中文版 | English
题名

半导体中受主空穴量子比特的电学调控理论研究

其他题名
THEORETICAL STUDY ON ELECTRICAL MANIPULATION OF ACCEPTOR-BASED HOLE QUBITS IN SEMICONDUCTORS
姓名
姓名拼音
ZHANG Shihang
学号
12032806
学位类型
硕士
学位专业
0702 物理学
学科门类/专业学位类别
07 理学
导师
黄培豪
导师单位
量子科学与工程研究院
论文答辩日期
2023-05-11
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

硅中的自旋比特是有吸引力的量子计算平台,因其比特具有长相干时间、与传统半导体加工工艺相匹配、全固态的芯片化电学体系等优势。近年来该领域受到各国大力支持,发展迅速。尤其是针对空穴自旋比特的研究正在积极进行中,因为它们具有弱核自旋噪声耦合和强自旋轨道耦合(Spin-Orbit Coupling,简称SOC)的优点,在构建高保真量子门方面具有优势。然而,对于只需要低金属电极密度的单受主原子中的空穴自旋量子比特的研究还相对匮乏。尤其是,利用可控应变的灵活可调性实现容错量子门方面的探究仍处于空缺,需要建立详细理论框架。本篇论文中,我们通过理论推导、计算和分析,研究了可控应变下,基于受主空穴自旋比特的电偶极自旋共振(Electric Dipole Spin Resonance,简称EDSR)的可调性。重空穴-轻空穴劈裂和自旋空穴耦合(Spin-Hole Coupling,简称SHC)在两种应变下的灵活可调性可以避免“甜点”的高电场,受主自旋比特的操控性能可以得到优化。在低电场下,自旋比特可以得到更长的弛豫时间或更强的EDSR耦合。此外,在非对称的应变下,两个“甜点”会被诱导出现并可能合并在一起,形成一个二阶“甜点”。因此,单比特操控的品质因子Q可以达到104,同时对电场变化有高容忍度。此外,为实现高保真两比特门,基于电偶极-偶极相互作用的受主比特的两比特操控被论证。可调应变下,单比特门和两比特门的品质因子分别能被增强100和7倍。通过应变带来的受主自旋比特性质可调性为自旋量子计算提供了具有希望的实现路径。

其他摘要

Spin qubits in silicon is an attractive platform for quantum computing, owing to their advantages such as long coherence time and compatibility with conventional semiconductor fabrication processes, and fully solid-state chip-scale electrical systems. In recent years, this field has received strong support from various countries and has developed rapidly. In particular, hole spin qubits are being actively researched as they have the advantages of weak coupling to nuclear spin noise and strong spin-orbit coupling (SOC), in constructing high-fidelity quantum gates. However, there are relatively few studies on the hole spin qubits in a single acceptor, which requires only low density of the metallic gates. In particular, the investigation of flexible tunability using controllable strain for fault-tolerant quantum gates of acceptor-based qubits is still lacking, and a detailed theoretical framework needs to be established. Here, we study the tunability of electric dipole spin resonance (EDSR) of acceptor-based hole spin qubits with controllable strain by theoretical derivation, calcuating and analyzing. The flexible tunability of heavy hole-light hole splitting and spin-hole coupling (SHC) with the two kinds of strain can avoid high electric field at the "sweet spot", and the operation performance of the acceptor spin qubits could be optimized. Longer relaxation time or stronger EDSR coupling at low electric field can be obtained. Moreover, with asymmetric strain, two "sweet spots" are induced and may merge together, and form a second-order "sweet spot". As a result, the quality factor Q can reach 104 for single-qubit operation, with high tolerance for the electric field variation. Furthermore, the two-qubit operation of acceptor qubits based on electric dipole-dipole interaction is discussed for high-fidelity two-qubit gates. The quality factors of single-qubit gates and two-qubit gates can be enhanced by 100 and 7 times respectively with tunable strain. The tunability of spin qubit properties in an acceptor via strain could provide promising routes for spin-based quantum computing.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488.
