[1] COSTERTON J W, GEESEY G G, CHENG K J. How bacteria stick [J]. Scientific American, 1978, 238(1): 86-95.
[2] CHENG Y, YAM J K H, CAI Z, et al. Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community [J]. NPJ Biofilms and Microbiomes, 2019, 5(1): 1.
[3] 刘娟娟, 宋毅斐, 刘健. 生物被膜在临床感染性疾病中的研究进展 [J]. 中华医院 感染学杂志, 2010, 20(04): 598-600.
[4] HORZ H P, CONRADS G. Diagnosis and anti-infective therapy of periodontitis [J]. Expert Review of Anti-infective Therapy, 2007, 5(4): 703-715.
[5] 赵育林, 鲍亚玲, 于美荣, 等. 医院铜绿假单胞菌分布及耐药性分析 [J]. 中国病 原生物学杂志, 2023, 18(01): 82-85.
[6] BURMØLLE M, REN D, BJARNSHOLT T, et al. Interactions in multispecies biofilms: do they actually matter? [J]. Trends in Microbiology, 2014, 22(2): 84-91.
[7] KORGAONKAR A, TRIVEDI U, RUMBAUGH K P, et al. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection [J]. Proceedings of the National Academy of Sciences, 2013, 110(3): 1059-1064.
[8] HORCAJADA J P, MONTERO M, OLIVER A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections [J]. Clinical Microbiology Reviews, 2019, 32(4): e00031-00019.
[9] CHAI Y H, XU J F. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? [J]. Clinical Microbiology and Infection, 2020, 26(3): 313-318.
[10] BASSETTI M, VENA A, CROXATTO A, et al. How to manage Pseudomonas aeruginosa infections [J]. Drugs in Context, 2018, 7: 212527.
[11] FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: an emergent form of bacterial life [J]. Nature Reviews Microbiology, 2016, 14(9): 563-575.
[12] QIN S, XIAO W, ZHOU C, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 199.
[13] 张祎博, 孙景勇, 倪语星, 等. 2005—2014 年 CHINET 铜绿假单胞菌耐药性监测 [J]. 中国感染与化疗杂志, 2016, 16(02): 141-145.
[14] THI M T T, WIBOWO D, REHM B H. Pseudomonas aeruginosa biofilms [J]. International Journal of Molecular Sciences, 2020, 21(22): 8671.
[15] REICHHARDT C, PARSEK M R. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization [J]. Frontiers inMicrobiology, 2019, 10: 677.
[16] SKARIYACHAN S, SRIDHAR V S, PACKIRISAMY S, et al. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal [J]. Folia Microbiologica, 2018, 63: 413-432.
[17] JACKSON K D, STARKEY M, KREMER S, et al. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation [J]. Journal of Bacteriology, 2004, 186(14): 4466-4475.
[18] DEL MAR CENDRA M, TORRENTS E. Pseudomonas aeruginosa biofilms and their partners in crime [J]. Biotechnology Advances, 2021, 49: 107734.
[19] MAURICE N M, BEDI B, SADIKOT R T. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections [J]. American Journal of Respiratory Cell and Molecular Biology, 2018, 58(4): 428-439.
[20] NADELL C D, DRESCHER K, FOSTER K R. Spatial structure, cooperation and competition in biofilms [J]. Nature Reviews Microbiology, 2016, 14(9): 589-600.
[21] FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633.
[22] BAKER P, HILL P J, SNARR B D, et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms [J]. Science Advances, 2016, 2(5): e1501632.
[23] SEVIOUR T, PIJUAN M, NICHOLSON T, et al. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges [J]. Water Research, 2009, 43(18): 4469-4478.
[24] CHEW S C, KUNDUKAD B, SEVIOUR T, et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides [J]. Mbio, 2014, 5(4): e01536- 01514.
[25] CIOFU O, MANDSBERG L F, BJARNSHOLT T, et al. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants [J]. Microbiology, 2010, 156(4): 1108-1119.
