[1] FEYNMAN R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488.
[2] SHOR P. Algorithms for quantum computation: discrete logarithms and factoring[C]//Proceedings 35th Annual Symposium on Foundations of Computer Science. 1994: 124-134.
[3] GROVER L K. Quantum Mechanics Helps in Searching for a Needle in a Haystack[J]. Phys.Rev. Lett., 1997, 79: 325-328.
[4] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable super conducting processor[J]. Nature, 2019, 574(7779): 505-510.
[5] WU Y, BAO W S, CAO S, et al. Strong Quantum Computational Advantage Using a Super conducting Quantum Processor[J]. Phys. Rev. Lett., 2021, 127: 180501.
[6] ZHONG H, WANG H, DENG Y, et al. Quantum computational advantage using photons[J]. Science, 2021, 370(6523): 4.
[7] TYRYSHKIN A M, TOJO S, MORTON J J, et al. Electron spin coherence exceeding seconds in high-purity silicon[J]. Nat. Mater., 2012, 11(2): 143-147.
[8] KOBAYASHI T, SALFI J, CHUA C, et al. Engineering long spin coherence times of spin–orbit qubits in silicon[J]. Nat. Mater., 2021, 20(1): 38-42.
[9] ZWERVER A M J, KRäHENMANN T, WATSON T F, et al. Qubits made by advanced semi conductor manufacturing[J]. Nat. Electron., 2022, 5(3): 184-190.
[10] CAMENZIND L C, GEYER S, FUHRER A, et al. A hole spin qubit in a fin field-effect transistor above 4 kelvin[J]. Nat. Electron., 2022, 5(3): 178-183.
[11] LOSS D, DIVINCENZO D P. Quantum computation with quantum dots[J]. Phys. Rev. A, 1998, 57: 120-126.
[12] KANE B E. A silicon-based nuclear spin quantum computer[J]. Nature, 1998, 393(6681): 133-137.
[13] BULAEV D V, LOSS D. Spin Relaxation and Decoherence of Holes in Quantum Dots[J]. Phys. Rev. Lett., 2005, 95: 076805.
[14] BULAEV D V, LOSS D. Electric Dipole Spin Resonance for Heavy Holes in Quantum Dots[J]. Phys. Rev. Lett., 2007, 98: 097202.
[15] SALFI J, MOL J A, CULCER D, et al. Charge-Insensitive Single-Atom Spin-Orbit Qubit in Silicon[J]. Phys. Rev. Lett., 2016, 116: 246801.
[16] HE Y, GORMAN S K, KEITH D, et al. A two-qubit gate between phosphorus donor electrons in silicon[J]. Nature, 2019, 571(7765): 371-375.
[17] MA̧DZIK M T, ASAAD S, YOUSSRY A, et al. Precision tomography of a three-qubit donor quantum processor in silicon[J]. Nature, 2022, 601(7893): 348-353.
[18] NOIRI A, TAKEDA K, NAKAJIMA T, et al. Fast universal quantum gate above the fault- tolerance threshold in silicon[J]. Nature, 2022, 601(7893): 338-342.
[19] BOSCO S, SCARLINO P, KLINOVAJA J, et al. Fully Tunable Longitudinal Spin-Photon Interactions in Si and Ge Quantum Dots[J]. Phys. Rev. Lett., 2022, 129: 066801.
[20] TAHAN C, JOYNT R. Relaxation of excited spin, orbital, and valley qubit states in ideal silicon quantum dots[J]. Phys. Rev. B, 2014, 89: 075302.
[21] ZWANENBURG F A, DZURAK A S, MORELLO A, et al. Silicon quantum electronics[J]. Rev. Mod. Phys., 2013, 85: 961-1019.
[22] BURKARD G, LOSS D, DIVINCENZO D P. Coupled quantum dots as quantum gates[J]. Phys. Rev. B, 1999, 59: 2070-2078.
[23] COISH W A, LOSS D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics[J]. Phys. Rev. B, 2004, 70: 195340.
[24] BERMEISTER A, KEITH D, CULCER D. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits[J]. Appl. Phys. Lett., 2014, 105(19): 192102.