[2] SHOR P. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994: 124-134.
[3] GROVER L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Phys.Rev. Lett., 1997, 79: 325-328.
[4] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[5] WU Y, BAO W S, CAO S, et al. Strong Quantum Computational Advantage Using a Super conducting Quantum Processor[J]. Phys. Rev. Lett., 2021, 127: 180501.
[6] ZHONG H, WANG H, DENG Y, et al. Quantum computational advantage using photons[J]. Science, 2021, 370(6523): 4.
[7] TYRYSHKIN A M, TOJO S, MORTON J J, et al. Electron spin coherence exceeding seconds in high-purity silicon[J]. Nat. Mater., 2012, 11(2): 143-147.
[8] KOBAYASHI T, SALFI J, CHUA C, et al. Engineering long spin coherence times of spin–orbit qubits in silicon[J]. Nat. Mater., 2021, 20(1): 38-42.
[9] ZWERVER A M J, KRäHENMANN T, WATSON T F, et al. Qubits made by advanced semi conductor manufacturing[J]. Nat. Electron., 2022, 5(3): 184-190.
[10] CAMENZIND L C, GEYER S, FUHRER A, et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin[J]. Nat. Electron., 2022, 5(3): 178-183.
[11] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Phys. Rev. A, 1998, 57: 120-126.
[12] KANE B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[13] BULAEV D V, LOSS D. Spin Relaxation and Decoherence of Holes in Quantum Dots[J]. Phys. Rev. Lett., 2005, 95: 076805.
[14] BULAEV D V, LOSS D. Electric Dipole Spin Resonance for Heavy Holes in Quantum Dots[J]. Phys. Rev. Lett., 2007, 98: 097202.
[15] SALFI J, MOL J A, CULCER D, et al. Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon[J]. Phys. Rev. Lett., 2016, 116: 246801.
[16] HE Y, GORMAN S K, KEITH D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571(7765): 371-375.
[17] MA̧DZIK M T, ASAAD S, YOUSSRY A, et al. Precision tomography of a three-qubit donor quantum processor in silicon[J]. Nature, 2022, 601(7893): 348-353.
[18] NOIRI A, TAKEDA K, NAKAJIMA T, et al. Fast universal quantum gate above the fault- tolerance threshold in silicon[J]. Nature, 2022, 601(7893): 338-342.
[19] BOSCO S, SCARLINO P, KLINOVAJA J, et al. Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots[J]. Phys. Rev. Lett., 2022, 129: 066801.
[20] TAHAN C, JOYNT R. Relaxation of excited spin, orbital, and valley qubit states in ideal silicon quantum dots[J]. Phys. Rev. B, 2014, 89: 075302.
[21] ZWANENBURG F A, DZURAK A S, MORELLO A, et al. Silicon quantum electronics[J]. Rev. Mod. Phys., 2013, 85: 961-1019.
[22] BURKARD G, LOSS D, DIVINCENZO D P. Coupled quantum dots as quantum gates[J]. Phys. Rev. B, 1999, 59: 2070-2078.
[23] COISH W A, LOSS D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics[J]. Phys. Rev. B, 2004, 70: 195340.
[24] BERMEISTER A, KEITH D, CULCER D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits[J]. Appl. Phys. Lett., 2014, 105(19): 192102.
[25] MALKOC O, STANO P, LOSS D. Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits[J]. Phys. Rev. Lett., 2022, 129: 247701.
[26] ERCAN H E, FRIESEN M, COPPERSMITH S N. Charge-Noise Resilience of Two-Electron Quantum Dots in Si/SiGe Heterostructures[J]. Phys. Rev. Lett., 2022, 128: 247701.
[27] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots[J]. Science, 2005, 309(5744): 2180-2184.
[28] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343-347.
