中文版 | English
题名

Psl多糖介导铜绿假单胞菌和鲍曼不动杆菌的互作机制研究

其他题名
PSL POLYSACCHARIDE CONTRIBUTES TO INTERSPECIES INTERACTION FORMED BY PSEUDOMONAS AERUGINOSA AND ACINETOBACTER BAUMANNII
姓名
姓名拼音
WANG Jing
学号
12032623
学位类型
硕士
学位专业
0701 数学
学科门类/专业学位类别
07 理学
导师
刘映霞
导师单位
南方科技大学第二附属医院
论文答辩日期
2023-05-18
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

铜绿假单胞菌(Pseudomonas aeruginosa)是一种临床常见的革兰氏阴性条件致病菌,因其复杂多样的毒力系统以及耐药机制,能引起许多严重的感染性疾病,严重危害了人类健康。近年来,铜绿假单胞菌与其他微生物,比如细菌、病毒、真菌的共同感染,导致病人预后较差的临床现象引起了广泛关注。铜绿假单胞菌与鲍曼不动杆菌(Acinetobacter baumannii)的合并感染常见于重症监护室的患者中,尤其是一些术后抗感染的患者和使用介入性医疗设备的患者,且这些患者往往感染程度较重、预后较差。目前,临床上针对细菌感染的诊断指南往往侧重于实验室中分离的优势致病菌和基于单个物种的抗生素耐药性分析,而忽略了潜在的物种间的相互作用,这可能会产生与单个物种截然不同的新的耐药表型。因此,本课题通过建立铜绿假单胞菌和鲍曼不动杆菌双物种生物被膜模型来研究物种之间相互作用对抗生素治疗的影响。鲍曼不动杆菌临床分离株 R2 是一株生物被膜形成能力较弱,但对多种抗生素呈现耐药的菌株。在双菌株生物被膜药敏实验以及共聚焦显微镜成像实验中,我们发现鲍曼不动杆菌 R2 的存在保护了抗生素敏感的铜绿假单胞菌 PAO1 使得其在 4 倍 MIC 亚胺培南压力下仍然能够形成成熟的生物被膜,同时群落组成也随着外部抗生素压力的变化而变化。我们进一步的研究发现,铜绿假单胞菌 PAO1 生物被膜细胞外基质的组成成分,尤其是 Psl 多糖,在上述菌种间相互作用中发挥了关键作用。Psl 多糖介导了双物种生物被膜的耐药性的增强,特别是对 β-内酰胺类抗生素。另外,我们发现使用 DNase I 降解与 Psl 多糖交联的 eDNA 能够有效的降低双菌株生物被膜的耐药性。因此,以 Psl 多糖的稳定性作为新型抗生素开发的作用靶点,将为多种微生物混合感染的治疗提供全新的思路。

其他摘要

Pseudomonas aeruginosa (P. aeruginosa), a common Gram-negativepathogen, can cause a variety of refractory infectious diseases due to its complexvirulence systems and diverse drug-resistance mechanisms, which poses a greatrisk for public health. For decades, P. aeruginosa has been reported to co-infectwith other microorganisms such as bacteria, virus, and fungi, which often resultsin a poor prognosis for the patients. P. aeruginosa and Acinetobacter baumannii(A. baumannii) co-infection is common in intensive care unit patients,particularly surgical patients, and patients with interventional medical devices,who face the high risk of severe infections. Current clinical guidelines forbacterial infection diagnosis have focused on the isolation and characterizationof pathogenic bacteria in the laboratory and single-species-based antibioticresistance profiling, which underestimate the potential interspecies interactionsthat could lead to novel drug-resistance phenotypes. Here, we investigated theimpacts of interspecies interactions on antibiotics therapies by establishing a P.aeruginosa and A. baumannii dual-species biofilm model. The clinical isolate R2of A. baumannii is a poor biofilm former and resistant to a variety of antibiotics,including imipenem, ceftazidime, ciprofloxacin, tobramycin, and others. In dualspecies biofilms, the community composition shifts with the increase in antibioticdosage, and the presence of A. baumannii R2 protects the antibiotic-sensitive P.aeruginosa PAO1, which can still survive in imipenem up to 4 × MIC. Furtherresearch discovered that the structural components of the P. aeruginosa PAO1biofilm matrix, specifically Psl exopolysaccharide, played an important roleduring interspecies interactions and promoted drug resistance in dual-speciesbiofilms. Furthermore, we discovered that DNase I treatment can degrade eDNAcrosslinked with Psl exopolysaccharide and significantly reduce antibioticresistance in dual-species biofilms. Therefore, our study suggests that targetingPsl stability is a potential approach in controlling polymicrobial infections.

