiferromagnetic and Ferromagnetic Orders Driven by Surface Defects in the Topological Magnet MnBi2Te4[J]. Phys. Rev. Lett., 2023, 130: 126702.
[39] OTROKOV M M, KLIMOVSKIKH I I, BENTMANN H, et al. Prediction and observation of an antiferromagnetic topological insulator[J]. Nature, 2019, 576: 416-422.
[40] SHIKIN A M, ESTYUNIN D A, KLIMOVSKIKH I I, et al. Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator MnBi2Te4[J]. Sci. Rep., 2020, 10: 13226.
[41] NEVOLA D, LI H X, YAN J Q, et al. Coexistence of Surface Ferromagnetism and a Gapless Topological State in MnBi2Te4[J]. Phys. Rev. Lett., 2020, 125: 117205.
[42] YAN C, FERNANDEZ-MULLIGAN S, MEI R, et al. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4[J]. Phys. Rev. B, 2021, 104: L041102.
[43] LIANG A, CHEN C, ZHENG H, et al. Approaching a Minimal Topological Electronic Structure in Antiferromagnetic Topological Insulator MnBi2Te4 via Surface Modification[J]. Nano Lett., 2022, 22: 4307-4314.
[44] CHEN B, FEI F, ZHANG D, et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes[J]. Nat. Commun., 2019, 10: 4469.
[45] MA X M, ZHAO Y, ZHANG K, et al. Realization of a tunable surface Dirac gap in Sb-doped MnBi2Te4[J]. Phys. Rev. B, 2021, 103: L121112.
[46] YAN J Q, OKAMOTO S, MCGUIRE M A, et al. Evolution of structural, magnetic, and transport properties in MnBi2-xSbxTe4[J]. Phys. Rev. B, 2019, 100: 104409.
[47] CHEN Y, CHUANG Y W, LEE S H, et al. Ferromagnetism in van der Waals compound MnSb1.8Bi0.2Te4[J]. Phys. Rev. Mater., 2020, 4: 064411.
[48] ZHOU L, TAN Z, YAN D, et al. Topological phase transition in the layered magnetic compound MnSb2Te4: Spin-orbit coupling and interlayer coupling dependence[J]. Phys. Rev. B, 2020, 102: 085114.
[49] LIU Y, WANG L L, ZHENG Q, et al. Site Mixing for Engineering Magnetic Topological Insulators[J]. Phys. Rev. X, 2021, 11: 021033.
[50] WIMMER S, SÁNCHEZ-BARRIGA J, KÜPPERS P, et al. Mn-Rich MnSb2Te4: A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45–50 K[J]. Adv. Mater., 2021, 33: 2102935.
[51] MURAKAMI T, NAMBU Y, KORETSUNE T, et al. Realization of interlayer ferromagnetic interaction in MnSb2Te4 toward the magnetic Weyl semimetal state[J]. Phys. Rev. B, 2019, 100: 195103.
[52] ZANG Z, ZHU Y, XI M, et al. Layer-Number-Dependent Antiferromagnetic and Ferromagnetic Behavior in MnSb2Te4[J]. Phys. Rev. Lett., 2022, 128: 017201.
[53] EREMEEV S V, RUSINOV I P, KOROTEEV Y M, et al. Topological Magnetic Materials of the (MnSb2Te4)⋅(Sb2Te3)n van der Waals Compounds Family[J]. J. Phys. Chem. Lett., 2021, 12: 4268-4277.
[54] ZHU J, NAVEED M, CHEN B, et al. Magnetic and electrical transport study of the antiferromagnetic topological insulator Sn-doped MnBi2Te4[J]. Phys. Rev. B, 2021, 103: 144407.
[55] XU S Y, NEUPANE M, LIU C, et al. Hedgehog spin texture and Berry’s phase tuning in a magnetic topological insulator[J]. Nat. Phys., 2012, 8: 616-622.
[56] YANG H, LIANG A, CHEN C, et al. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy[J]. Nat. Rev. Mater., 2018, 3: 341-353.
[57] SOBOTA J A, HE Y, SHEN Z X. Angle-resolved photoemission studies of quantum materials[J]. Rev. Mod. Phys., 2021, 93: 025006.
[58] DAMASCELLI A, HUSSAIN Z, SHEN Z X. Angle-resolved photoemission studies of the cuprate superconductors[J]. Rev. Mod. Phys., 2003, 75: 473-541.
[59] HÜFNER S. Photoelectron Spectroscopy[M]. 3rd ed. Springer Berlin, Heidelberg, 2003.
[60] HERTZ H. Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung[J]. Ann. Phys. (Leipzig), 1887, 267: 983-1000.