[29] PHILIPS S G J, MA̧ DZIK M T, AMITONOV S V, et al. Universal control of a six-qubit quantum processor in silicon[J]. Nature, 2022, 609(7929): 919-924.
[30] PLA J J, TAN K Y, DEHOLLAIN J P, et al. A single-atom electron spin qubit in silicon[J]. Nature, 2012, 489(7417): 541-545.
[31] HILE S J, HOUSE M G, PERETZ E, et al. Radio frequency reflectometry and charge sensing of a precision placed donor in silicon[J]. Appl. Phys. Lett., 2015, 107(9): 093504.
[32] KICZYNSKI M, GORMAN S K, GENG H, et al. Engineering topological states in atom-based semiconductor quantum dots[J]. Nature, 2022, 606(7915): 694-699.
[33] MORELLO A, PLA J J, ZWANENBURG F A, et al. Single-shot readout of an electron spin in silicon[J]. Nature, 2010, 467(7316): 687-691.
[34] FUECHSLE M, MIWA J A, MAHAPATRA S, et al. A single-atom transistor[J]. Nat. Nan otechnol., 2012, 7(4): 242-246.
[35] PLA J J, TAN K Y, DEHOLLAIN J P, et al. High-fidelity readout and control of a nuclear spin qubit in silicon[J]. Nature, 2013, 496(7445): 334-338.
[36] MUHONEN J T, DEHOLLAIN J P, LAUCHT A, et al. Storing quantum information for 30 seconds in a nanoelectronic device[J]. Nat. Nanotechnol., 2014, 9(12): 986-991.
[37] TOKURA Y, VAN DER WIEL W G, OBATA T, et al. Coherent Single Electron Spin Control in a Slanting Zeeman Field[J]. Phys. Rev. Lett., 2006, 96: 047202.
[38] KOPPENS F H L, BUIZERT C, TIELROOIJ K J, et al. Driven coherent oscillations of a single electron spin in a quantum dot[J]. Nature, 2006, 442(7104): 766-771.
[39] GOLOVACH V N, BORHANI M, LOSS D. Electric-dipole-induced spin resonance in quantum dots[J]. Phys. Rev. B, 2006, 74: 165319.
[40] TOSI G, MOHIYADDIN F A, SCHMITT V, et al. Silicon quantum processor with robust long -distance qubit couplings[J]. Nat. Commun., 2017, 8(1): 450.
[41] HENDRICKX N W, LAWRIE W I L, PETIT L, et al. A single-hole spin qubit[J]. Nat. Commun., 2020, 11(1): 3478.
[42] HENDRICKX N W, LAWRIE W I L, RUSS M, et al. A four-qubit germanium quantum pro cessor[J]. Nature, 2021, 591(7851): 580-585.
[43] WATZINGER H, KUKUčKA J, VUKUšIć L, et al. A germanium hole spin qubit[J]. Nat. Commun., 2018, 9(1): 3902.
[44] ZHANG T, LIU H, GAO F, et al. Anisotropic g-Factor and Spin-Orbit Field in a Germanium Hut Wire Double Quantum Dot[J]. Nano. Lett., 2021, 21(9): 3835-3842.
[45] VAN DER HEIJDEN J, SALFI J, MOL J A, et al. Probing the spin states of a single acceptor atom[J]. Nano Lett., 2014, 14(3): 1492-6.
[46] HENDRICKX N W, FRANKE D P, SAMMAK A, et al. Fast two-qubit logic with holes in germanium[J]. Nature, 2020, 577(7791): 487-491.
[47] FISCHER J, COISH W A, BULAEV D V, et al. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot[J]. Phys. Rev. B, 2008, 78: 155329.
[48] MAURAND R, JEHL X, KOTEKAR-PATIL D, et al. A CMOS silicon spin qubit[J]. Nat.Commun., 2016, 7(1): 13575.