[26] RYDER C, BYRD M, WOZNIAK D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development [J]. Current Opinion in Microbiology, 2007, 10(6): 644-648.
[27] TSENG B S, ZHANG W, HARRISON J J, et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin [J]. Environmental Microbiology, 2013, 15(10): 2865-2878.
[28] MA L, CONOVER M, LU H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix [J]. PLoS Pathogens, 2009, 5(3): e1000354.
[29] BORLEE B R, GOLDMAN A D, MURAKAMI K, et al. Pseudomonas aeruginosa uses a cyclic‐di‐GMP‐regulated adhesin to reinforce the biofilm extracellular matrix[J]. Molecular Microbiology, 2010, 75(4): 827-842.
[30] BYRD M S, SADOVSKAYA I, VINOGRADOV E, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production [J]. Molecular Microbiology, 2009, 73(4): 622-638.
[31] STARKEY M, HICKMAN J H, MA L, et al. Pseudomonas aeruginosa rugose small- colony variants have adaptations that likely promote persistence in the cystic fibrosis lung [J]. Journal of Bacteriology, 2009, 191(11): 3492-3503.
[32] ARMBRUSTER C R, LEE C K, PARKER-GILHAM J, et al. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations [J]. Elife, 2019, 8: e45084.
[33] HUANGYUTITHAM V, GÜVENER Z T, HARWOOD C S. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity [J]. Mbio, 2013, 4(3): e00242-00213.
[34] XU A, WANG D, WANG Y, et al. Mutations in surface‐sensing receptor WspA lock the Wsp signal transduction system into a constitutively active state [J]. Environmental Microbiology, 2022, 24(3): 1150-1165.
[35] AKTURK E, OLIVEIRA H, SANTOS S B, et al. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms [J]. Antibiotics, 2019, 8(3): 103.
[36] FRIEDMAN L, KOLTER R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix [J]. Journal of Bacteriology, 2004, 186(14): 4457-4465.
[37] COLVIN K M, GORDON V D, MURAKAMI K, et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa [J]. PLoS Pathogens, 2011, 7(1): e1001264.
[38] YANG L, HU Y, LIU Y, et al. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development [J]. Environmental Microbiology, 2011, 13(7): 1705-1717.
[39] FRANKLIN M J, NIVENS D E, WEADGE J T, et al. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl [J]. Frontiers in Microbiology, 2011, 2: 167.
[40] YANG L, BARKEN K B, SKINDERSOE M E, et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa [J]. Microbiology, 2007, 153(5): 1318-1328.
[41] DONLAN R M, COSTERTON J W. Biofilms: survival mechanisms of clinically relevant microorganisms [J]. Clinical Microbiology Reviews, 2002, 15(2): 167-193.
[42] WILTON M, CHARRON-MAZENOD L, MOORE R, et al. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(1): 544-553.
[43] DAS T, SEHAR S, KOOP L, et al. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation [J]. PloS One, 2014, 9(3): e91935.
[44] TAHRIOUI A, DUCHESNE R, BOUFFARTIGUES E, et al. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation [J]. NPJ Biofilms and Microbiomes, 2019, 5(1): 15.
[45] WANG S, LIU X, LIU H, et al. The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa [J]. Environmental Microbiology Reports, 2015, 7(2): 330-340.
[46] XU A, ZHANG M, DU W, et al. A molecular mechanism for how sigma factor AlgT and transcriptional regulator AmrZ inhibit twitching motility in Pseudomonas aeruginosa [J]. Environmental Microbiology, 2021, 23(2): 572-587.
[47] QI L, CHRISTOPHER G F. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa [J]. Langmuir, 2019, 35(15): 5294-5304.
[48] REICHHARDT C, WONG C, PASSOS DA SILVA D, et al. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing [J]. Mbio, 2018, 9(5): e01376-01318.