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] COSTERTON J W, GEESEY G G, CHENG K J. How bacteria stick [J]. Scientific American, 1978, 238(1): 86-95.
[2] CHENG Y, YAM J K H, CAI Z, et al. Population dynamics and transcriptomic responses of Pseudomonas aeruginosa in a complex laboratory microbial community [J]. NPJ Biofilms and Microbiomes, 2019, 5(1): 1.
[3] 刘娟娟, 宋毅斐, 刘健. 生物被膜在临床感染性疾病中的研究进展 [J]. 中华医院 感染学杂志, 2010, 20(04): 598-600.
[4] HORZ H P, CONRADS G. Diagnosis and anti-infective therapy of periodontitis [J]. Expert Review of Anti-infective Therapy, 2007, 5(4): 703-715.
[5] 赵育林, 鲍亚玲, 于美荣, 等. 医院铜绿假单胞菌分布及耐药性分析 [J]. 中国病 原生物学杂志, 2023, 18(01): 82-85.
[6] BURMØLLE M, REN D, BJARNSHOLT T, et al. Interactions in multispecies biofilms: do they actually matter? [J]. Trends in Microbiology, 2014, 22(2): 84-91.
[7] KORGAONKAR A, TRIVEDI U, RUMBAUGH K P, et al. Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection [J]. Proceedings of the National Academy of Sciences, 2013, 110(3): 1059-1064.
[8] HORCAJADA J P, MONTERO M, OLIVER A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections [J]. Clinical Microbiology Reviews, 2019, 32(4): e00031-00019.
[9] CHAI Y H, XU J F. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? [J]. Clinical Microbiology and Infection, 2020, 26(3): 313-318.
[10] BASSETTI M, VENA A, CROXATTO A, et al. How to manage Pseudomonas aeruginosa infections [J]. Drugs in Context, 2018, 7: 212527.
[11] FLEMMING H C, WINGENDER J, SZEWZYK U, et al. Biofilms: an emergent form of bacterial life [J]. Nature Reviews Microbiology, 2016, 14(9): 563-575.
[12] QIN S, XIAO W, ZHOU C, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics [J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 199.
[13] 张祎博, 孙景勇, 倪语星, 等. 2005—2014 年 CHINET 铜绿假单胞菌耐药性监测 [J]. 中国感染与化疗杂志, 2016, 16(02): 141-145.
[14] THI M T T, WIBOWO D, REHM B H. Pseudomonas aeruginosa biofilms [J]. International Journal of Molecular Sciences, 2020, 21(22): 8671.
[15] REICHHARDT C, PARSEK M R. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization [J]. Frontiers inMicrobiology, 2019, 10: 677.
[16] SKARIYACHAN S, SRIDHAR V S, PACKIRISAMY S, et al. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal [J]. Folia Microbiologica, 2018, 63: 413-432.
[17] JACKSON K D, STARKEY M, KREMER S, et al. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation [J]. Journal of Bacteriology, 2004, 186(14): 4466-4475.
[18] DEL MAR CENDRA M, TORRENTS E. Pseudomonas aeruginosa biofilms and their partners in crime [J]. Biotechnology Advances, 2021, 49: 107734.
[19] MAURICE N M, BEDI B, SADIKOT R T. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections [J]. American Journal of Respiratory Cell and Molecular Biology, 2018, 58(4): 428-439.
[20] NADELL C D, DRESCHER K, FOSTER K R. Spatial structure, cooperation and competition in biofilms [J]. Nature Reviews Microbiology, 2016, 14(9): 589-600.
[21] FLEMMING H C, WINGENDER J. The biofilm matrix [J]. Nature Reviews Microbiology, 2010, 8(9): 623-633.
[22] BAKER P, HILL P J, SNARR B D, et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms [J]. Science Advances, 2016, 2(5): e1501632.
[23] SEVIOUR T, PIJUAN M, NICHOLSON T, et al. Gel-forming exopolysaccharides explain basic differences between structures of aerobic sludge granules and floccular sludges [J]. Water Research, 2009, 43(18): 4469-4478.
[24] CHEW S C, KUNDUKAD B, SEVIOUR T, et al. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides [J]. Mbio, 2014, 5(4): e01536- 01514.
[25] CIOFU O, MANDSBERG L F, BJARNSHOLT T, et al. Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants [J]. Microbiology, 2010, 156(4): 1108-1119.
