中文版 | English
题名

单壁碳纳米管-金属团簇的限域组装及催化与电化学检测研究

其他题名
ASSEMBLY OF METAL CLUSTERS WITHIN SINGLE-WALLED CARBON NANOTUBES FOR CATALYSIS AND ELECTROCHEMICAL DETECTION
姓名
姓名拼音
ZHAO Kaitong
学号
12132825
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
0856 材料与化工
导师
杨烽
导师单位
化学系
论文答辩日期
2023-05-29
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

  单壁碳纳米管(SWCNTs)内腔结构明确,可为客体材料提供丰富的附着位点。此外,SWCNTs内腔具有独特的物理化学环境,如超高压、超润滑性质等,为合成新结构的限域组装材料和其性质研究带来更多可能性。

  金属团簇具有原子精确的结构,是良好的催化构效关系的研究模型。然而,金属团簇的结构稳定性和催化活性通常存在竞争关系。因此,如何权衡结构稳定性和催化活性之间的关系,获得高活性、高稳定性的金属团簇催化剂具有重要的基础研究意义。

  本论文中选取了4种金属团簇,基于SWCNTs外壁对金属团簇的保护作用,发展了室温溶液自组装的方法将团簇限域组装在碳管内腔,制备出金属团簇- SWCNTs精准限域的组装体,系统地研究了组装体的电子转移、催化活性、结构稳定性等结构和性质。具体开展了以下工作:

  利用SWCNTs内腔(1-2 nm)与1-2 nm的{Ag9}、{Ag6}、{Cu6-dppe}、{Cu6-dppe}团簇之间完美的尺寸匹配,在SWCNTs内腔可控组装一维排列的金属团簇(记为{Ag9}@SWCNTs、{Ag6}@SWCNTs、{Cu6-dppe}@SWCNTs和{Cu6-dppm}@SWCNTs)。

  进一步系统研究了金属团簇- SWCNTs组装体的催化性能。其中,{Ag9}@SWCNTs在催化还原对硝基苯酚的反应中展现出了优异的活性与耐久性,反应速率3.75 mol/h·g,可循环反应30次。设计了流动式反应器,模拟工业化的流动催化反应,实现了20mg催化剂以99%以上转化率连续转化15 L对硝基苯酚溶液。通过X射线光电子能谱(XPS)表征证实一维密排列的金属团簇向周围SWCNTs管壁传递电子,在碳管表面形成离域电子,从而加速催化反应。

  另一方面,基于{Ag9}@SWCNTs组装体的电化学响应特性,开展过氧化氢电化学检测器的应用研究。电化学性能测试结果表明,在0.2-5 mmol/L过氧化氢浓度范围内,过氧化氢浓度与电流信号呈线性响应关系,表明其具有作为过氧化氢电化学检测器的潜力。