[49] JIROVEC D, HOFMANN A, BALLABIO A, et al. A singlet-triplet hole spin qubit in planar Ge[J]. Nat. Mater., 2021, 20(8): 1106-1112.
[50] FRONING F N M, CAMENZIND L C, VAN DER MOLEN O A H, et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality[J]. Nat. Nanotechnol., 2021, 16(3): 308-312.
[51] WANG K, XU G, GAO F, et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot[J]. Nat. Commun., 2022, 13(1): 206.
[52] TERRAZOS L A, MARCELLINA E, WANG Z, et al. Theory of hole-spin qubits in strained germanium quantum dots[J]. Phys. Rev. B, 2021, 103: 125201.
[53] BOSCO S, BENITO M, ADELSBERGER C, et al. Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power[J]. Phys. Rev. B, 2021, 104: 115425.
[54] LIU Y, XIONG J X, WANG Z, et al. Emergent linear Rashba spin-orbit coupling offers fast manipulation of hole-spin qubits in germanium[J]. Phys. Rev. B, 2022, 105: 075313.
[55] XIONG J X, GUAN S, LUO J W, et al. Emergence of strong tunable linear Rashba spin-orbit coupling in two-dimensional hole gases in semiconductor quantum wells[J]. Phys. Rev. B, 2021, 103: 085309.
[56] XIONG J X, GUAN S, LUO J W, et al. Orientation-dependent Rashba spin-orbit coupling of two-dimensional hole gases in semiconductor quantum wells: Linear or cubic[J]. Phys. Rev. B, 2022, 105: 115303.
[57] KLOEFFEL C, TRIF M, LOSS D. Strong spin-orbit interaction and helical hole states in Ge/Si nanowires[J]. Phys. Rev. B, 2011, 84: 195314.
[58] KLOEFFEL C, RANČIĆ M J, LOSS D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions[J]. Phys. Rev. B, 2018, 97: 235422.
[59] ONO K, GIAVARAS G, TANAMOTO T, et al. Hole Spin Resonance and Spin-Orbit Coupling in a Silicon Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Phys. Rev. Lett., 2017, 119:156802.
[60] GOLDING B, DYKMAN M I. Acceptor-based silicon quantum computing[A]. 2003. arXiv: cond-mat/0309147.
[61] SALFI J, TONG M, ROGGE S, et al. Quantum computing with acceptor spins in silicon[J]. Nanotechnology, 2016, 27(24): 244001.
[62] ABADILLO-URIEL J C, SALFI J, HU X, et al. Entanglement control and magic angles for acceptor qubits in Si[J]. Appl. Phys. Lett., 2018, 113(1): 012102.
[63] ABADILLO-URIEL J C, CALDERÓN M J. Interface effects on acceptor qubits in silicon and germanium[J]. Nanotechnology, 2015, 27(2): 024003.
[64] VAN DER HEIJDEN J, KOBAYASHI T, HOUSE M G, et al. Readout and control of the spin- orbit states of two coupled acceptor atoms in a silicon transistor[J]. Sci. Adv., 2018, 4(eaat9199): 8.
[65] WINKLER R. Springer tracts in modern physics: Spin-orbit coupling effects in two- dimensional electron and hole systems[M]. Berlin: Springer, 2003: 201-205.
[66] LUTTINGER J M, KOHN W. Motion of Electrons and Holes in Perturbed Periodic Fields[J]. Phys. Rev., 1955, 97: 869-883.
[67] HUANG P, HU X. Spin relaxation in a Si quantum dot due to spin-valley mixing[J]. Phys. Rev. B, 2014, 90: 235315.
[68] BYCHKOV Y A, RASHBA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of Physics C: Solid State Physics, 1984, 17(33): 6039.
[69] D'YAKONOV M. Spin relaxation of two-dimensional electrons in non-centrosymmetric semi conductors[J]. Sov. Phys. Semicond., 1986, 20(1): 110-112.
