[1] KOCH, C., What is consciousness? [J]. Nature, 2018. 557(7704): p. S8-S12.
[2] BROWN, R., H. LAU, AND J.E. LEDOUX, Understanding the higher-order approach to consciousness[J]. Trends Cogn Sci, 2019. 23(9): p. 754-768.
[3] TONONI, G., et al., Integrated information theory: from consciousness to its physical substrate[J]. Nat Rev Neurosci, 2016. 17(7): p. 450-61.
[4] ROURK, C., Application of the catecholaminergic neuron electron transport (CNET) physical substrate for consciousness and action selection to integrated information theory[J]. Entropy (Basel), 2022. 24(1).
[5] PASCUAL-LEONE, A. AND V. WALSH, Fast backprojections from the motion to the primary visual area necessary for visual awareness[J]. Science, 2001. 292(5516): p. 510-2.
[6] MASHOUR, G.A., et al., Conscious processing and the global neuronal workspace hypothesis[J]. Neuron, 2020. 105(5): p. 776-798.
[7] NORTHOFF, G. AND F. ZILIO, Temporo-spatial theory of consciousness (TTC) - bridging the gap of neuronal activity and phenomenal states[J]. Behav Brain Res, 2022. 424: p. 113788.
[8] BLACK, D., The global workspace theory, the phenomenal concept strategy, and the distribution of consciousness[J]. Conscious Cogn, 2020. 84: p. 102992.
[9] LAU, H. AND D. ROSENTHAL, Empirical support for higher-order theories of conscious awareness[J]. Trends Cogn Sci, 2011. 15(8): p. 365-73.
[10] OIZUMI, M., L. ALBANTAKIS, AND G. TONONI, from the phenomenology to the mechanisms of consciousness: integrated information theory 3.0[J]. PLoS Comput Biol, 2014. 10(5): p. e1003588.
[11] TONONI, G. AND C. KOCH, Consciousness: here, there and everywhere? [J]. Philos Trans R Soc Lond B Biol Sci, 2015. 370(1668).
[12] SETH, A.K. AND T. BAYNE, Theories of consciousness[J]. Nat Rev Neurosci, 2022. 23(7): p. 439-452.
[13] DENNETT, D.C., Facing up to the hard question of consciousness[J]. Philos Trans R Soc Lond B Biol Sci, 2018. 373(1755).
[14] LI, Y., et al., Hypothalamic circuits for predation and evasion[J]. Neuron, 2018. 97(4): p. 911-924 e5.
[15] LIU, M., et al., Make war not love: the neural substrate underlying a state-dependent switch in female social behavior[J]. Neuron, 2021.
[16] DORRIES, K.M., Olfactory "consciousness"? [J]. Science, 1997. 278(5343): p. 1550.
[17] ARZI, A., et al., Olfactory sniffing signals consciousness in unresponsive patients with brain injuries[J]. Nature, 2020. 581(7809): p. 428-433.
[18] MIYAMICHI, K., et al., Cortical representations of olfactory input by trans-synaptic tracing[J]. Nature, 2011. 472(7342): p. 191-6.
[19] MERRICK, C., et al., The olfactory system as the gateway to the neural correlates of consciousness[J]. Front Psychol, 2014. 4: p. 1011.
[20] HALASSA, M.M. AND S. KASTNER, Thalamic functions in distributed cognitive control[J]. Nat Neurosci, 2017. 20(12): p. 1669-1679.
[21] EGNER, T. AND J. HIRSCH, Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information[J]. Nat Neurosci, 2005. 8(12): p. 1784-90.
[22] COLE, M.W., et al., Activity flow over resting-state networks shapes cognitive task activations[J]. Nat Neurosci, 2016. 19(12): p. 1718-1726.
[23] WHITTINGTON, J.C.R., et al., How to build a cognitive map[J]. Nat Neurosci, 2022. 25(10): p. 1257-1272.
[24] ETKIN, A., T. EGNER, AND R. KALISCH, Emotional processing in anterior cingulate and medial prefrontal cortex[J]. Trends Cogn Sci, 2011. 15(2): p. 85-93.
[25] EUGENE, F., et al., Neural correlates of inhibitory deficits in depression[J]. Psychiatry Res, 2010. 181(1): p. 30-5.
[26] HELLER, A.S., et al., Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation[J]. Proc Natl Acad Sci U S A, 2009. 106(52): p. 22445-50.
[27] RUSSO, S.J. AND E.J. NESTLER, The brain reward circuitry in mood disorders[J]. Nat Rev Neurosci, 2013. 14(9): p. 609-25.
[28] SIKH, S.S. AND P.N. DHULIA, Recovery from general anesthesia: a simple and comprehensive test for assessment[J]. Anesth Analg, 1979. 58(4): p. 324-6.
[29] FRIEDMAN, E.B., et al., A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia[J]. PLoS One, 2010. 5(7): p. e11903.
[30] FRANKS, N.P. AND W.R. LIEB, Molecular and cellular mechanisms of general anaesthesia[J]. Nature, 1994. 367(6464): p. 607-14.
[31] FRANKS, N.P., General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008. 9(5): p. 370-86.