关键词
语种
中文
培养类别
独立培养
入学年份
2021
学位授予年份
2023-06
参考文献列表

[1] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 56-58.
[2] IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363(6430): 603-605.
[3] YANG F, WANG M, ZHANG D, et al. Chirality pure carbon nanotubes: growth, sorting, and characterization [J]. Chem Rev, 2020, 120(5): 2693-2758.
[4] BAI Y, SHEN B, ZHANG S, et al. Storage of mechanical energy based on carbon nanotubes with high energy ddensity and power density [J]. Advanced Materials, 2019, 31(9): 1800680.
[5] FRANKLIN A D, HERSAM M C, WONG H-S P. Carbon nanotube transistors: Making electronics from molecules [J]. Science, 2022, 378(6621): 726-732.
[6] HAN C, ZENNER J, JOHNY J, et al. Electrocatalytic hydrogenation of alkenes with Pd/carbon nanotubes at an oil–water interface [J]. Nature Catalysis, 2022, 5(12): 1110-1119.
[7] YANG J, SUN H, LIANG H, et al. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and graphene [J]. Advanced Materials, 2016, 28(23): 4606-4613.
[8] PASTORIN G. Carbon nanotubes: from bench chemistry to promising biomedical applications [J]. Materials Today, 2011, 14(6): 290.
[9] SLOAN J, DUNIN-BORKOWSKI R E, HUTCHISON J L, et al. The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes [J]. Chemical Physics Letters, 2000, 316(3): 191-198.
[10] CHUVILIN A, BICHOUTSKAIA E, GIMENEZ-LOPEZ M C, et al. Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube [J]. Nature Materials, 2011, 10(9): 687-692.
[11] GOVINDARAJ A, SATISHKUMAR B C, NATH M, et al. Metal Nanowires and Intercalated Metal Layers in Single-Walled Carbon Nanotube Bundles [J]. Chemistry of Materials, 2000, 12(1): 202-205.
[12] ZHANG D, YANG H, LIU Z, et al. Formation of core-shell structure from carbon nanotube and silver nanowire [J]. Journal of Alloys and Compounds, 2018, 765: 140-145.
[13] KHARLAMOVA M V, NIU J J. Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes [J]. Applied Physics A, 2012, 109(1): 25-29.
[14] BOROWIAK-PALEN E, MENDOZA E, BACHMATIUK A, et al. Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium [J]. Chemical Physics Letters, 2006, 421(1): 129-133.
[15] YANG X, LIU T, LI R, et al. Host–guest molecular interaction enabled separation of large-diameter semiconducting single-walled carbon nanotubes [J]. Journal of the American Chemical Society, 2021, 143(27): 10120-10130.
[16] YANG W, BAI Y, MA J, et al. Engineering of carbon nanotube-grafted carbon nanosheets encapsulating cobalt nanoparticles for efficient electrocatalytic oxygen evolution [J]. Journal of Materials Chemistry A, 2020, 8(47): 25268-25274.
[17] SMITH B W, MONTHIOUX M, LUZZI D E. Encapsulated C60 in carbon nanotubes [J]. Nature, 1998, 396(6709): 323-324.
[18] PHAM T, OH S, STETZ P, et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide [J]. Science, 2018, 361(6399): 263-266.
[19] MINERS S A, RANCE G A, KHLOBYSTOV A N. Chemical reactions confined within carbon nanotubes [J]. Chemical Society Reviews, 2016, 45(17): 4727-4746.
[20] HALLS M D, SCHLEGEL H B. Chemistry inside carbon nanotubes:  the menshutkin sn2 reaction [J]. The Journal of Physical Chemistry B, 2002, 106(8): 1921-1925.
[21] PAN X, FAN Z, CHEN W, et al. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles [J]. Nature Materials, 2007, 6(7): 507-511.
[22] DENG D, YU L, CHEN X, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction [J]. Angewandte Chemie International Edition, 2013, 52(1): 371-375.
[23] ZHANG A M, DONG J L, XU Q H, et al. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation [J]. Catalysis Today, 2004, 93-95: 347-352.
[24] MA H, WANG L, CHEN L, et al. Pt nanoparticles deposited over carbon nanotubes for selective hydrogenation of cinnamaldehyde [J]. Catalysis Communications, 2007, 8(3): 452-456.
[25] ZHANG F, JIAO F, PAN X, et al. Tailoring the oxidation activity of pt nanoclusters via encapsulation [J]. ACS Catalysis, 2015, 5(2): 1381-1385.
[26] LIU J, LIU R, LI H, et al. Au nanoparticles in carbon nanotubes with high photocatalytic activity for hydrocarbon selective oxidation [J]. Dalton Transactions, 2014, 43(34): 12982-12988.