[70] WINKLER R, NOH H, TUTUC E, et al. Anomalous Rashba spin splitting in two-dimensional hole systems[J]. Phys. Rev. B, 2002, 65: 155303.
[71] LUTTINGER J M. Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory[J]. Phys. Rev., 1956, 102: 1030-1041.
[72] 基泰尔 C. 国外名校名著: 固体物理导论[M]. 北京: 化学工业出版社, 2011: 249-253.
[73] VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computa tion[J]. Rev. Mod. Phys., 2005, 76: 1037-1069.
[74] BURKARD G, LADD T D, NICHOL J M, et al. Semiconductor Spin Qubits[A]. 2021. arXiv: 2112.08863.
[75] BIR G, BUTIKOV E, PIKUS G. Spin and combined resonance on acceptor centres in Ge and Si type crystals—I: Paramagnetic resonance in strained and unstrained crystals[J]. J. Phys. Chem. Solids, 1963, 24(12): 1467-1474.
[76] SRIVASTAVA G P. The physics of phonons[M]. New York: Routledge, 2019: 107.
[77] WITZEL W M, HU X, DAS SARMA S. Decoherence induced by anisotropic hyperfine inter action in Si spin qubits[J]. Phys. Rev. B, 2007, 76: 035212.
[78] CHEKHOVICH E A, GLAZOV M M, KRYSA A B, et al. Element-sensitive measurement of the hole–nuclear spin interaction in quantum dots[J]. Nat. Phys., 2012, 9(2): 74-78.
[79] HU X. Two-spin dephasing by electron-phonon interaction in semiconductor double quantum dots[J]. Phys. Rev. B, 2011, 83: 165322.
[80] BISWAS R, LI Y P. Hydrogen Flip Model for Light-Induced Changes of Amorphous Silicon[J]. Phys. Rev. Lett., 1999, 82: 2512-2515.
[81] HUANG P, HU X. Electron spin relaxation due to charge noise[J]. Phys. Rev. B, 2014, 89: 195302.
[82] BORHANI M, GOLOVACH V N, LOSS D. Spin decay in a quantum dot coupled to a quantum point contact[J]. Phys. Rev. B, 2006, 73: 155311.
[83] YOUNG C E, CLERK A A. Inelastic Backaction due to Quantum Point Contact Charge Fluc tuations[J]. Phys. Rev. Lett., 2010, 104: 186803.
[84] WAGNER T, STRASBERG P, BAYER J C, et al. Strong suppression of shot noise in a feedback- controlled single-electron transistor[J]. Nat. Nanotechnol., 2017, 12(3): 218-222.
[85] CAMPBELL Q, BACZEWSKI A D, BUTERA R E, et al. Hole in one: Pathways to determin istic single-acceptor incorporation in Si(100)-2×1[J]. AQS, 2022, 4(1): 016801.
[86] FUECHSLE M, MAHAPATRA S, ZWANENBURG F A, et al. Spectroscopy of few-electron single-crystal silicon quantum dots[J]. Nat. Nanotechnol., 2010, 5(7): 502-505.
[87] ASAAD S, MOURIK V, JOECKER B, et al. Coherent electrical control of a single high-spin nucleus in silicon[J]. Nature, 2020, 579(7798): 205-209.
[88] ABADILLO-URIEL J C, CALDERÓN M J. Spin qubit manipulation of acceptor bound states in group IV quantum wells[J]. New J. Phys., 2017, 19(4): 043027.
[89] RANJAN V, ALBANESE B, ALBERTINALE E, et al. Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode[J]. Phys. Rev. X, 2021, 11: 031036.
[90] O'NEILL L A, JOECKER B, BACZEWSKI A D, et al. Engineering local strain for single-atom nuclear acoustic resonance in silicon[J]. Appl. Phys. Lett., 2021, 119(17): 174001.
