[1] Islam, Aylin Caliskan and Bryson, Joanna J. and Narayanan, Arvind. Semantics derived automatically from language corpora necessarily contain human biases. 2016.
[2] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations withoutopening the black box: Automated decisions and the gpdr. Harv. JL Tech., 31:841, 2017.
[3] J. Angwin, J. Larson, L. Kirchner, and S. Mattu. Machine bias.https://www.propublica.org/article/machine- bias- risk- assessments- in- criminal- sentencing ,Mar 2019
[4] B. Goodman and S. Flaxman. European union regulations on algorithmic decision-making anda right to explanation. AI Magazine, 38(3):50–57, 2017.
[5] D. Boyd and K. Crawford. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Information, communication & society, 15(5):662–679,2012.
[6] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.arXiv preprint arXiv:1412.6572, 2014.
[7] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method tofool deep neural networks. CoRR, abs/1511.04599, 2015.
[8] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitationsof deep learning in adversarial settings. CoRR, abs/1511.07528, 2015.
[9] Z. C. Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016.
[10] F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning. arXivpreprint arXiv:1702.08608, 2017.
[11] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations:An overview of interpretability of machine learning. In 2018 IEEE 5th International Conferenceon Data Science and Advanced Analytics (DSAA), pages 8089. IEEE, 2018.
[12] W. Cheng, Y. Shen, L. Huang, and Y. Zhu. Incorporating interpretability into latent factormodels via fast influence analysis. In Proceedings of the 25th ACM SIGKDD InternationalConference on Knowledge Discovery & Data Mining, pages 885–893. ACM, 2019.
[13] M. Du, N. Liu, and X. Hu. Techniques for interpretable machine learning. arXiv preprintarXiv:1808.00033, 2018.
[14] S. Wachter, B. D. Mittelstadt, and C. Russell. Counterfactual explanations without opening theblack box: Automated decisions and the GDPR. CoRR, abs/1711.00399, 2017.
[15] S. Liu, B. Kailkhura, D. Loveland, and Y. Han. Generative counterfactual introspection forexplainable deep learning. CoRR, abs/1907.03077, 2019.
[16] R. M. Grath, L. Costabello, C. L. Van, P. Sweeney, F. Kamiab, Z. Shen, and F. Le ́cué. Interpretable credit application predictions with counterfactual explanations. CoRR, abs/1811.05245, 2018.
[17] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee. Counterfactual visual explanations.CoRR, abs/1904.07451, 2019.
[18] Y. Goyal, U. Shalit, and B. Kim. Explaining classifiers with causal concept effect (cace). CoRR,abs/1907.07165, 2019.
[19] J. Moore, N. Hammerla, and C. Watkins. Explaining deep learning models with constrainedadversarial examples. CoRR, abs/1906.10671, 2019.
[20] R. K. Mothilal, A. Sharma, and C. Tan. Explaining machine learning classifiers through diversecounterfactual explanations. CoRR, abs/1905.07697, 2019.
[21] Divyat Mahajan, Chenhao Tan, and Amit Sharma. Preserving causal constraints in counterfactual explanations for machine learning classifiers. arXiv preprint arXiv:1912.03277, 2019.
[22] Duong T D , Li Q , Xu G . Prototype-based Counterfactual Explanation for Causal Classification[J]. 2021.
[23] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and Payel Das. Explanations based on the missing: Towards contrastive explanationswith pertinent negatives. In Advances in Neural Information Processing Systems, pages 592–603, 2018.
[24] Ramaravind Kommiya Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers through diverse counterfactual explanations. In Proceedings of the ACM FATconference (to appear), 2020.
[25] Chris Russell. Efficient search for diverse coherent explanations. In Proceedings of FAT, 2019.
[26] Judea Pearl. Causality. Cambridge University Press, 2009.
[27] Spirtes P , Zhang K . Causal discovery and inference: concepts and recent methodologicaladvances[J]. Applied Informatics, 2016, 3(1):1-28.
[28] Glymour C , Zhang K , Spirtes P . Review of Causal Discovery Methods Based on GraphicalModels[J]. Frontiers in Genetics, 2019, 10:-.
[29] Alessandro Magrini, Stefano Di Blasi, and Federico Mattia Stefanini. A conditional linear gaussian network to assess the impact of several agronomic settings on the quality of tuscan sangiovese grapes. Biometrical Letters, 2017.
[30] Goodfellow I J , Pouget-Abadie J , Mirza M , et al. Generative Adversarial Networks[J]. 2014.
[31] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. 2020. Algorithmic Recourse:from Counterfactual Explanations to Interventions.
[32] Amir-Hossein Karimi, Julius von Kügelgen, Bernhard Schölkopf, and Isabel Valera. 2020. Algorithmic recourse under imperfect causal knowledge: a proba-bilistic approach.
[33] Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: A common framework to provide explanations and analyse the fairness and ro- bustness of black-box models. In Proceedingsof the AAAI/ACM Conference on AI, Ethics, and Society, pages 166–172, 2020.
[34] Karimi A H , Barthe G , Belle B , et al. Model-Agnostic Counterfactual Explanations for Consequential Decisions[J]. 2019.
[35] Ustun B , Spangher A , Liu Y . Actionable Recourse in Linear Classification:,10.1145/3287560.3287566[P]. 2018.
修改评论