[27] WANG D, YANG G, MA Q, et al. Confinement effect of carbon nanotubes: copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate [J]. ACS Catalysis, 2012, 2(9): 1958-1966.
[28] CHEN W, FAN Z, PAN X, et al. Effect of confinement in carbon nanotubes on the activity of fischer−tropsch iron catalyst [J]. Journal of the American Chemical Society, 2008, 130(29): 9414-9419.
[29] HASANI-SADRABADI M M, DASHTIMOGHADAM E, MAJEDI F S, et al. Ionic nanopeapods: Next-generation proton conducting membranes based on phosphotungstic acid filled carbon nanotube [J]. Nano Energy, 2016, 23: 114-121.
[30] KOGA K, GAO G T, TANAKA H, et al. Formation of ordered ice nanotubes inside carbon nanotubes [J]. Nature, 2001, 412(6849): 802-805.
[31] SENGA R, KOMSA H-P, LIU Z, et al. Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes [J]. Nature Materials, 2014, 13(11): 1050-1054.
[32] CAMPOS-DELGADO J, ROMO-HERRERA J M, JIA X, et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons [J]. Nano Letters, 2008, 8(9): 2773-2778.
[33] KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature, 2009, 458(7240): 872-876.
[34] HU Z, BREEZE B, KASHTIBAN R J, et al. Zigzag hgte nanowires modify the electron–phonon interaction in chirality-refined single-walled carbon nanotubes [J]. ACS Nano, 2022, 16(4): 6789-6800.
[35] MEDEIROS P V C, MARKS S, WYNN J M, et al. Single-atom scale structural selectivity in te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes [J]. ACS Nano, 2017, 11(6): 6178-6185.
[36] ZHAO Y, SONG L, DENG K, et al. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters [J]. Advanced Materials, 2008, 20(9): 1772-1776.
[37] GUAN L, SUENAGA K, SHI Z, et al. Polymorphic structures of iodine and their phase transition in confined nanospace [J]. Nano Letters, 2007, 7(6): 1532-1535.
[38] CAMPO J, PIAO Y, LAM S, et al. Enhancing single-wall carbon nanotube properties through controlled endohedral filling [J]. Nanoscale Horizons, 2016, 1(4): 317-324.
[39] VASYLENKO A, WYNN J, MEDEIROS P V C, et al. Encapsulated nanowires: Boosting electronic transport in carbon nanotubes [J]. Physical Review B, 2017, 95(12): 121408.
[40] LI Y. Carbon nanotube research in its 30th year [J]. ACS Nano, 2021, 15(6): 9197-9200.
[41] KIM S H, HAINES C S, LI N, et al. Harvesting electrical energy from carbon nanotube yarn twist [J]. Science, 2017, 357(6353): 773-778.
[42] TUNUGUNTLA R H, HENLEY R Y, YAO Y-C, et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins [J]. Science, 2017, 357(6353): 792-796.
[43] GAO C, LYU F, YIN Y. Encapsulated metal nanoparticles for catalysis [J]. Chemical Reviews, 2021, 121(2): 834-881.
[44] ZHANG T, MA C, SUN T, et al. Unadulterated BODIPY nanoparticles for biomedical applications [J]. Coordination Chemistry Reviews, 2019, 390: 76-85.
[45] KIM D, HWANG J, CHOI Y, et al. Effective delivery of anti-cancer drug molecules with shape transforming liquid metal particles [J].Cancer, 2019, 11(11):1666
[46] LIU J, JIANG J, MENG Y, et al. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review [J]. Journal of Hazardous Materials, 2020, 388: 122026.
[47] DU Y, SHENG H, ASTRUC D, et al. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties [J]. Chemical Reviews, 2020, 120(2): 526-622.
[48] ZENG C, CHEN Y, KIRSCHBAUM K, et al. Emergence of hierarchical structural complexities in nanoparticles and their assembly [J]. Science, 2016, 354(6319): 1580-1584.
[49] YANG H, WANG Y, CHEN X, et al. Plasmonic twinned silver nanoparticles with molecular precision [J]. Nature Communications, 2016, 7(1): 12809.
[50] JIN R. Atomically precise metal nanoclusters: stable sizes and optical properties [J]. Nanoscale, 2015, 7(5): 1549-1565.
[51] LIU L, CORMA A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles [J]. Chemical Reviews, 2018, 118(10): 4981-5079.
[52] KANG X, ZHU M. Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters [J]. Coordination Chemistry Reviews, 2019, 394: 1-38.
[53] WANG S, MENG X, DAS A, et al. A 200-fold quantum yield boost in the photoluminescence of silver-doped agxau25−x nanoclusters: the 13 th silver atom matters [J]. Angewandte Chemie International Edition, 2014, 53(9): 2376-2380.