[32] KROM, A.J., et al., Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex[J]. Proc Natl Acad Sci U S A, 2020. 117(21): p. 11770-11780.
[33] HUDSON, A.E., et al., Recovery of consciousness is mediated by a network of discrete metastable activity states[J]. Proc Natl Acad Sci U S A, 2014. 111(25): p. 9283-8.
[34] ALKIRE, M.T., et al., Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat[J]. Anesthesiology, 2007. 107(2): p. 264-72.
[35] HUDETZ, A.G., J.D. WOOD, AND J.P. KAMPINE, Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram[J]. Anesthesiology, 2003. 99(5): p. 1125-31.
[36] PAL, D., et al., Differential role of prefrontal and parietal cortices in controlling level of consciousness[J]. Curr Biol, 2018. 28(13): p. 2145-2152 e5.
[37] LUO, T. AND L.S. LEUNG, Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia[J]. Anesthesiology, 2009. 111(4): p. 725-33.
[38] HNASKO, T.S., B.N. SOTAK, AND R.D. PALMITER, Morphine reward in dopamine-deficient mice[J]. Nature, 2005. 438(7069): p. 854-7.
[39] LI, N. AND A. JASANOFF, Local and global consequences of reward-evoked striatal dopamine release[J]. Nature, 2020. 580(7802): p. 239-244.
[40] ROBBINS, T.W., Dopamine and cognition[J]. Curr Opin Neurol, 2003. 16 Suppl 2: p. S1-2.
[41] TORRISI, S.A., et al., Dopamine D3 receptor, cognition and cognitive dysfunctions in neuropsychiatric disorders: from the bench to the bedside[J]. Curr Top Behav Neurosci, 2023. 60: p. 133-156.
[42] TAYLOR, N.E., et al., Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia[J]. Anesthesiology, 2013. 118(1): p. 30-9.
[43] SOLT, K., et al., Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia[J]. Anesthesiology, 2014. 121(2): p. 311-9.
[44] YU, X., et al., GABA and glutamate neurons in the VTA regulate sleep and wakefulness[J]. Nat Neurosci, 2019. 22(1): p. 106-119.
[45] TAYLOR, N.E., et al., Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia[J]. Proc Natl Acad Sci U S A, 2016. 113(45): p. 12826-12831.
[46] VAZEY, E.M. AND G. ASTON-JONES, Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia[J]. Proc Natl Acad Sci U S A, 2014. 111(10): p. 3859-64.
[47] PILLAY, S., et al., Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats[J]. Anesthesiology, 2011. 115(4): p. 733-42.
[48] PANULA, P., H.Y. YANG, AND E. COSTA, Histamine-containing neurons in the rat hypothalamus[J]. Proc Natl Acad Sci U S A, 1984. 81(8): p. 2572-6.
[1] KOCH, C., What is consciousness?[J]. Nature, 2018. 557(7704): p. S8-S12.
[2] BROWN, R., H. LAU, AND J.E. LEDOUX, Understanding the higher-order approach to consciousness[J]. Trends Cogn Sci, 2019. 23(9): p. 754-768.
[3] TONONI, G., et al., Integrated information theory: from consciousness to its physical substrate[J]. Nat Rev Neurosci, 2016. 17(7): p. 450-61.
[4] ROURK, C., Application of the catecholaminergic neuron electron transport (CNET) physical substrate for consciousness and action selection to integrated information theory[J]. Entropy (Basel), 2022. 24(1).
[5] PASCUAL-LEONE, A. AND V. WALSH, Fast backprojections from the motion to the primary visual area necessary for visual awareness[J]. Science, 2001. 292(5516): p. 510-2.
[6] MASHOUR, G.A., et al., Conscious processing and the global neuronal workspace hypothesis[J]. Neuron, 2020. 105(5): p. 776-798.
[7] NORTHOFF, G. AND F. ZILIO, Temporo-spatial theory of consciousness (TTC) - bridging the gap of neuronal activity and phenomenal states[J]. Behav Brain Res, 2022. 424: p. 113788.
[8] BLACK, D., The global workspace theory, the phenomenal concept strategy, and the distribution of consciousness[J]. Conscious Cogn, 2020. 84: p. 102992.
[9] LAU, H. AND D. ROSENTHAL, Empirical support for higher-order theories of conscious awareness[J]. Trends Cogn Sci, 2011. 15(8): p. 365-73.
[10] OIZUMI, M., L. ALBANTAKIS, AND G. TONONI, from the phenomenology to the mechanisms of consciousness: integrated information theory 3.0[J]. PLoS Comput Biol, 2014. 10(5): p. e1003588.
[11] TONONI, G. AND C. KOCH, Consciousness: here, there and everywhere?[J]. Philos Trans R Soc Lond B Biol Sci, 2015. 370(1668).
[12] SETH, A.K. AND T. BAYNE, Theories of consciousness[J]. Nat Rev Neurosci, 2022. 23(7): p. 439-452.
[13] DENNETT, D.C., Facing up to the hard question of consciousness[J]. Philos Trans R Soc Lond B Biol Sci, 2018. 373(1755).
[14] LI, Y., et al., Hypothalamic circuits for predation and evasion[J]. Neuron, 2018. 97(4): p. 911-924 e5.
