[1] CRAMER M, PLENIO M B, FLAMMIA S T, et al. Efficient quantum state tomography[J].Nature communications, 2010, 1(1): 149.
[2] TORLAI G, MAZZOLA G, CARRASQUILLA J, et al. Neural-network quantum state tomography[J]. Nature Physics, 2018, 14(5): 447-450.
[3] GROSS D, LIU Y K, FLAMMIA S T, et al. Quantum state tomography via compressed sensing[J]. Physical review letters, 2010, 105(15): 150401.
[4] XIN T, LU D, KLASSEN J, et al. Quantum state tomography via reduced density matrices[J]. Physical review letters, 2017, 118(2): 020401.
[5] XIN T, LU S, CAO N, et al. Local-measurement-based quantum state tomography via neural networks[J]. npj Quantum Information, 2019, 5(1): 109.
[6] XIN T, NIE X, KONG X, et al. Quantum pure state tomography via variational hybrid quantumclassical method[J]. Physical Review Applied, 2020, 13(2): 024013.
[7] AARONSON S. Shadow tomography of quantum states[C]//Proceedings of the 50th annual ACM SIGACT symposium on theory of computing. 2018: 325-338.
[8] BENGTSSON I, ŻYCZKOWSKI K. Geometry of quantum states: an introduction to quantum entanglement[M]. Cambridge university press, 2017.
[9] BENIOFF P. Quantum mechanical Hamiltonian models of Turing machines[J]. Journal ofStatistical Physics, 1982, 29: 515-546.
[10] FEYNMAN R P. Simulating physics with computers[M]//Feynman and computation. CRC Press, 2018: 133-153.
[11] DEUTSCH D. Quantum theory, the Church–Turing principle and the universal quantum computer[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1985, 400(1818): 97-117.
[12] DIVINCENZO D P. The physical implementation of quantum computation[J]. Fortschritte der Physik: Progress of Physics, 2000, 48(9-11): 771-783.
[13] SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM review, 1999, 41(2): 303-332.
[14] GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. 1996: 212-219.
[15] BROOKS M. Beyond quantum supremacy: the hunt for useful quantum computers[J]. Nature, 2019, 574(7776): 19-22.
[16] BLUVSTEIN D, LEVINE H, SEMEGHINI G, et al. A quantum processor based on coherent transport of entangled atom arrays[J]. Nature, 2022, 604(7906): 451-456.
[17] FITZPATRICK M, SUNDARESAN N M, LI A C, et al. Observation of a dissipative phasetransition in a one-dimensional circuit QED lattice[J]. Physical Review X, 2017, 7(1): 011016.46.
[18] GAMBETTA J M, CHOW J M, STEFFEN M. Building logical qubits in a superconductingquantum computing system[J]. npj quantum information, 2017, 3(1): 2.
[19] XU K, CHEN J J, ZENG Y, et al. Emulating many-body localization with a superconducting quantum processor[J]. Physical review letters, 2018, 120(5): 050507.
[20] NEILL C, ROUSHAN P, KECHEDZHI K, et al. A blueprint for demonstrating quantumsupremacy with superconducting qubits[J]. Science, 2018, 360(6385): 195-199.
[21] NAYAK C, SIMON S H, STERN A, et al. Non-Abelian anyons and topological quantum computation[J]. Reviews of Modern Physics, 2008, 80(3): 1083.
[22] KANE B E. Silicon-based quantum computation[J]. Scalable Quantum Computers: Paving the Way to Realization, 2000: 253-271.
[23] KOILLER B, HU X, SARMA S D. Exchange in silicon-based quantum computer architecture[J]. Physical review letters, 2001, 88(2): 027903.
[24] MAUNE B M, BORSELLI M G, HUANG B, et al. Coherent singlet-triplet oscillations in asilicon-based double quantum dot[J]. Nature, 2012, 481(7381): 344-347.
[25] SCHREIBER L R, BLUHM H. Toward a silicon-based quantum computer[J]. Science, 2018, 359(6374): 393-394.
[26] BETHE H A, SALPETER E E. Quantum mechanics of one-and two-electron atoms[M].Springer Science & Business Media, 2012.
[27] ZHANG J, PAGANO G, HESS P W, et al. Observation of a many-body dynamical phasetransition with a 53-qubit quantum simulator[J]. Nature, 2017, 551(7682): 601-604.
[28] FRIIS N, MARTY O, MAIER C, et al. Observation of entangled states of a fully controlled 20-qubit system[J]. Physical Review X, 2018, 8(2): 021012.
[29] CORY D G, FAHMY A F, HAVEL T F. Ensemble quantum computing by NMR spectroscopy[J]. Proceedings of the National Academy of Sciences, 1997, 94(5): 1634-1639.
[30] PRESKILL J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79.
[31] NIELSEN M A, CHUANG I. Quantum computation and quantum information[M]. American Association of Physics Teachers, 2002.