[61] EINSTEIN A. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt[J]. Ann. Phys. (Leipzig), 1905, 322: 132-148.
[62] LV B, QIAN T, DING H. Angle-resolved photoemission spectroscopy and its application to topological materials[J]. Nat. Rev. Phys., 2019, 1: 609-626.
[63] ZHANG H, PINCELLI T, JOZWIAK C, et al. Angle-resolved photoemission spectroscopy[J]. Nat. Rev. Methods Primers, 2022, 2: 54.
[64] BERGLUND C N, SPICER W E. Photoemission Studies of Copper and Silver: Theory[J]. Phys. Rev., 1964, 136: A1030-A1044.
[65] SANTARELLI J F. Schéma de principe du synchrotron[EB/OL]. 2005
[2023-04-06]. https://commons.wikimedia.org/wiki/File:Sch%C3%A9ma_de_principe_du_synchrotron.jpg.
[66] GAY T J, DUNNING F B. Mott electron polarimetry[J]. Rev. Sci. Instrum., 1992, 63: 16351651.
[67] HILLEBRECHT F U, JUNGBLUT R M, WIEBUSCH L, et al. High-efficiency spin polarimetry by very-low-energy electron scattering from Fe(100) for spin-resolved photoemission[J]. Rev. Sci. Instrum., 2002, 73: 1229-1234.
[68] KURODA K, YAJI K, HARASAWA A, et al. Experimental Methods for Spin- and Angle-Resolved Photoemission Spectroscopy Combined with Polarization-Variable Laser[J]. J. Vis. Exp., 2018, 136: e57090.
[69] JI F, SHI T, YE M, et al. Multichannel Exchange-Scattering Spin Polarimetry[J]. Phys. Rev. Lett., 2016, 116: 177601.
[70] JOZWIAK C, PARK C H, GOTLIEB K, et al. Photoelectron spin-flipping and texture manipulation in a topological insulator[J]. Nat. Phys., 2013, 9: 293-298.
[71] SÁNCHEZ-BARRIGA J, VARYKHALOV A, BRAUN J, et al. Photoemission of Bi2Se3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation?[J]. Phys. Rev. X, 2014, 4: 011046.
[72] PARK S R, HAN J, KIM C, et al. Chiral Orbital-Angular Momentum in the Surface States of Bi2Se3[J]. Phys. Rev. Lett., 2012, 108: 046805.
[73] JUNG W, KIM Y, KIM B, et al. Warping effects in the band and angular-momentum structures of the topological insulator Bi2Te3[J]. Phys. Rev. B, 2011, 84: 245435.
[74] WANG Y H, HSIEH D, PILON D, et al. Observation of a Warped Helical Spin Texture in Bi2Se3 from Circular Dichroism Angle-Resolved Photoemission Spectroscopy[J]. Phys. Rev. Lett., 2011, 107: 207602.
[75] FU L. Hexagonal Warping Effects in the Surface States of the Topological Insulator Bi2Te3[J]. Phys. Rev. Lett., 2009, 103: 266801.
[76] BASAK S, LIN H, WRAY L A, et al. Spin texture on the warped Dirac-cone surface states in topological insulators[J]. Phys. Rev. B, 2011, 84: 121401.
[77] SCHOLZ M R, SÁNCHEZ-BARRIGA J, BRAUN J, et al. Reversal of the Circular Dichroism in Angle-Resolved Photoemission from Bi2Te3[J]. Phys. Rev. Lett., 2013, 110: 216801.
[78] ISHIDA Y, KANTO H, KIKKAWA A, et al. Common Origin of the Circular-Dichroism Pattern in Angle-Resolved Photoemission Spectroscopy of SrTiO3 and CuxBi2Se3[J]. Phys. Rev. Lett., 2011, 107: 077601.
[79] KONDO T, NAKASHIMA Y, ISHIDA Y, et al. Visualizing the evolution of surface localization in the topological state of Bi2Se3 by circular dichroism in laser-based angle-resolved photoemission spectroscopy[J]. Phys. Rev. B, 2017, 96: 241413.
[80] ZHANG K, ZHAO S, HAO Z, et al. Observation of Spin-Momentum-Layer Locking in a Centrosymmetric Crystal[J]. Phys. Rev. Lett., 2021, 127: 126402.

所在学位评定分委会
物理学
国内图书分类号
O469
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543949
专题理学院_物理系
推荐引用方式
GB/T 7714
莫姝. 磁性拓扑绝缘体Mn(Bi1-xSbx)2Te4的自旋分辨角分辨光电子能谱研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032045-莫姝-物理系.pdf.(13726KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[莫姝]的文章
百度学术
百度学术中相似的文章
[莫姝]的文章
必应学术
必应学术中相似的文章
[莫姝]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。