[1] LIPSHULTZ S E, FRANCO V I, MILLER T L, et al. Cardiovascular disease in adult survivors of childhood cancer [J]. Annu Rev Med, 2015, 66: 161-76.
[2] VALACHIS A, NILSSON C. Cardiac risk in the treatment of breast cancer: assessment and management [J]. Breast Cancer (Dove Med Press), 2015, 7: 21-35.
[3] ALLEN A. The cardiotoxicity of chemotherapeutic drugs [J]. Semin Oncol, 1992, 19(5): 529-42.
[4] 王春怡, 叶雪兰, 李卫民, et al. 黄芪总皂苷提取物的质量标准研究 [J]. 时珍国医国药, 2012: 94-6.
[5] SAWICKI K T, SALA V, PREVER L, et al. Preventing and Treating Anthracycline Cardiotoxicity: New Insights [J]. Annu Rev Pharmacol, 2021, 61: 309-32.
[6] CARDINALE D, COLOMBO A, BACCHIANI G, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy [J]. Circulation, 2015, 131(22): 1981-8.
[7] FERRANS V J. Overview of cardiac pathology in relation to anthracycline cardiotoxicity [J]. Cancer Treat Rep, 1978, 62(6): 955-61.
[8] BERRY G J, JORDEN M. Pathology of radiation and anthracycline cardiotoxicity [J]. Pediatr Blood Cancer, 2005, 44(7): 630-7.
[9] SWAIN S M, WHALEY F S, EWER M S. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials [J]. Cancer, 2003, 97(11): 2869-79.
[10] VAN DER PAL H J, VAN DALEN E C, HAUPTMANN M, et al. Cardiac Function in 5-Year Survivors of Childhood Cancer A Long-term Follow-up Study [J]. Arch Intern Med, 2010, 170(14): 1247-55.
[11] GIORDANO F J. Oxygen, oxidative stress, hypoxia, and heart failure [J]. Journal of Clinical Investigation, 2005, 115(3): 500-8.
[12] SINGAL P K, ILISKOVIC N. Doxorubicin-induced cardiomyopathy [J]. New Engl J Med, 1998, 339(13): 900-5.
[13] OCTAVIA Y, TOCCHETTI C G, GABRIELSON K L, et al. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies [J]. J Mol Cell Cardiol, 2012, 52(6): 1213-25.
[14] VASQUEZVIVAR J, MARTASEK P, HOGG N, et al. Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin [J]. Biochemistry, 1997, 36(38): 11293-7.
[15] GOORMAGHTIGH E, CHATELAIN P, CASPERS J, et al. Evidence of a Complex between Adriamycin Derivatives and Cardiolipin - Possible Role in Cardiotoxicity [J]. Biochem Pharmacol, 1980, 29(21): 3003-10.
[16] SCHLAME M, RUA D, GREENBERG M L. The biosynthesis and functional role of cardiolipin [J]. Prog Lipid Res, 2000, 39(3): 257-88.
[17] DENG S, KRUGER A, KLESCHYOV A L, et al. Gp91phox-containing NAD(P)H oxidase increases superoxide formation by doxorubicin and NADPH [J]. Free Radic Biol Med, 2007, 42(4): 466-73.
[18] LIN J, FANG L, LI H, et al. Astragaloside IV alleviates doxorubicin induced cardiomyopathy by inhibiting NADPH oxidase derived oxidative stress [J]. Eur J Pharmacol, 2019, 859: 172490.
[19] ASENSIO-LOPEZ M C, SOLER F, PASCUAL-FIGAL D, et al. Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes [J]. PLoS One, 2017, 12(2): e0172803.
[20] FALLAH M, MOHAMMADI H, SHAKI F, et al. Doxorubicin and liposomal doxorubicin induce senescence by enhancing nuclear factor kappa B and mitochondrial membrane potential [J]. Life Sci, 2019, 232: 116677.
[21] BOURGEOIS B, MADL T. Regulation of cellular senescence via the FOXO4-p53 axis [J]. FEBS Lett, 2018, 592(12): 2083-97.