[15] LIU, M., et al., Make war not love: the neural substrate underlying a state-dependent switch in female social behavior[J]. Neuron, 2021.
[16] DORRIES, K.M., Olfactory "consciousness"?[J]. Science, 1997. 278(5343): p. 1550.
[17] ARZI, A., et al., Olfactory sniffing signals consciousness in unresponsive patients with brain injuries[J]. Nature, 2020. 581(7809): p. 428-433.
[18] MIYAMICHI, K., et al., Cortical representations of olfactory input by trans-synaptic tracing[J]. Nature, 2011. 472(7342): p. 191-6.
[19] MERRICK, C., et al., The olfactory system as the gateway to the neural correlates of consciousness[J]. Front Psychol, 2014. 4: p. 1011.
[20] HALASSA, M.M. AND S. KASTNER, Thalamic functions in distributed cognitive control[J]. Nat Neurosci, 2017. 20(12): p. 1669-1679.
[21] EGNER, T. AND J. HIRSCH, Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information[J]. Nat Neurosci, 2005. 8(12): p. 1784-90.
[22] COLE, M.W., et al., Activity flow over resting-state networks shapes cognitive task activations[J]. Nat Neurosci, 2016. 19(12): p. 1718-1726.
[23] WHITTINGTON, J.C.R., et al., How to build a cognitive map[J]. Nat Neurosci, 2022. 25(10): p. 1257-1272.
[24] ETKIN, A., T. EGNER, AND R. KALISCH, Emotional processing in anterior cingulate and medial prefrontal cortex[J]. Trends Cogn Sci, 2011. 15(2): p. 85-93.
[25] EUGENE, F., et al., Neural correlates of inhibitory deficits in depression[J]. Psychiatry Res, 2010. 181(1): p. 30-5.
[26] HELLER, A.S., et al., Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation[J]. Proc Natl Acad Sci U S A, 2009. 106(52): p. 22445-50.
[27] RUSSO, S.J. AND E.J. NESTLER, The brain reward circuitry in mood disorders[J]. Nat Rev Neurosci, 2013. 14(9): p. 609-25.
[28] SIKH, S.S. AND P.N. DHULIA, Recovery from general anesthesia: a simple and comprehensive test for assessment[J]. Anesth Analg, 1979. 58(4): p. 324-6.
[29] FRIEDMAN, E.B., et al., A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: evidence for neural inertia[J]. PLoS One, 2010. 5(7): p. e11903.
[30] FRANKS, N.P. AND W.R. LIEB, Molecular and cellular mechanisms of general anaesthesia[J]. Nature, 1994. 367(6464): p. 607-14.
[31] FRANKS, N.P., General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal[J]. Nat Rev Neurosci, 2008. 9(5): p. 370-86.
[32] KROM, A.J., et al., Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex[J]. Proc Natl Acad Sci U S A, 2020. 117(21): p. 11770-11780.
[33] HUDSON, A.E., et al., Recovery of consciousness is mediated by a network of discrete metastable activity states[J]. Proc Natl Acad Sci U S A, 2014. 111(25): p. 9283-8.
[34] ALKIRE, M.T., et al., Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat[J]. Anesthesiology, 2007. 107(2): p. 264-72.
[35] HUDETZ, A.G., J.D. WOOD, AND J.P. KAMPINE, Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram[J]. Anesthesiology, 2003. 99(5): p. 1125-31.
[36] PAL, D., et al., Differential role of prefrontal and parietal cortices in controlling level of consciousness[J]. Curr Biol, 2018. 28(13): p. 2145-2152 e5.
[37] LUO, T. AND L.S. LEUNG, Basal forebrain histaminergic transmission modulates electroencephalographic activity and emergence from isoflurane anesthesia[J]. Anesthesiology, 2009. 111(4): p. 725-33.
[38] HNASKO, T.S., B.N. SOTAK, AND R.D. PALMITER, Morphine reward in dopamine-deficient mice[J]. Nature, 2005. 438(7069): p. 854-7.
[39] LI, N. AND A. JASANOFF, Local and global consequences of reward-evoked striatal dopamine release[J]. Nature, 2020. 580(7802): p. 239-244.
[40] ROBBINS, T.W., Dopamine and cognition[J]. Curr Opin Neurol, 2003. 16 Suppl 2: p. S1-2.
[41] TORRISI, S.A., et al., Dopamine D3 receptor, cognition and cognitive dysfunctions in neuropsychiatric disorders: from the bench to the bedside[J]. Curr Top Behav Neurosci, 2023. 60: p. 133-156.
[42] TAYLOR, N.E., et al., Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia[J]. Anesthesiology, 2013. 118(1): p. 30-9.
[43] SOLT, K., et al., Electrical stimulation of the ventral tegmental area induces reanimation from general anesthesia[J]. Anesthesiology, 2014. 121(2): p. 311-9.
[44] YU, X., et al., GABA and glutamate neurons in the VTA regulate sleep and wakefulness[J]. Nat Neurosci, 2019. 22(1): p. 106-119.
[45] TAYLOR, N.E., et al., Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia[J]. Proc Natl Acad Sci U S A, 2016. 113(45): p. 12826-12831.