[32] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical review, 1935, 47(10): 777.
[33] BELL J S. On the einstein podolsky rosen paradox[J]. Physics Physique Fizika, 1964, 1(3):195.
[34] SCARANI V, BECHMANN-PASQUINUCCI H, CERF N J, et al. The security of practicalquantum key distribution[J]. Reviews of modern physics, 2009, 81(3): 1301.
[35] BOUWMEESTER D, PAN J W, MATTLE K, et al. Experimental quantum teleportation[J].Nature, 1997, 390(6660): 575-579.
[36] MATTLE K, WEINFURTER H, KWIAT P G, et al. Dense coding in experimental quantumcommunication[J]. Physical Review Letters, 1996, 76(25): 4656.
[37] PLENIO M B, VIRMANI S. An introduction to entanglement measures.[J]. Quantum Inf.Comput., 2007, 7(1): 1-51.47
[38] SPERLING J, VOGEL W. Multipartite entanglement witnesses[J]. Physical review letters, 2013, 111(11): 110503.
[39] PERES A. Separability criterion for density matrices[J]. Physical Review Letters, 1996, 77(8): 1413.
[40] BRYDGES T, ELBEN A, JURCEVIC P, et al. Probing Rényi entanglement entropy via randomized measurements[J]. Science, 2019, 364(6437): 260-263.
[41] ZHOU Y, ZENG P, LIU Z. Single-copies estimation of entanglement negativity[J]. Physical Review Letters, 2020, 125(20): 200502.
[42] PLENIO M B. Logarithmic negativity: a full entanglement monotone that is not convex[J]. Physical review letters, 2005, 95(9): 090503.
[43] NEVEN A, CARRASCO J, VITALE V, et al. Symmetry-resolved entanglement detection using partial transpose moments[J]. npj Quantum Information, 2021, 7(1): 152.
[44] ELBEN A, KUENG R, HUANG H Y R, et al. Mixed-state entanglement from local randomized measurements[J]. Physical Review Letters, 2020, 125(20): 200501.
[45] STRELTSOV A, SINGH U, DHAR H S, et al. Measuring quantum coherence with entanglement[J]. Physical review letters, 2015, 115(2): 020403.
[46] ENDO S, SUN J, LI Y, et al. Variational quantum simulation of general processes[J]. Physical Review Letters, 2020, 125(1): 010501.
[47] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantumeigensolver for small molecules and quantum magnets[J]. nature, 2017, 549(7671): 242-246.
[48] OMALLEY P J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation ofmolecular energies[J]. Physical Review X, 2016, 6(3): 031007.
[49] MCCASKEY A J, PARKS Z P, JAKOWSKI J, et al. Quantum chemistry as a benchmark for near-term quantum computers[J]. npj Quantum Information, 2019, 5(1): 99.
[50] HEMPEL C, MAIER C, ROMERO J, et al. Quantum chemistry calculations on a trapped-ion quantum simulator[J]. Physical Review X, 2018, 8(3): 031022.
[51] BENEDETTI M, LLOYD E, SACK S, et al. Parameterized quantum circuits as machine learning models[J]. Quantum Science and Technology, 2019, 4(4): 043001.
[52] XIN T, CHE L, XI C, et al. Experimental quantum principal component analysis viaparametrized quantum circuits[J]. Physical Review Letters, 2021, 126(11): 110502.
[53] CEREZO M, SHARMA K, ARRASMITH A, et al. Variational quantum state eigensolver[A]. 2020.
[54] LAROSE R, TIKKU A, ONEEL-JUDY É, et al. Variational quantum state diagonalization[J]. npj Quantum Information, 2019, 5(1): 57.
[55] DE NICOLA S, MICHAILIDIS A A, SERBYN M. Entanglement view of dynamical quantum phase transitions[J]. Physical Review Letters, 2021, 126(4): 040602.
[56] HOU S Y, SHENG Y B, FENG G R, et al. Experimental optimal single qubit purification in an NMR quantum information processor[J]. Scientific reports, 2014, 4(1): 6857. 48
[57] LI H, LIU Y, LONG G. Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins[J]. Science China Physics, Mechanics & Astronomy, 2017, 60: 1-7.
[58] KNILL E, CHUANG I, LAFLAMME R. Effective pure states for bulk quantum computation[J]. Physical Review A, 1998, 57(5): 3348.
[59] VANDERSYPEN L M, YANNONI C S, SHERWOOD M H, et al. Realization of logicallylabeled effective pure states for bulk quantum computation[J]. Physical review letters, 1999, 83(15): 3085.
[60] PENG X, ZHU X, FANG X, et al.Spectral implementationfor creating a labeled pseudo-pure state and the Bernstein–Vazirani algorithm in a four-qubit nuclear magnetic resonance quantum processor[J]. The Journal of chemical physics, 2004, 120(8): 3579-3585.