[22] WANG J C. Cellular roles of DNA topoisomerases: a molecular perspective [J]. Nat Rev Mol Cell Biol, 2002, 3(6): 430-40.
[23] TEWEY K M, ROWE T C, YANG L, et al. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II [J]. Science, 1984, 226(4673): 466-8.
[24] LYU Y L, KERRIGAN J E, LIN C P, et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane [J]. Cancer Res, 2007, 67(18): 8839-46.
[25] ZHANG S, LIU X, BAWA-KHALFE T, et al. Identification of the molecular basis of doxorubicin-induced cardiotoxicity [J]. Nat Med, 2012, 18(11): 1639-42.
[26] KHIATI S, DALLA ROSA I, SOURBIER C, et al. Mitochondrial topoisomerase I (top1mt) is a novel limiting factor of doxorubicin cardiotoxicity [J]. Clin Cancer Res, 2014, 20(18): 4873-81.
[27] SIMUNEK T, STERBA M, POPELOVA O, et al. Anthracycline-induced cardiotoxicity: Overview of studies examining the roles of oxidative stress and free cellular iron [J]. Pharmacol Rep, 2009, 61(1): 154-71.
[28] WINTERBOURN C C. Toxicity of iron and hydrogen peroxide: The Fenton reaction [J]. Toxicol Lett, 1995, 82-3: 969-74.
[29] MYERS C E, GIANNI L, SIMONE C B, et al. Oxidative destruction of erythrocyte ghost membranes catalyzed by the doxorubicin-iron complex [J]. Biochemistry, 1982, 21(8): 1707-12.
[30] GRANZIER H L, LABEIT S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease [J]. Circ Res, 2004, 94(3): 284-95.
[31] ALI M A, CHO W J, HUDSON B, et al. Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury [J]. Circulation, 2010, 122(20): 2039-47.
[32] SALA V, DELLA SALA A, HIRSCH E, et al. Signaling Pathways Underlying Anthracycline Cardiotoxicity [J]. Antioxid Redox Signal, 2020, 32(15): 1098-114.
[33] DHINGRA R, GUBERMAN M, RABINOVICH-NIKITIN I, et al. Impaired NF-kappaB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy [J]. Cardiovasc Res, 2020, 116(6): 1161-74.
[34] SHI J, ABDELWAHID E, WEI L. Apoptosis in Anthracycline Cardiomyopathy [J]. Curr Pediatr Rev, 2011, 7(4): 329-36.
[35] ZHANG Y W, SHI J, LI Y J, et al. Cardiomyocyte death in doxorubicin-induced cardiotoxicity [J]. Arch Immunol Ther Exp (Warsz), 2009, 57(6): 435-45.
[36] ELMORE S. Apoptosis: a review of programmed cell death [J]. Toxicol Pathol, 2007, 35(4): 495-516.
[37] TANG D, KANG R, BERGHE T V, et al. The molecular machinery of regulated cell death [J]. Cell Res, 2019, 29(5): 347-64.
[38] CHRISTIDI E, BRUNHAM L R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity [J]. Cell Death Dis, 2021, 12(4).
[39] NAKAMURA T, UEDA Y, JUAN Y, et al. Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: In vivo study [J]. Circulation, 2000, 102(5): 572-8.
[40] WENNINGMANN N, KNAPP M, ANDE A, et al. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring [J]. Mol Pharmacol, 2019, 96(2): 219-32.
[41] LAVRIK I N, KRAMMER P H. Regulation of CD95/Fas signaling at the DISC [J]. Cell Death Differ, 2012, 19(1): 36-41.
[42] KALIVENDI S V, KONOREV E A, CUNNINGHAM S, et al. Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium [J]. Biochem J, 2005, 389(Pt 2): 527-39.
[43] NITOBE J, YAMAGUCHI S, OKUYAMA M, et al. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes [J]. Cardiovasc Res, 2003, 57(1): 119-28.