[49] MURRAY J L, CONNELL J L, STACY A, et al. Mechanisms of synergy in polymicrobial infections [J]. Journal of Microbiology, 2014, 52: 188-199.
[50] PETERS B M, JABRA-RIZK M A, O'MAY G A, et al. Polymicrobial interactions: impact on pathogenesis and human disease [J]. Clinical Microbiology Reviews, 2012, 25(1): 193-213.
[51] CHEW S C, YAM J K H, MATYSIK A, et al. Matrix polysaccharides and SiaD diguanylate cyclase alter community structure and competitiveness of Pseudomonas aeruginosa during dual-species biofilm development with Staphylococcus aureus [J]. Mbio, 2018, 9(6): e00585-00518.
[52] DELEON S, CLINTON A, FOWLER H, et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model [J]. Infection and Immunity, 2014, 82(11): 4718-4728.
[53] TRIZNA E Y, YARULLINA M N, BAIDAMSHINA D R, et al. Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus—Pseudomonas aeruginosa dual-species biofilm [J]. Scientific Reports, 2020, 10(1): 1-18.
[54] SCOFFIELD J A, DUAN D, ZHU F, et al. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation [J]. PLoS Pathogens, 2017, 13(4): e1006300.
[55] FILKINS L, HAMPTON T, GIFFORD A, et al. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability [J].Journal of Bacteriology, 2012, 194(17): 4709-4717.
[56] STONER S N, BATY J J, SCOFFIELD J A. Pseudomonas aeruginosa polysaccharide Psl supports airway microbial community development [J]. International Society for Microbial Ecology Journal, 2022, 16(7): 1730-1739.
[57] MUSHER D M, THORNER A R. Community-acquired pneumonia [J]. New England Journal of Medicine, 2014, 371(17): 1619-1628.
[58] DENT L L, MARSHALL D R, PRATAP S, et al. Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital [J]. BMC Infectious Diseases, 2010, 10: 1-7.
[59] GOSPODAREK E, BOGIEL T, ZALAS-WIĘCEK P. Communication between microorganisms as a basis for production of virulence factors [J]. Polish Journal of Microbiology, 2009, 58(3): 191.
[60] NIU C, CLEMMER K M, BONOMO R A, et al. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii [J]. Journal of Bacteriology, 2008, 190(9): 3386-3392.
[61] BHARGAVA N, SHARMA P, CAPALASH N. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa [J]. Biofouling, 2012, 28(8): 813-822.
[62] MCGUIGAN L, CALLAGHAN M. The evolving dynamics of the microbial community in the cystic fibrosis lung [J]. Environmental Microbiology, 2015, 17(1): 16-28.
[63] HENDRICKS M R, LASHUA L P, FISCHER D K, et al. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity [J]. Proceedings of the National Academy of Sciences, 2016, 113(6): 1642-1647.
[64] LANSBURY L, LIM B, BASKARAN V, et al. Co-infections in people with COVID- 19: a systematic review and meta-analysis [J]. Journal of Infection, 2020, 81(2): 266- 275.
[65] QU J, CAI Z, LIU Y, et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer [J]. Frontiers in Cellular and Infection Microbiology, 2021: 129.
[66] PELEG A Y, SEIFERT H, PATERSON D L. Acinetobacter baumannii: emergence of a successful pathogen [J]. Clinical Microbiology Reviews, 2008, 21(3): 538-582.
[67] ROLAIN J M, DIENE S M, KEMPF M, et al. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France [J]. Antimicrobial Agents and Chemotherapy, 2013, 57(1): 592-596.
[68] MAGILL S S, EDWARDS J R, BAMBERG W, et al. Multistate point-prevalence survey of health care–associated infections [J]. New England Journal of Medicine,2014, 370(13): 1198-1208.
[69] LOB S H, HOBAN D J, SAHM D F, et al. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii [J]. International Journal of Antimicrobial Agents, 2016, 47(4): 317-323.
[70] GIAMMANCO A, CALÀ C, FASCIANA T, et al. Global assessment of the activity of tigecycline against multidrug-resistant Gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial [J]. Msphere, 2017, 2(1): e00310-00316.