[25] MALKOC O, STANO P, LOSS D. Charge-Noise-Induced Dephasing in Silicon Hole-Spin Qubits[J]. Phys. Rev. Lett., 2022, 129: 247701.
[26] ERCAN H E, FRIESEN M, COPPERSMITH S N. Charge-Noise Resilience of Two-Electron Quantum Dots in Si/SiGe Heterostructures[J]. Phys. Rev. Lett., 2022, 128: 247701.
[27] PETTA J R, JOHNSON A C, TAYLOR J M, et al. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots[J]. Science, 2005, 309(5744): 2180-2184.
[28] XUE X, RUSS M, SAMKHARADZE N, et al. Quantum logic with spin qubits crossing the surface code threshold[J]. Nature, 2022, 601(7893): 343-347.
[29] PHILIPS S G J, MA̧ DZIK M T, AMITONOV S V, et al. Universal control of a six-qubit quantum processor in silicon[J]. Nature, 2022, 609(7929): 919-924.
[30] PLA J J, TAN K Y, DEHOLLAIN J P, et al. A single-atom electron spin qubit in silicon[J]. Nature, 2012, 489(7417): 541-545.
[31] HILE S J, HOUSE M G, PERETZ E, et al. Radio frequency reflectometry and charge sensing of a precision placed donor in silicon[J]. Appl. Phys. Lett., 2015, 107(9): 093504.
[32] KICZYNSKI M, GORMAN S K, GENG H, et al. Engineering topological states in atom-based semiconductor quantum dots[J]. Nature, 2022, 606(7915): 694-699.
[33] MORELLO A, PLA J J, ZWANENBURG F A, et al. Single-shot readout of an electron spin in silicon[J]. Nature, 2010, 467(7316): 687-691.
[34] FUECHSLE M, MIWA J A, MAHAPATRA S, et al. A single-atom transistor[J]. Nat. Nan otechnol., 2012, 7(4): 242-246.
[35] PLA J J, TAN K Y, DEHOLLAIN J P, et al. High-fidelity readout and control of a nuclear spin qubit in silicon[J]. Nature, 2013, 496(7445): 334-338.
[36] MUHONEN J T, DEHOLLAIN J P, LAUCHT A, et al. Storing quantum information for 30 seconds in a nanoelectronic device[J]. Nat. Nanotechnol., 2014, 9(12): 986-991.
[37] TOKURA Y, VAN DER WIEL W G, OBATA T, et al. Coherent Single Electron Spin Control in a Slanting Zeeman Field[J]. Phys. Rev. Lett., 2006, 96: 047202.
[38] KOPPENS F H L, BUIZERT C, TIELROOIJ K J, et al. Driven coherent oscillations of a single electron spin in a quantum dot[J]. Nature, 2006, 442(7104): 766-771.
[39] GOLOVACH V N, BORHANI M, LOSS D. Electric-dipole-induced spin resonance in quantum dots[J]. Phys. Rev. B, 2006, 74: 165319.
[40] TOSI G, MOHIYADDIN F A, SCHMITT V, et al. Silicon quantum processor with robust long -distance qubit couplings[J]. Nat. Commun., 2017, 8(1): 450.
[41] HENDRICKX N W, LAWRIE W I L, PETIT L, et al. A single-hole spin qubit[J]. Nat. Commun., 2020, 11(1): 3478.
[42] HENDRICKX N W, LAWRIE W I L, RUSS M, et al. A four-qubit germanium quantum pro cessor[J]. Nature, 2021, 591(7851): 580-585.
[43] WATZINGER H, KUKUčKA J, VUKUšIć L, et al. A germanium hole spin qubit[J]. Nat. Commun., 2018, 9(1): 3902.
[44] ZHANG T, LIU H, GAO F, et al. Anisotropic g-Factor and Spin-Orbit Field in a Germanium Hut Wire Double Quantum Dot[J]. Nano. Lett., 2021, 21(9): 3835-3842.
[45] VAN DER HEIJDEN J, SALFI J, MOL J A, et al. Probing the spin states of a single acceptor atom[J]. Nano Lett., 2014, 14(3): 1492-6.
[46] HENDRICKX N W, FRANKE D P, SAMMAK A, et al. Fast two-qubit logic with holes in germanium[J]. Nature, 2020, 577(7791): 487-491.