[44] SHATI A A. Doxorubicin-induces NFAT/Fas/FasL cardiac apoptosis in rats through activation of calcineurin and P38 MAPK and inhibition of mTOR signalling pathways [J]. Clin Exp Pharmacol P, 2020, 47(4): 660-76.
[45] FENG Y C, HE D, YAO Z Y, et al. The machinery of macroautophagy [J]. Cell Research, 2014, 24(1): 24-41.
[46] DIKIC I, ELAZAR Z. Mechanism and medical implications of mammalian autophagy [J]. Nat Rev Mol Cell Biol, 2018, 19(6): 349-64.
[47] STOCKWELL B R. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications [J]. Cell, 2022, 185(14): 2401-21.
[48] TUO Q Z, LEI P, JACKMAN K A, et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke [J]. Mol Psychiatry, 2017, 22(11): 1520-30.
[49] FRIEDMANN ANGELI J P, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice [J]. Nat Cell Biol, 2014, 16(12): 1180-91.
[50] TADOKORO T, IKEDA M, IDE T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity [J]. JCI Insight, 2020, 5(9).
[51] MAN S M, KARKI R, KANNEGANTI T D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases [J]. Immunol Rev, 2017, 277(1): 61-75.
[52] MENG L P, LIN H, ZHANG J, et al. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3 [J]. Journal of Molecular and Cellular Cardiology, 2019, 136: 15-26.
[53] MARTY M, ESPIE M, LLOMBART A, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy [J]. Ann Oncol, 2006, 17(4): 614-22.
[54] BUSS J L, HASINOFF B B. The one-ring open hydrolysis product intermediates of the cardioprotective agent ICRF-187 (dexrazoxane) displace iron from iron-anthracycline complexes [J]. Agents Actions, 1993, 40(1-2): 86-95.
[55] ICHIKAWA Y, GHANEFAR M, BAYEVA M, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation [J]. J Clin Invest, 2014, 124(2): 617-30.
[56] LEE J H, WENDORFF T J, BERGER J M. Resveratrol: A novel type of topoisomerase II inhibitor [J]. Journal of Biological Chemistry, 2017, 292(51): 21011-22.
[57] FU J, WANG Z H, HUANG L F, et al. Review of the Botanical Characteristics, Phytochemistry, and Pharmacology of Astragalus membranaceus (Huangqi) [J]. Phytother Res, 2014, 28(9): 1275-83.
[58] XU F, ZHANG Y, XIAO S, et al. Absorption and metabolism of Astragali radix decoction: in silico, in vitro, and a case study in vivo [J]. Drug Metab Dispos, 2006, 34(6): 913-24.
[59] BRATKOV V M, SHKONDROV A M, ZDRAVEVA P K, et al. Flavonoids from the Genus Astragalus: Phytochemistry and Biological Activity [J]. Pharmacogn Rev, 2016, 10(19): 11-32.
[60] 张瑜芯, 赵梦佳, 尹梓在, et al. 中药黄酮抗氧化作用及其在化妆品中的应用研究 [J]. 药物资讯, 2021, 10: 78-84.
[61] MA J W, QIAO Z Y, XIANG X. Aqueous extract of Astragalus mongholicus ameliorates high cholesterol diet induced oxidative injury in experimental rats models [J]. J Med Plants Res, 2011, 5(5): 855-8.
[62] ALI T, KIM T, REHMAN S U, et al. Natural Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress, Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer's Disease [J]. Mol Neurobiol, 2018, 55(7): 6076-93.
[63] MA C R, ZHANG J, YANG S, et al. Astragalus Flavone Ameliorates Atherosclerosis and Hepatic Steatosis Via Inhibiting Lipid-Disorder and Inflammation in apoE(-/-) Mice [J]. Front Pharmacol, 2020, 11.
[64] HOO R L, WONG J Y, QIAO C, et al. The effective fraction isolated from Radix Astragali alleviates glucose intolerance, insulin resistance and hypertriglyceridemia in db/db diabetic mice through its anti-inflammatory activity [J]. Nutr Metab (Lond), 2010, 7: 67.