[71] LEE C R, LEE J H, PARK M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options [J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 55.
[72] KYRIAKIDIS I, PALABOUGIOUKI M, VASILEIOU E, et al. Candidemia complicating biliary atresia in an infant with hemoglobinopathy [J]. Turkish Archives of Pediatrics, 2019, 54(2): 129.
[73] BLAIR J M, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance [J]. Nature Reviews Microbiology, 2015, 13(1): 42-51.
[74] POIREL L, CORVEC S, RAPOPORT M, et al. Identification of the novel narrow- spectrum β-lactamase SCO-1 in Acinetobacter spp. from Argentina [J]. Antimicrobial Agents and Chemotherapy, 2007, 51(6): 2179-2184.
[75] CORNAGLIA G, GIAMARELLOU H, ROSSOLINI G M. Metallo-β-lactamases: a last frontier for β-lactams? [J]. The Lancet Infectious Diseases, 2011, 11(5): 381-393.
[76] HAMIDIAN M, HALL R M. Tn 6168, a transposon carrying an ISAba1-activated ampC gene and conferring cephalosporin resistance in Acinetobacter baumannii [J]. Journal of Antimicrobial Chemotherapy, 2014, 69(1): 77-80.
[77] LOPES B, AMYES S. Role of IS Aba1 and IS Aba125 in governing the expression of bla ADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins [J]. Journal of Medical Microbiology, 2012, 61(8): 1103-1108.
[78] ANTUNES N T, FISHER J F. Acquired class D β-lactamases [J]. Antibiotics, 2014, 3(3): 398-434.
[79] AYOUB MOUBARECK C, HAMMOUDI HALAT D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen [J]. Antibiotics, 2020, 9(3): 119.
[80] VRANCIANU C O, GHEORGHE I, CZOBOR I B, et al. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii [J]. Microorganisms, 2020, 8(6): 935.
[81] GREENE C, VADLAMUDI G, NEWTON D, et al. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii [J]. American Journal of Infection Control, 2016, 44(5): e65-e71.
[82] TOMARAS A P, FLAGLER M J, DORSEY C W, et al. Characterization of a two- component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology [J]. Microbiology, 2008, 154(11): 3398-3409.
[83] TOMARAS A P, DORSEY C W, EDELMANN R E, et al. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system [J]. Microbiology, 2003, 149(12): 3473-3484.
[84] CUCARELLA C, SOLANO C, VALLE J, et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation [J]. Journal of Bacteriology, 2001, 183(9): 2888- 2896.
[85] HARDING C M, PULIDO M R, DI VENANZIO G, et al. Pathogenic Acinetobacter species have a functional type I secretion system and contact-dependent inhibition systems [J]. Journal of Biological Chemistry, 2017, 292(22): 9075-9087.
[86] LEE K W K, PERIASAMY S, MUKHERJEE M, et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm [J]. International Society for Microbial Ecology Journal, 2014, 8(4): 894-907.
[87] STACY A, MCNALLY L, DARCH S E, et al. The biogeography of polymicrobial infection [J]. Nature Reviews Microbiology, 2016, 14(2): 93-105.
[88] BIEDENBACH D J, GIAO P T, VAN P H, et al. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from patients with hospital-acquired or ventilator-associated pneumonia in Vietnam [J]. Clinical Therapeutics, 2016, 38(9): 2098-2105.
[89] SPROSTON N R, ASHWORTH J J. Role of C-reactive protein at sites of inflammation and infection [J]. Frontiers in Immunology, 2018, 9: 754.
[90] 王璨. 降钙素原对尿源性脓毒血症的早期预测价值研究 [D]; 重庆医科大学, 2022.
[91] RYBTKE M T, BORLEE B R, MURAKAMI K, et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa [J]. Applied and Environmental Microbiology, 2012, 78(15): 5060-5069.
修改评论