[47] FISCHER J, COISH W A, BULAEV D V, et al. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot[J]. Phys. Rev. B, 2008, 78: 155329.
[48] MAURAND R, JEHL X, KOTEKAR-PATIL D, et al. A CMOS silicon spin qubit[J]. Nat.Commun., 2016, 7(1): 13575.
[49] JIROVEC D, HOFMANN A, BALLABIO A, et al. A singlet-triplet hole spin qubit in planar Ge[J]. Nat. Mater., 2021, 20(8): 1106-1112.
[50] FRONING F N M, CAMENZIND L C, VAN DER MOLEN O A H, et al. Ultrafast hole spin qubit with gate-tunable spin–orbit switch functionality[J]. Nat. Nanotechnol., 2021, 16(3): 308-312.
[51] WANG K, XU G, GAO F, et al. Ultrafast coherent control of a hole spin qubit in a germanium quantum dot[J]. Nat. Commun., 2022, 13(1): 206.
[52] TERRAZOS L A, MARCELLINA E, WANG Z, et al. Theory of hole-spin qubits in strained germanium quantum dots[J]. Phys. Rev. B, 2021, 103: 125201.
[53] BOSCO S, BENITO M, ADELSBERGER C, et al. Squeezed hole spin qubits in Ge quantum dots with ultrafast gates at low power[J]. Phys. Rev. B, 2021, 104: 115425.
[54] LIU Y, XIONG J X, WANG Z, et al. Emergent linear Rashba spin-orbit coupling offers fast manipulation of hole-spin qubits in germanium[J]. Phys. Rev. B, 2022, 105: 075313.
[55] XIONG J X, GUAN S, LUO J W, et al. Emergence of strong tunable linear Rashba spin-orbit coupling in two-dimensional hole gases in semiconductor quantum wells[J]. Phys. Rev. B, 2021, 103: 085309.
[56] XIONG J X, GUAN S, LUO J W, et al. Orientation-dependent Rashba spin-orbit coupling of two-dimensional hole gases in semiconductor quantum wells: Linear or cubic[J]. Phys. Rev. B, 2022, 105: 115303.
[57] KLOEFFEL C, TRIF M, LOSS D. Strong spin-orbit interaction and helical hole states in Ge/Si nanowires[J]. Phys. Rev. B, 2011, 84: 195314.
[58] KLOEFFEL C, RANČIĆ M J, LOSS D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions[J]. Phys. Rev. B, 2018, 97: 235422.
[59] ONO K, GIAVARAS G, TANAMOTO T, et al. Hole Spin Resonance and Spin-Orbit Coupling in a Silicon Metal-Oxide-Semiconductor Field-Effect Transistor[J]. Phys. Rev. Lett., 2017, 119:156802.
[60] GOLDING B, DYKMAN M I. Acceptor-based silicon quantum computing[A]. 2003. arXiv: cond-mat/0309147.
[61] SALFI J, TONG M, ROGGE S, et al. Quantum computing with acceptor spins in silicon[J]. Nanotechnology, 2016, 27(24): 244001.
[62] ABADILLO-URIEL J C, SALFI J, HU X, et al. Entanglement control and magic angles for acceptor qubits in Si[J]. Appl. Phys. Lett., 2018, 113(1): 012102.
[63] ABADILLO-URIEL J C, CALDERÓN M J. Interface effects on acceptor qubits in silicon and germanium[J]. Nanotechnology, 2015, 27(2): 024003.
[64] VAN DER HEIJDEN J, KOBAYASHI T, HOUSE M G, et al. Readout and control of the spin- orbit states of two coupled acceptor atoms in a silicon transistor[J]. Sci. Adv., 2018, 4(eaat9199): 8.
[65] WINKLER R. Springer tracts in modern physics: Spin-orbit coupling effects in two- dimensional electron and hole systems[M]. Berlin: Springer, 2003: 201-205.
[66] LUTTINGER J M, KOHN W. Motion of Electrons and Holes in Perturbed Periodic Fields[J]. Phys. Rev., 1955, 97: 869-883.
[67] HUANG P, HU X. Spin relaxation in a Si quantum dot due to spin-valley mixing[J]. Phys. Rev. B, 2014, 90: 235315.