[65] QI L W, YU Q T, YI L, et al. Simultaneous determination of 15 marker constituents in various Radix Astragaii preparations by solid-phase extraction and high-performance liquid chromatography [J]. J Sep Sci, 2008, 31(1): 97-106.
[66] LI L, HOU X, XU R, et al. Research review on the pharmacological effects of astragaloside IV [J]. Fundam Clin Pharmacol, 2017, 31(1): 17-36.
[67] JIA Y, ZUO D, LI Z, et al. Astragaloside IV inhibits doxorubicin-induced cardiomyocyte apoptosis mediated by mitochondrial apoptotic pathway via activating the PI3K/Akt pathway [J]. Chem Pharm Bull (Tokyo), 2014, 62(1): 45-53.
[68] KIYOHARA H, UCHIDA T, TAKAKIWA M, et al. Different contributions of side-chains in beta-D-(1 -> 3,6)-galactans on intestinal Peyer's patch-immunomodulation by polysaccharides from Astragalus mongholics Bunge [J]. Phytochemistry, 2010, 71(2-3): 280-93.
[69] ZHENG Y, REN W, ZHANG L, et al. A Review of the Pharmacological Action of Astragalus Polysaccharide [J]. Front Pharmacol, 2020, 11: 349.
[70] CAO Y, RUAN Y, SHEN T, et al. Astragalus polysaccharide suppresses doxorubicin-induced cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways [J]. Oxid Med Cell Longev, 2014, 2014: 674219.
[71] ARCAMONE F, CASSINELLI G, FANTINI G, et al. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius [J]. Biotechnol Bioeng, 1969, 11(6): 1101-10.
[72] XIAO J B. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? [J]. Crit Rev Food Sci, 2017, 57(9): 1874-905.
[73] WANG J F, LIU S S, SONG Z Q, et al. Naturally Occurring Flavonoids and Isoflavonoids and Their Microbial Transformation: A Review [J]. Molecules, 2020, 25(21).
[74] LOU H, KAUR K, SHARMA A K, et al. Adriamycin-induced oxidative stress, activation of MAP kinases and apoptosis in isolated cardiomyocytes [J]. Pathophysiology, 2006, 13(2): 103-9.
[75] BARTLETT J J, TRIVEDI P C, YEUNG P, et al. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy [J]. Biochem J, 2016, 473: 3769-89.
[76] MYERS C, BONOW R, PALMERI S, et al. A Randomized Controlled Trial Assessing the Prevention of Doxorubicin Cardiomyopathy by N-Acetylcysteine [J]. Seminars in Oncology, 1983, 10(1): 53-6.
[77] LIPSHULTZ S E, COCHRAN T R, FRANCO V I, et al. Treatment-related cardiotoxicity in survivors of childhood cancer [J]. Nat Rev Clin Oncol, 2013, 10(12): 697-710.
[78] ZOROV D B, JUHASZOVA M, SOLLOTT S J. Mitochondrial Reactive Oxygen Species (Ros) and Ros-Induced Ros Release [J]. Physiol Rev, 2014, 94(3): 909-50.
[79] ZHOU B, TIAN R. Mitochondrial dysfunction in pathophysiology of heart failure [J]. Journal of Clinical Investigation, 2018, 128(9): 3716-26.
[80] KUNDU D, PASRIJA R. The ERMES (Endoplasmic Reticulum and Mitochondria Encounter Structures) mediated functions in fungi [J]. Mitochondrion, 2020, 52: 89-99.
[81] LI D L, WANG Z V, DING G Q, et al. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification [J]. Circulation, 2016, 133(17): 1668-87.
[82] TEWEY K M, ROWE T C, YANG L, et al. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase-Ii [J]. Science, 1984, 226(4673): 466-8.
[83] PUGAZHENDHI A, EDISON T N J I, VELMURUGAN B K, et al. Toxicity of Doxorubicin (Dox) to different experimental organ systems [J]. Life Sciences, 2018, 200: 26-30.
修改评论