[46] VAZEY, E.M. AND G. ASTON-JONES, Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia[J]. Proc Natl Acad Sci U S A, 2014. 111(10): p. 3859-64.
[47] PILLAY, S., et al., Norepinephrine infusion into nucleus basalis elicits microarousal in desflurane-anesthetized rats[J]. Anesthesiology, 2011. 115(4): p. 733-42.
[48] PANULA, P., H.Y. YANG, AND E. COSTA, Histamine-containing neurons in the rat hypothalamus[J]. Proc Natl Acad Sci U S A, 1984. 81(8): p. 2572-6.
[49] SHIRASAKA, T., et al., Effects of orexin-A on propofol anesthesia in rats[J]. J Anesth, 2011. 25(1): p. 65-71.
[50] TOSE, R., ET AL., Orexin A decreases ketamine-induced anesthesia time in the rat: the relevance to brain noradrenergic neuronal activity[J]. Anesth Analg, 2009. 108(2): p. 491-5.
[51] KELZ, M.B., et al., An essential role for orexins in emergence from general anesthesia[J]. Proc Natl Acad Sci U S A, 2008. 105(4): p. 1309-14.
[52] KAILA, K., et al., Cation-chloride cotransporters in neuronal development, plasticity and disease[J]. Nature Reviews Neuroscience, 2014. 15(10): p. 637-654.
[53] BARTHO, P., et al., Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei[J]. Eur J Neurosci, 2004. 20(4): p. 965-75.
[54] RIVERA, C., et al., The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation[J]. Nature, 1999. 397(6716): p. 251-5.
[55] DELPIRE, E., Cation-chloride cotransporters in neuronal communication[J]. News Physiol Sci, 2000. 15: p. 309-312.
[56] HU, J.J., et al., Bumetanide reduces the seizure susceptibility induced by pentylenetetrazol via inhibition of aberrant hippocampal neurogenesis in neonatal rats after hypoxia-ischemia[J]. Brain Res Bull, 2017. 130: p. 188-199.
[57] DZHALA, V.I., et al., NKCC1 transporter facilitates seizures in the developing brain[J]. Nat Med, 2005. 11(11): p. 1205-13.
[58] BOULENGUEZ, P., et al., Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury[J]. Nat Med, 2010. 16(3): p. 302-7.
[59] HASBARGEN, T., et al., Role of NKCC1 and KCC2 in the development of chronic neuropathic pain following spinal cord injury[J]. Ann N Y Acad Sci, 2010. 1198: p. 168-72.
[60] EFTEKHARI, S., et al., Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy[J]. Epilepsia, 2013. 54(1): p. e9-12.
[61] HINZ, L., J. TORRELLA BARRUFET, AND V.M. HEINE, KCC2 expression levels are reduced in postmortem brain tissue of Rett syndrome patients[J]. Acta Neuropathol Commun, 2019. 7(1): p. 196.
[62] HUBERFELD, G., et al., Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy[J]. J Neurosci, 2007. 27(37): p. 9866-73.
[63] KAHLE, K.T., et al., Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy[J]. EMBO Rep, 2014. 15(7): p. 766-74.
[64] BUHL, E.H., T.S. OTIS, AND I. MODY, Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model[J]. Science, 1996. 271(5247): p. 369-73.
[65] PATHAK, H.R., et al., Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy[J]. J Neurosci, 2007. 27(51): p. 14012-22.
[66] VIITANEN, T., et al., The K+-Cl– cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus[J]. J Physiol, 2010. 588(Pt 9): p. 1527-40.
[67] COHEN, I., et al., On the origin of interictal activity in human temporal lobe epilepsy in vitro[J]. Science, 2002. 298(5597): p. 1418-21.
[68] PUSKARJOV, M., et al., A variant of KCC2 from patients with febrile seizures impairs neuronal Cl- extrusion and dendritic spine formation[J]. EMBO Rep, 2014. 15(6): p. 723-9.
[69] FERRINI, F., et al., Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(-) homeostasis[J]. Nat Neurosci, 2013. 16(2): p. 183-92.
[70] LEE, H.H., et al., NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor-mediated currents[J]. Nat Neurosci, 2011. 14(6): p. 736-43.
[71] RIVERA, C., et al., BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion[J]. J Cell Biol, 2002. 159(5): p. 747-52.
[72] RIVERA, C., et al., Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2[J]. J Neurosci, 2004. 24(19): p. 4683-91.
[73] GAGNON, M., et al., Chloride extrusion enhancers as novel therapeutics for neurological diseases[J]. Nat Med, 2013. 19(11): p. 1524-8.
[74] LI, H., et al., KCC2 interacts with the dendritic cytoskeleton to promote spine development[J]. Neuron, 2007. 56(6): p. 1019-33.
[75] FIUMELLI, H., et al., An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo[J]. Cereb Cortex, 2013. 23(2): p. 378-88.
[76] HERING, H. AND M. SHENG, Dendritic spines: structure, dynamics and regulation[J]. Nat Rev Neurosci, 2001. 2(12): p. 880-8.
[77] HORN, Z., et al., Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism[J]. Eur J Neurosci, 2010. 31(12): p. 2142-55.