[91] KÖPF A, LASSMANN K. Linear Stark and nonlinear Zeeman coupling to the ground state of effective mass acceptors in silicon[J]. Phys. Rev. Lett., 1992, 69: 1580-1583.
[92] BIR G, BUTIKOV E, PIKUS G. Spin and combined resonance on acceptor centres in Ge and Si type crystals—II: The effect of the electrical field and relaxation time[J]. J. Phys. Chem. Solids, 1963, 24(12): 1475-1486.
[93] BALDERESCHI A, LIPARI N O. Spherical Model of Shallow Acceptor States in Semicon ductors[J]. Phys. Rev. B, 1973, 8: 2697-2709.
[94] MOL J A, SALFI J, RAHMAN R, et al. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon[J]. Appl. Phys. Lett., 2015, 106(20): 203110.
[95] PAVLOV S G, DEẞMANN N, SHASTIN V N, et al. Terahertz Stimulated Emission from Silicon Doped by Hydrogenlike Acceptors[J]. Phys. Rev. X, 2014, 4: 021009.
[96] EHRENREICH H, OVERHAUSER A W. Scattering of Holes by Phonons in Germanium[J]. Phys. Rev., 1956, 104: 331-342.
[97] NEUBRAND H. ESR from Boron in Silicon at Zero and Small External Stress[J]. Phys. Stat. Sol., 1978, 86: 269-275.
[98] JOECKER B, BACZEWSKI A D, GAMBLE J K, et al. Full configuration interaction simula tions of exchange-coupled donors in silicon using multi-valley effective mass theory[J]. New J. Phys., 2021, 23(7): 073007.
[99] MA̧ DZIK M T, LAUCHT A, HUDSON F E, et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device[J]. Nat. Com mun., 2021, 12(1): 1-8.
[100] KALRA R, LAUCHT A, HILL C D, et al. Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions[J]. Phys. Rev. X, 2014, 4: 021044.
[101] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven CNOT gate for electron spins[J]. Science, 2018, 359(6374): 439-442.
[102] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practical large-scale quantum computation[J]. Phys. Rev. A, 2012, 86: 032324.
[103] VIOLA L, KNILL E, LLOYD S. Dynamical Decoupling of Open Quantum Systems[J]. Phys. Rev. Lett., 1999, 82: 2417-2421.
[104] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys. Rev. A, 1995, 52: R2493-R2496.
[105] CALDERBANK A R, SHOR P W. Good quantum error-correcting codes exist[J]. Phys. Rev. A, 1996, 54: 1098-1105.
[106] GOTTESMAN D. Stabilizer codes and quantum error correction[D]. California Institute of Technology, 1997.
[107] GOOGLE QUANTUM AI. Exponential suppression of bit or phase errors with cyclic error correction[J]. Nature, 2021, 595: 5.
[108] POYATOS J F, CIRAC J I, ZOLLER P. Quantum Reservoir Engineering with Laser Cooled Trapped Ions[J]. Phys. Rev. Lett., 1996, 77: 4728-4731.
[109] GEERLINGS K, LEGHTAS Z, POP I M, et al. Demonstrating a Driven Reset Protocol for a Superconducting Qubit[J]. Phys. Rev. Lett., 2013, 110: 120501.
[110] COHEN J. Autonomous quantum error correction with superconducting qubits:2017PSLEE008[D]. Université Paris sciences et lettres, 2017.
[111] GERTLER J M, BAKER B, LI J, et al. Protecting a bosonic qubit with autonomous quantum error correction[J]. Nature, 2021, 590(7845): 243-248.

所在学位评定分委会
物理学
国内图书分类号
O471.1
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543956
专题量子科学与工程研究院
推荐引用方式
GB/T 7714
张世航. 半导体中受主空穴量子比特的电学调控理论研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032806-张世航-量子科学与工程(7115KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[张世航]的文章
百度学术
百度学术中相似的文章
[张世航]的文章
必应学术
必应学术中相似的文章
[张世航]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。