[68] BYCHKOV Y A, RASHBA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of Physics C: Solid State Physics, 1984, 17(33): 6039.
[69] D'YAKONOV M. Spin relaxation of two-dimensional electrons in non-centrosymmetric semi conductors[J]. Sov. Phys. Semicond., 1986, 20(1): 110-112.
[70] WINKLER R, NOH H, TUTUC E, et al. Anomalous Rashba spin splitting in two-dimensional hole systems[J]. Phys. Rev. B, 2002, 65: 155303.
[71] LUTTINGER J M. Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory[J]. Phys. Rev., 1956, 102: 1030-1041.
[72] 基泰尔 C. 国外名校名著: 固体物理导论[M]. 北京: 化学工业出版社, 2011: 249-253.
[73] VANDERSYPEN L M K, CHUANG I L. NMR techniques for quantum control and computa tion[J]. Rev. Mod. Phys., 2005, 76: 1037-1069.
[74] BURKARD G, LADD T D, NICHOL J M, et al. Semiconductor Spin Qubits[A]. 2021. arXiv: 2112.08863.
[75] BIR G, BUTIKOV E, PIKUS G. Spin and combined resonance on acceptor centres in Ge and Si type crystals—I: Paramagnetic resonance in strained and unstrained crystals[J]. J. Phys. Chem. Solids, 1963, 24(12): 1467-1474.
[76] SRIVASTAVA G P. The physics of phonons[M]. New York: Routledge, 2019: 107.
[77] WITZEL W M, HU X, DAS SARMA S. Decoherence induced by anisotropic hyperfine inter action in Si spin qubits[J]. Phys. Rev. B, 2007, 76: 035212.
[78] CHEKHOVICH E A, GLAZOV M M, KRYSA A B, et al. Element-sensitive measurement of the hole–nuclear spin interaction in quantum dots[J]. Nat. Phys., 2012, 9(2): 74-78.
[79] HU X. Two-spin dephasing by electron-phonon interaction in semiconductor double quantum dots[J]. Phys. Rev. B, 2011, 83: 165322.
[80] BISWAS R, LI Y P. Hydrogen Flip Model for Light-Induced Changes of Amorphous Silicon[J]. Phys. Rev. Lett., 1999, 82: 2512-2515.
[81] HUANG P, HU X. Electron spin relaxation due to charge noise[J]. Phys. Rev. B, 2014, 89: 195302.
[82] BORHANI M, GOLOVACH V N, LOSS D. Spin decay in a quantum dot coupled to a quantum point contact[J]. Phys. Rev. B, 2006, 73: 155311.
[83] YOUNG C E, CLERK A A. Inelastic Backaction due to Quantum Point Contact Charge Fluc tuations[J]. Phys. Rev. Lett., 2010, 104: 186803.
[84] WAGNER T, STRASBERG P, BAYER J C, et al. Strong suppression of shot noise in a feedback- controlled single-electron transistor[J]. Nat. Nanotechnol., 2017, 12(3): 218-222.
[85] CAMPBELL Q, BACZEWSKI A D, BUTERA R E, et al. Hole in one: Pathways to determin istic single-acceptor incorporation in Si(100)-2×1[J]. AQS, 2022, 4(1): 016801.
[86] FUECHSLE M, MAHAPATRA S, ZWANENBURG F A, et al. Spectroscopy of few-electron single-crystal silicon quantum dots[J]. Nat. Nanotechnol., 2010, 5(7): 502-505.
[87] ASAAD S, MOURIK V, JOECKER B, et al. Coherent electrical control of a single high-spin nucleus in silicon[J]. Nature, 2020, 579(7798): 205-209.
[88] ABADILLO-URIEL J C, CALDERÓN M J. Spin qubit manipulation of acceptor bound states in group IV quantum wells[J]. New J. Phys., 2017, 19(4): 043027.
[89] RANJAN V, ALBANESE B, ALBERTINALE E, et al. Spatially Resolved Decoherence of Donor Spins in Silicon Strained by a Metallic Electrode[J]. Phys. Rev. X, 2021, 11: 031036.