[78] PUSKARJOV, M., et al., K-Cl Cotransporter 2-mediated Cl- extrusion determines developmental stage-dependent impact of propofol anesthesia on dendritic spines[J]. Anesthesiology, 2017. 126(5): p. 855-867.
[79] RUDOLPH, U. AND B. ANTKOWIAK, Molecular and neuronal substrates for general anaesthetics[J]. Nat Rev Neurosci, 2004. 5(9): p. 709-20.
[80] MILLER, K.W., Anaesthesia. Models of consciousness[J]. Nature, 1986. 323(6089): p. 584.
[81] SWATEK, K.N. AND D. KOMANDER, Ubiquitin modifications[J]. Cell Res, 2016. 26(4): p. 399-422.
[82] ROOS-MATTJUS, P. AND L. SISTONEN, The ubiquitin-proteasome pathway[J]. Ann Med, 2004. 36(4): p. 285-95.
[83] NANDI, D., et al., The ubiquitin-proteasome system[J]. J Biosci, 2006. 31(1): p. 137-55.
[84] LI, W., Et al., Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling[J]. PLoS One, 2008. 3(1): p. e1487.
[85] MORREALE, F.E. AND H. WALDEN, Types of Ubiquitin Ligases[J]. Cell, 2016. 165(1): p. 248-248 e1.
[86] KANTAMNENI, S., K.A. WILKINSON, AND J.M. HENLEY, Ubiquitin regulation of neuronal excitability[J]. Nat Neurosci, 2011. 14(2): p. 126-8.
[87] MABB, A.M. AND M.D. EHLERS, Ubiquitination in postsynaptic function and plasticity[J]. Annu Rev Cell Dev Biol, 2010. 26: p. 179-210.
[88] BERGOLD, P.J., et al., Protein synthesis during acquisition of long-term facilitation is needed for the persistent loss of regulatory subunits of the Aplysia cAMP-dependent protein kinase[J]. Proc Natl Acad Sci U S A, 1990. 87(10): p. 3788-91.
[89] CHAIN, D.G., et al., Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia[J]. Neuron, 1999. 22(1): p. 147-56.
[90] JIANG, Y.H., et al., Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation[J]. Neuron, 1998. 21(4): p. 799-811.
[91] LI, M., et al., The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory[J]. Nat Cell Biol, 2008. 10(9): p. 1083-9.
[92] FU, A.K., et al., APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity[J]. Nat Neurosci, 2011. 14(2): p. 181-9.
[93] MORIYOSHI, K., et al., Seven in absentia homolog 1A mediates ubiquitination and degradation of group 1 metabotropic glutamate receptors[J]. Proc Natl Acad Sci U S A, 2004. 101(23): p. 8614-9.
[94] ISHIKAWA, K., et al., Competitive interaction of seven in absentia homolog-1A and Ca2+/calmodulin with the cytoplasmic tail of group 1 metabotropic glutamate receptors[J]. Genes Cells, 1999. 4(7): p. 381-90.
[95] ALTIER, C., et al., The Cavbeta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels[J]. Nat Neurosci, 2011. 14(2): p. 173-80.
[96] POPOVIC, D., D. VUCIC, AND I. DIKIC, Ubiquitination in disease pathogenesis and treatment[J]. Nat Med, 2014. 20(11): p. 1242-53.
[97] SPRATT, D.E., et al., A molecular explanation for the recessive nature of parkin-linked Parkinson's disease[J]. Nat Commun, 2013. 4: p. 1983.
[98] WANG, Y., et al., Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation[J]. Autophagy, 2010. 6(1): p. 182-3.
[99] DESHAIES, R.J. AND C.A. JOAZEIRO, RING domain E3 ubiquitin ligases[J]. Annu Rev Biochem, 2009. 78: p. 399-434.
[100] CARDOZO, T. AND M. PAGANO, The SCF ubiquitin ligase: insights into a molecular machine[J]. Nat Rev Mol Cell Biol, 2004. 5(9): p. 739-51.
[101] MASON, B. AND H. LAMAN, The FBXL family of F-box proteins: variations on a theme[J]. Open Biol, 2020. 10(11): p. 200319.
[102] SKAAR, J.R., J.K. PAGAN, AND M. PAGANO, Mechanisms and function of substrate recruitment by F-box proteins[J]. Nat Rev Mol Cell Biol, 2013. 14(6): p. 369-81.
[103] CARRANO, A.C., et al., SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27[J]. Nat Cell Biol, 1999. 1(4): p. 193-9.
[104] SHEARD, L.B., et al., Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010. 468(7322): p. 400-5.
[105] TAN, X., et al., Mechanism of auxin perception by the TIR1 ubiquitin ligase[J]. Nature, 2007. 446(7136): p. 640-5.
[106] ZENG, Z., et al., Structural basis of selective ubiquitination of TRF1 by SCFFbx4[J]. Dev Cell, 2010. 18(2): p. 214-25.
[107] LI, Y. AND B. HAO, Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase[J]. J Biol Chem, 2010. 285(18): p. 13896-906.
[108] YE, Y., H.H. MEYER, AND T.A. RAPOPORT, The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol[J]. Nature, 2001. 414(6864): p. 652-6.