[54] YAMAZOE S, KOYASU K, TSUKUDA T. Nonscalable Oxidation Catalysis of Gold Clusters [J]. Accounts of Chemical Research, 2014, 47(3): 816-824.
[55] YUAN X, LUO Z, YU Y, et al. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development [J]. Chemistry – An Asian Journal, 2013, 8(5): 858-871.
[56] FAN Y, LIU S, YI Y, et al. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts [J]. ACS Nano, 2021, 15(2): 2005-2037.
[57] KRISHNA K S, TARAKESHWAR P, MUJICA V, et al. Chemically induced magnetism in atomically precise gold clusters [J]. Small, 2014, 10(5): 907-911.
[58] JIN R, LI G, SHARMA S, et al. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures [J]. Chemical Reviews, 2021, 121(2): 567-648.
[59] NASARUDDIN R R, CHEN T, YAN N, et al. Roles of thiolate ligands in the synthesis, properties and catalytic application of gold nanoclusters [J]. Coordination Chemistry Reviews, 2018, 368: 60-79.
[60] JIN R, ZENG C, ZHOU M, et al. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities [J]. Chemical Reviews, 2016, 116(18): 10346-10413.
[61] WU Z, JIANG D-E, MANN A K P, et al. Thiolate ligands as a double-edged sword for co oxidation on ceo2 supported au25(sch2ch2ph)18 nanoclusters [J]. Journal of the American Chemical Society, 2014, 136(16): 6111-6122.
[62] NISHIGAKI J-I, TSUNOYAMA R, TSUNOYAMA H, et al. A new binding motif of sterically demanding thiolates on a gold cluster [J]. Journal of the American Chemical Society, 2012, 134(35): 14295-14297.
[63] YUAN S-F, LEI Z, GUAN Z-J, et al. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance [J]. Angewandte Chemie International Edition, 2021, 60(10): 5225-5229.
[64] WAN X-K, WANG J-Q, WANG Q-M. Ligand-protected au55 with a novel structure and remarkable co2 electroreduction performance [J]. Angewandte Chemie International Edition, 2021, 60(38): 20748-20753.
[65] LONGO A, DE BOED E J J, MAMMEN N, et al. Towards atomically precise supported catalysts from monolayer-protected clusters: the critical role of the support [J]. Chemistry – A European Journal, 2020, 26(31): 7051-7058.
[66] NIE X, QIAN H, GE Q, et al. CO oxidation catalyzed by oxide-supported au25(sr)18 nanoclusters and identification of perimeter sites as active centers [J]. ACS Nano, 2012, 6(7): 6014-6022.
[67] LI G, ZENG C, JIN R. Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water [J]. Journal of the American Chemical Society, 2014, 136(9): 3673-3679.
[68] WU Z, MULLINS D R, ALLARD L F, et al. CO oxidation over ceria supported Au22 nanoclusters: Shape effect of the support [J]. Chinese Chemical Letters, 2018, 29(6): 795-799.
[69] CHEN H, LIU C, WANG M, et al. Visible light gold nanocluster photocatalyst: selective aerobic oxidation of amines to imines [J]. ACS Catalysis, 2017, 7(5): 3632-3638.
[70] WANG H, LIU X, YANG W, et al. Surface-clean Au25 nanoclusters in modulated microenvironment enabled by metal–organic frameworks for enhanced catalysis [J]. Journal of the American Chemical Society, 2022, 144(48): 22008-22017.
[71] KRATZL K, KRATKY T, GüNTHER S, et al. Generation and stabilization of small platinum clusters pt12±x inside a metal–organic framework [J]. Journal of the American Chemical Society, 2019, 141(35): 13962-13969.
[72] HE Q, XU T, LI J, et al. Confined PdMo ultrafine nanowires in CNTs for superior oxygen reduction catalysis [J]. Advanced Energy Materials, 2022, 12(26): 2200849.
[73] XIE Z, SUN P, WANG Z, et al. Metal–Organic gels from silver nanoclusters with aggregation-induced emission and fluorescence-to-phosphorescence switching [J]. Angewandte Chemie International Edition, 2020, 59(25): 9922-9927.
[74] GUAN Z-J, LI J-J, HU F, et al. structural engineering toward gold nanocluster catalysis [J]. Angewandte Chemie International Edition, 2022, 61(51): e202209725.

所在学位评定分委会
材料与化工
国内图书分类号
O61
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543955
专题理学院_化学系
推荐引用方式
GB/T 7714
赵凯茼. 单壁碳纳米管-金属团簇的限域组装及催化与电化学检测研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12132825-赵凯茼-化学系.pdf(5280KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[赵凯茼]的文章
百度学术
百度学术中相似的文章
[赵凯茼]的文章
必应学术
必应学术中相似的文章
[赵凯茼]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。