[61] TAN Y P, NIE X F, LI J, et al. Preparing pseudo-pure states in a quadrupolar spin system using optimal control[J]. Chinese Physics Letters, 2012, 29(12): 127601.
[62] KNILL E, LAFLAMME R, MARTINEZ R, et al. An algorithmic benchmark for quantuminformation processing[J]. Nature, 2000, 404(6776): 368-370.
[63] PARK A J, MCKAY E, LU D, et al. Simulation of anyonic statistics and its topological path independence using a seven-qubit quantum simulator[J]. New Journal of Physics, 2016, 18(4): 043043.
[64] WANG H, WEI S, ZHENG C, et al. Experimental simulation of the four-dimensional Yang-Baxter equation on a spin quantum simulator[J]. Physical Review A, 2020, 102(1): 012610.
[65] SIM S, JOHNSON P D, ASPURU-GUZIK A. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms[J]. Advanced Quantum Technologies, 2019, 2(12): 1900070.
[66] XIN T, NIE X, KONG X, et al. Quantum pure state tomography via variational hybrid quantumclassical method[J]. Physical Review Applied, 2020, 13(2): 024013.
[67] XUE S, HUANG Y, ZHAO D, et al. Experimental measurement of bipartite entanglement using parameterized quantum circuits[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 280312.
[68] KOUTNỲ D, GINÉS L, MOCZAŁA-DUSANOWSKA M, et al. Deep learning of quantumentanglement from incomplete measurements[A]. 2022.
[69] HUANG H Y, KUENG R, PRESKILL J. Predicting many properties of a quantum system from very few measurements[J]. Nature Physics, 2020, 16(10): 1050-1057.
[70] GRAY J, BANCHI L, BAYAT A, et al. Machine-learning-assisted many-body entanglement measurement[J]. Physical review letters, 2018, 121(15): 150503.
[71] WU L T, ZHU E Y, QIAN L. Machine learning derived entanglement witnesses[C]//2021Conference on Lasers and Electro-Optics (CLEO). IEEE, 2021: 1-2.
[72] CHEN Y, PAN Y, ZHANG G, et al. Detecting quantum entanglement with unsupervised learning [J]. Quantum Science and Technology, 2021, 7(1): 015005.
[73] LIN X, CHEN Z, WEI Z. Quantifying Unknown Entanglement by Neural Networks[A]. 2021.
[74] MAZZA P P, ZIETLOW D, CAROLLO F, et al. Machine learning time-local generators ofopen quantum dynamics[J]. Phys. Rev. Research, 2021, 3: 023084. 49.
[75] LIN H. Exact diagonalization of quantum-spin models[J]. Physical Review B, 1990, 42(10): 6561.
[76] NIE X, WEI B B, CHEN X, et al. Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators[J]. Physical Review Letters, 2020, 124(25): 250601.
[77] JONES J A. Quantum computing with NMR[J]. Prog. Nucl. Magn. Reson. Spectrosc., 2011, 59(2): 91-120.
[78] GERSHENFELD N A, CHUANG I L. Bulk spin-resonance quantum computation[J]. science, 1997, 275(5298): 350-356.
[79] SON W, AMICO L, PLASTINA F, et al. Quantum instability and edge entanglement in the quasi-long-range order[J]. Physical Review A, 2009, 79(2): 022302.
[80] ZHANG J, WEI T C, LAFLAMME R. Experimental quantum simulation of entanglement in many-body systems[J]. Physical review letters, 2011, 107(1): 010501.
[81] SON W, AMICO L, PLASTINA F, et al. Quantum instability and edge entanglement in the quasi-long-range order[J]. Phys. Rev. A, 2009, 79: 022302.
[82] DONOHO D L. Compressed sensing[J]. IEEE Transactions on information theory, 2006, 52(4): 1289-1306.
[83] FLAMMIA S T, GROSS D, LIU Y K, et al. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators[J]. New Journal of Physics, 2012, 14(9): 095022.
[84] FLAMMIA S T, LIU Y K. Direct fidelity estimation from few Pauli measurements[J]. Physical review letters, 2011, 106(23): 230501.
[85] ROOS C F, RIEBE M, HAFFNER H, et al. Control and measurement of three-qubit entangled states[J]. science, 2004, 304(5676): 1478-1480.
[86] HINRICHSEN H. Non-equilibrium critical phenomena and phase transitions into absorbing states[J]. Advances in physics, 2000, 49(7): 815-958.
[87] PENG X, DU J, SUTER D. Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated in an NMR quantum computer[J]. Phys. Rev. A, 2005, 71: 012307.
[88] KAUFMAN A M, TAI M E, LUKIN A, et al. Quantum thermalization through entanglement in an isolated many-body system[J]. Science, 2016, 353(6301): 794-800.
[89] RISPOLI M, LUKIN A, SCHITTKO R, et al. Quantum critical behaviour at the many-body localization transition[J]. Nature, 2019, 573(7774): 385-389.
修改评论