[109] RABINOVICH, E., et al., AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation[J]. Mol Cell Biol, 2002. 22(2): p. 626-34.
[110] KLOPPSTECK, P., et al., Regulation of p97 in the ubiquitin-proteasome system by the UBX protein-family[J]. Biochim Biophys Acta, 2012. 1823(1): p. 125-9.
[111] ALEXANDRU, G., et al., UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover[J]. Cell, 2008. 134(5): p. 804-16.
[112] ABILDGAARD, A.B., et al., Co-chaperones in targeting and delivery of misfolded proteins to the 26S proteasome[J]. Biomolecules, 2020. 10(8).
[113] KRIEGENBURG, F., L. ELLGAARD, AND R. HARTMANN-PETERSEN, Molecular chaperones in targeting misfolded proteins for ubiquitin-dependent degradation[J]. FEBS J, 2012. 279(4): p. 532-42.
[114] KANDASAMY, G. AND C. ANDREASSON, Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast[J]. J Cell Sci, 2018. 131(6).
[115] MANDAL, A.K., et al., Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system[J]. Mol Biol Cell, 2010. 21(9): p. 1439-48.
[116] LUDERS, J., J. DEMAND, AND J. HOHFELD, The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome[J]. J Biol Chem, 2000. 275(7): p. 4613-7.
[117] DEMAND, J., et al., Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling[J]. Curr Biol, 2001. 11(20): p. 1569-77.
[118] BALLINGER, C.A., et al., Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions[J]. Mol Cell Biol, 1999. 19(6): p. 4535-45.
[119] KADOWAKI, H., et al., Pre-emptive quality control protects the ER from protein overload via the proximity of ERAD components and SRP[J]. Cell Rep, 2015. 13(5): p. 944-56.
[120] MINAMI, R., et al., BAG-6 is essential for selective elimination of defective proteasomal substrates[J]. J Cell Biol, 2010. 190(4): p. 637-50.
[121] MOCK, J.Y., et al., Bag6 complex contains a minimal tail-anchor-targeting module and a mock BAG domain[J]. Proc Natl Acad Sci U S A, 2015. 112(1): p. 106-11.
[122] KIKUKAWA, Y., et al., Unique proteasome subunit Xrpn10c is a specific receptor for the antiapoptotic ubiquitin-like protein Scythe[J]. FEBS J, 2005. 272(24): p. 6373-86.
[123] ZHANG, J., et al., Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance[J]. Nature, 2018. 553(7686): p. 91-95.
[124] WEI, S., et al., Role of human Keap1 S53 and S293 residues in modulating the binding of Keap1 to Nrf2[J]. Biochimie, 2019. 158: p. 73-81.
[125] ZHANG, T., et al., G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L[J]. Elife, 2015. 4: p. e06734.
[126] INUZUKA, H., et al., Phosphorylation by casein kinase I promotes the turnover of the Mdm2 oncoprotein via the SCF (beta-TRCP) ubiquitin ligase[J]. Cancer Cell, 2010. 18(2): p. 147-59.
[127] ABBAS, T., et al., CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration[J]. Mol Cell, 2013. 49(6): p. 1147-58.
[128] ROSSI, M., et al., Regulation of the CRL4(Cdt2) ubiquitin ligase and cell-cycle exit by the SCF(Fbxo11) ubiquitin ligase[J]. Mol Cell, 2013. 49(6): p. 1159-66.
[129] KUCHAY, S., et al., FBXL2- and PTPL1-mediated degradation of p110-free p85beta regulatory subunit controls the PI (3)K signalling cascade[J]. Nat Cell Biol, 2013. 15(5): p. 472-80.
[130] D'ANGIOLELLA, V., et al., Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair[J]. Cell, 2012. 149(5): p. 1023-34.
[131] DUAN, S., et al., mTOR generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR[J]. Mol Cell, 2011. 44(2): p. 317-24.
[132] ZHAO, Y., X. XIONG, AND Y. SUN, DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF (betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy[J]. Mol Cell, 2011. 44(2): p. 304-16.
[133] GAO, D., et al., mTOR drives its own activation via SCF (betaTrCP)-dependent degradation of the mTOR inhibitor DEPTOR[J]. Mol Cell, 2011. 44(2): p. 290-303.
[134] PUERTOLLANO, R., et al., The complex relationship between TFEB transcription factor phosphorylation and subcellular localization[J]. EMBO J, 2018. 37(11).
[135] BESSON, A., et al., A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression[J]. Genes Dev, 2006. 20(1): p. 47-64.
[136] NAKAYAMA, K.I. AND K. NAKAYAMA, Ubiquitin ligases: cell-cycle control and cancer[J]. Nat Rev Cancer, 2006. 6(5): p. 369-81.
[137] NAKAYAMA, K.I. AND K. NAKAYAMA, Regulation of the cell cycle by SCF-type ubiquitin ligases[J]. Semin Cell Dev Biol, 2005. 16(3): p. 323-33.
[138] WU, Z.H., et al., Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli[J]. Science, 2006. 311(5764): p. 1141-6.
[139] CHAPLAN, S.R., et al., Quantitative assessment of tactile allodynia in the rat paw[J]. J Neurosci Methods, 1994. 53(1): p. 55-63.