[90] O'NEILL L A, JOECKER B, BACZEWSKI A D, et al. Engineering local strain for single-atom nuclear acoustic resonance in silicon[J]. Appl. Phys. Lett., 2021, 119(17): 174001.
[91] KÖPF A, LASSMANN K. Linear Stark and nonlinear Zeeman coupling to the ground state of effective mass acceptors in silicon[J]. Phys. Rev. Lett., 1992, 69: 1580-1583.
[92] BIR G, BUTIKOV E, PIKUS G. Spin and combined resonance on acceptor centres in Ge and Si type crystals—II: The effect of the electrical field and relaxation time[J]. J. Phys. Chem. Solids, 1963, 24(12): 1475-1486.
[93] BALDERESCHI A, LIPARI N O. Spherical Model of Shallow Acceptor States in Semicon ductors[J]. Phys. Rev. B, 1973, 8: 2697-2709.
[94] MOL J A, SALFI J, RAHMAN R, et al. Interface-induced heavy-hole/light-hole splitting of acceptors in silicon[J]. Appl. Phys. Lett., 2015, 106(20): 203110.
[95] PAVLOV S G, DEẞMANN N, SHASTIN V N, et al. Terahertz Stimulated Emission from Silicon Doped by Hydrogenlike Acceptors[J]. Phys. Rev. X, 2014, 4: 021009.
[96] EHRENREICH H, OVERHAUSER A W. Scattering of Holes by Phonons in Germanium[J]. Phys. Rev., 1956, 104: 331-342.
[97] NEUBRAND H. ESR from Boron in Silicon at Zero and Small External Stress[J]. Phys. Stat. Sol., 1978, 86: 269-275.
[98] JOECKER B, BACZEWSKI A D, GAMBLE J K, et al. Full configuration interaction simula tions of exchange-coupled donors in silicon using multi-valley effective mass theory[J]. New J. Phys., 2021, 23(7): 073007.
[99] MA̧ DZIK M T, LAUCHT A, HUDSON F E, et al. Conditional quantum operation of two exchange-coupled single-donor spin qubits in a MOS-compatible silicon device[J]. Nat. Com mun., 2021, 12(1): 1-8.
[100] KALRA R, LAUCHT A, HILL C D, et al. Robust Two-Qubit Gates for Donors in Silicon Controlled by Hyperfine Interactions[J]. Phys. Rev. X, 2014, 4: 021044.
[101] ZAJAC D M, SIGILLITO A J, RUSS M, et al. Resonantly driven CNOT gate for electron spins[J]. Science, 2018, 359(6374): 439-442.
[102] FOWLER A G, MARIANTONI M, MARTINIS J M, et al. Surface codes: Towards practical large-scale quantum computation[J]. Phys. Rev. A, 2012, 86: 032324.
[103] VIOLA L, KNILL E, LLOYD S. Dynamical Decoupling of Open Quantum Systems[J]. Phys. Rev. Lett., 1999, 82: 2417-2421.
[104] SHOR P W. Scheme for reducing decoherence in quantum computer memory[J]. Phys. Rev. A, 1995, 52: R2493-R2496.
[105] CALDERBANK A R, SHOR P W. Good quantum error-correcting codes exist[J]. Phys. Rev. A, 1996, 54: 1098-1105.
[106] GOTTESMAN D. Stabilizer codes and quantum error correction[D]. California Institute of Technology, 1997.
[107] GOOGLE QUANTUM AI. Exponential suppression of bit or phase errors with cyclic error correction[J]. Nature, 2021, 595: 5.
[108] POYATOS J F, CIRAC J I, ZOLLER P. Quantum Reservoir Engineering with Laser Cooled Trapped Ions[J]. Phys. Rev. Lett., 1996, 77: 4728-4731.
[109] GEERLINGS K, LEGHTAS Z, POP I M, et al. Demonstrating a Driven Reset Protocol for a Superconducting Qubit[J]. Phys. Rev. Lett., 2013, 110: 120501.
[110] COHEN J. Autonomous quantum error correction with superconducting qubits:2017PSLEE008[D]. Université Paris sciences et lettres, 2017.
[111] GERTLER J M, BAKER B, LI J, et al. Protecting a bosonic qubit with autonomous quantum error correction[J]. Nature, 2021, 590(7845): 243-248.
修改评论