[140] HUANG, T., et al., Identifying the pathways required for coping behaviours associated with sustained pain[J]. Nature, 2019. 565(7737): p. 86-90.
[141] ROBERT M. GLEESON, M.G.D., NEIL F. KIRTON, Intracranial cannulation of small animals[J]. Behavior Research Methods & Instrumentation, 1980. 12(3): p. 346-348.
[142] BILLUPS, D. AND D. ATTWELL, Control of intracellular chloride concentration and GABA response polarity in rat retinal ON bipolar cells[J]. J Physiol, 2002. 545(1): p. 183-98.
[143] LANGSJO, J.W., et al., S-ketamine anesthesia increases cerebral blood flow in excess of the metabolic needs in humans[J]. Anesthesiology, 2005. 103(2): p. 258-68.
[144] GUO, Z.V., et al., Maintenance of persistent activity in a frontal thalamocortical loop[J]. Nature, 2017. 545(7653): p. 181-186.
[145] IACCARINO, H.F., et al., Gamma frequency entrainment attenuates amyloid load and modifies microglia[J]. Nature, 2016. 540(7632): p. 230-235.
[146] HEUBL, M., et al., GABAA receptor dependent synaptic inhibition rapidly tunes KCC2 activity via the Cl (-)-sensitive WNK1 kinase[J]. Nat Commun, 2017. 8(1): p. 1776.
[147] REITZ, S.L., et al., Activation of preoptic tachykinin 1 neurons promotes wakefulness oversleep and volatile anesthetic-induced unconsciousness[J]. Curr Biol, 2021. 31(2): p. 394-405 e4.
[148] ZHANG, Z., et al., Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists[J]. Nat Neurosci, 2015. 18(4): p. 553-561.
[149] BLAESSE, P., et al., Cation-chloride cotransporters and neuronal function[J]. Neuron, 2009. 61(6): p. 820-38.
[150] WILLIAMS, J.R. AND J.A. PAYNE, Cation transport by the neuronal K(+)-Cl(-) cotransporter KCC2: thermodynamics and kinetics of alternate transport modes[J]. Am J Physiol Cell Physiol, 2004. 287(4): p. C919-31.
[151] BLAESSE, P., et al., Oligomerization of KCC2 correlates with development of inhibitory neurotransmission[J]. J Neurosci, 2006. 26(41): p. 10407-19.
[152] CANCEDDA, L., et al., Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo[J]. J Neurosci, 2007. 27(19): p. 5224-35.
[153] PUSKARJOV, M., et al., Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain[J]. J Neurosci, 2012. 32(33): p. 11356-64.
[154] ZHOU, H.Y., et al., N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain[J]. J Biol Chem, 2012. 287(40): p. 33853-64.
[155] DURING, M.J. AND D.D. SPENCER, Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain[J]. Lancet, 1993. 341(8861): p. 1607-10.
[156] BORETIUS, S., et al., Halogenated volatile anesthetics alter brain metabolism as revealed by proton magnetic resonance spectroscopy of mice in vivo[J]. Neuroimage, 2013. 69: p. 244-55.
[157] CHEN, X., et al., Glutamate diffusion in the rat brain in vivo under light and deep anesthesia conditions[J]. Magn Reson Med, 2019. 82(1): p. 84-94.
[158] MAHADEVAN, V., et al., Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition[J]. Elife, 2017. 6.
[159] WOJCIK, C., VCP - the missing link in protein degradation? [J]. Trends Cell Biol, 2002. 12(5): p. 212.
[160] DOYON, N., et al., Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis[J]. PLoS Comput Biol, 2011. 7(9): p. e1002149.
[161] CONWAY, L.C., et al., N-Ethylmaleimide increases KCC2 cotransporter activity by modulating transporter phosphorylation[J]. J Biol Chem, 2017. 292(52): p. 21253-21263.
[162] ALAM, M.S., Proximity ligation assay (PLA)[J]. Curr Protoc Immunol, 2018. 123(1): p. e58.
[163] PADBERG, J. AND L. KRUBITZER, Thalamocortical connections of anterior and posterior parietal cortical areas in New World titi monkeys[J]. J Comp Neurol, 2006. 497(3): p. 416-35.
[164] HEMMINGS, H.C., JR., et al., Towards a comprehensive understanding of anesthetic mechanisms of action: a decade of discovery[J]. Trends Pharmacol Sci, 2019. 40(7): p. 464-481.
[165] RAVID, T. AND M. HOCHSTRASSER, Diversity of degradation signals in the ubiquitin-proteasome system[J]. Nat Rev Mol Cell Biol, 2008. 9(9): p. 679-90.
[166] RECHSTEINER, M. AND S.W. ROGERS, PEST sequences and regulation by proteolysis[J]. Trends Biochem Sci, 1996. 21(7): p. 267-71.
[167] ROGERS, S., R. WELLS, AND M. RECHSTEINER, Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis[J]. Science, 1986. 234(4774): p. 364-8.
[168] RINEHART, J., et al., Sites of regulated phosphorylation that control K-Cl cotransporter activity[J]. Cell, 2009. 138(3): p. 525-36.
[169] HEMMINGS, H.C., JR., et al., Emerging molecular mechanisms of general anesthetic action[J]. Trends Pharmacol Sci, 2005. 26(10): p. 503-10.
[170] FRIEDEL, P., et al., WNK1-regulated inhibitory phosphorylation of the KCC2 cotransporter maintains the depolarizing action of GABA in immature neurons[J]. Sci Signal, 2015. 8(383): p. ra65.
[171] KAHLE, K.T., et al., WNK protein kinases modulate cellular Cl- flux by altering the phosphorylation state of the Na-K-Cl and K-Cl cotransporters[J]. Physiology (Bethesda), 2006. 21: p. 326-35.
[172] DE LOS HEROS, P., et al., The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters[J]. Biochem J, 2014. 458(3): p. 559-73.
[173] PIALA, A.T., et al., Chloride sensing by WNK1 involves inhibition of autophosphorylation[J]. Sci Signal, 2014. 7(324): p. ra41.
[174] CHEN, X., S. SHU, AND D.A. BAYLISS, HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine[J]. J Neurosci, 2009. 29(3): p. 600-9.
[175] PATEL, A.J., et al., Inhalational anesthetics activate two-pore-domain background K+ channels[J]. Nat Neurosci, 1999. 2(5): p. 422-6.
[176] PAVEL, M.A., et al., Studies on the mechanism of general anesthesia[J]. Proc Natl Acad Sci U S A, 2020. 117(24): p. 13757-13766.
[177] KELZ, M.B., et al., Escape from oblivion: neural mechanisms of emergence from general anesthesia[J]. Anesth Analg, 2019. 128(4): p. 726-736.
[178] YANARU, T., et al., Propofol-induced generalized tonic-clonic seizure: a case report[J]. Masui, 2010. 59(8): p. 1036-8.
[179] KIM, M.J., D.G. LIM, AND J.S. YEO, Refractory status epilepticus occurred at the end of sevoflurane anesthesia in patient with epilepsy[J]. Korean J Anesthesiol, 2013. 65(1): p. 93-4.
[180] TUNA, Y., A. TAS, AND S. KOKLU, Propofol-induced myoclonic seizures after endoscopic procedure in an elderly woman[J]. Chin Med J (Engl), 2012. 125(5): p. 785.
[181] KOFKE, W.A., Anesthetic management of the patient with epilepsy or prior seizures[J]. Curr Opin Anaesthesiol, 2010. 23(3): p. 391-9.
[182] VOSS, H.U., et al., Possible axonal regrowth in late recovery from the minimally conscious state[J]. J Clin Invest, 2006. 116(7): p. 2005-11.
[183] TATETSU, M., et al., GABA/glycine signaling during degeneration and regeneration of mouse hypoglossal nerves[J]. Brain Res, 2012. 1446: p. 22-33.
[184] KIM, J., et al., Changes in the expression and localization of signaling molecules in mouse facial motor neurons during regeneration of facial nerves[J]. J Chem Neuroanat, 2018. 88: p. 13-21.
[185] EWENS, C.A., et al., Structural and functional implications of phosphorylation and acetylation in the regulation of the AAA+ protein p97[J]. Biochem Cell Biol, 2010. 88(1): p. 41-8.
[186] HEIDELBERGER, J.B., et al., Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function[J]. EMBO Rep, 2018. 19(4).
[187] AHLSTEDT, B.A., R. GANJI, AND M. RAMAN, The functional importance of VCP to maintaining cellular protein homeostasis[J]. Biochem Soc Trans, 2022. 50(5): p. 1457-1469.
[188] BRAUN, R.J. AND H. ZISCHKA, Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease[J]. Biochim Biophys Acta, 2008. 1783(7): p. 1418-35.
[189] SCHUBERTH, C. AND A. BUCHBERGER, UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97[J]. Cell Mol Life Sci, 2008. 65(15): p. 2360-71.
[190] MADSEN, L., et al., New ATPase regulators--p97 goes to the PUB[J]. Int J Biochem Cell Biol, 2009. 41(12): p. 2380-8.
[191] KAHLE, K.T., et al., Modulation of neuronal activity by phosphorylation of the K-Cl cotransporter KCC2[J]. Trends Neurosci, 2013. 36(12): p. 726-737.
[192] DE KONINCK, Y., Altered chloride homeostasis in neurological disorders: a new target[J]. Curr Opin Pharmacol, 2007. 7(1): p. 93-9.
[193] KAHLE, K.T., et al., Roles of the cation-chloride cotransporters in neurological disease[J]. Nat Clin Pract Neurol, 2008. 4(9): p. 490-503.
[194] LAUF, P.K. AND B.E. THEG, A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes[J]. Biochem Biophys Res Commun, 1980. 92(4): p. 1422-8.
[195] FUJISE, H. AND P.K. LAUF, Swelling, NEM, and A23187 activate Cl(-)-dependent K+ transport in high-K+ sheep red cells[J]. Am J Physiol, 1987. 252(2 Pt 1): p. C197-204.
[196] JENNINGS, M.L. AND R.K. SCHULZ, Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide[J]. J Gen Physiol, 1991. 97(4): p. 799-817.
修改评论