[26] RYDER C, BYRD M, WOZNIAK D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development [J]. Current Opinion in Microbiology, 2007, 10(6): 644-648.
[27] TSENG B S, ZHANG W, HARRISON J J, et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin [J]. Environmental Microbiology, 2013, 15(10): 2865-2878.
[28] MA L, CONOVER M, LU H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix [J]. PLoS Pathogens, 2009, 5(3): e1000354.
[29] BORLEE B R, GOLDMAN A D, MURAKAMI K, et al. Pseudomonas aeruginosa uses a cyclic‐di‐GMP‐regulated adhesin to reinforce the biofilm extracellular matrix[J]. Molecular Microbiology, 2010, 75(4): 827-842.
[30] BYRD M S, SADOVSKAYA I, VINOGRADOV E, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production [J]. Molecular Microbiology, 2009, 73(4): 622-638.
[31] STARKEY M, HICKMAN J H, MA L, et al. Pseudomonas aeruginosa rugose small- colony variants have adaptations that likely promote persistence in the cystic fibrosis lung [J]. Journal of Bacteriology, 2009, 191(11): 3492-3503.
[32] ARMBRUSTER C R, LEE C K, PARKER-GILHAM J, et al. Heterogeneity in surface sensing suggests a division of labor in Pseudomonas aeruginosa populations [J]. Elife, 2019, 8: e45084.
[33] HUANGYUTITHAM V, GÜVENER Z T, HARWOOD C S. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity [J]. Mbio, 2013, 4(3): e00242-00213.
[34] XU A, WANG D, WANG Y, et al. Mutations in surface‐sensing receptor WspA lock the Wsp signal transduction system into a constitutively active state [J]. Environmental Microbiology, 2022, 24(3): 1150-1165.
[35] AKTURK E, OLIVEIRA H, SANTOS S B, et al. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms [J]. Antibiotics, 2019, 8(3): 103.
[36] FRIEDMAN L, KOLTER R. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix [J]. Journal of Bacteriology, 2004, 186(14): 4457-4465.
[37] COLVIN K M, GORDON V D, MURAKAMI K, et al. The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa [J]. PLoS Pathogens, 2011, 7(1): e1001264.
[38] YANG L, HU Y, LIU Y, et al. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development [J]. Environmental Microbiology, 2011, 13(7): 1705-1717.
[39] FRANKLIN M J, NIVENS D E, WEADGE J T, et al. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl [J]. Frontiers in Microbiology, 2011, 2: 167.
[40] YANG L, BARKEN K B, SKINDERSOE M E, et al. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa [J]. Microbiology, 2007, 153(5): 1318-1328.
[41] DONLAN R M, COSTERTON J W. Biofilms: survival mechanisms of clinically relevant microorganisms [J]. Clinical Microbiology Reviews, 2002, 15(2): 167-193.
[42] WILTON M, CHARRON-MAZENOD L, MOORE R, et al. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(1): 544-553.
[43] DAS T, SEHAR S, KOOP L, et al. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation [J]. PloS One, 2014, 9(3): e91935.
[44] TAHRIOUI A, DUCHESNE R, BOUFFARTIGUES E, et al. Extracellular DNA release, quorum sensing, and PrrF1/F2 small RNAs are key players in Pseudomonas aeruginosa tobramycin-enhanced biofilm formation [J]. NPJ Biofilms and Microbiomes, 2019, 5(1): 15.
[45] WANG S, LIU X, LIU H, et al. The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa [J]. Environmental Microbiology Reports, 2015, 7(2): 330-340.
[46] XU A, ZHANG M, DU W, et al. A molecular mechanism for how sigma factor AlgT and transcriptional regulator AmrZ inhibit twitching motility in Pseudomonas aeruginosa [J]. Environmental Microbiology, 2021, 23(2): 572-587.
[47] QI L, CHRISTOPHER G F. Role of Flagella, Type IV Pili, Biosurfactants, and Extracellular Polymeric Substance Polysaccharides on the Formation of Pellicles by Pseudomonas aeruginosa [J]. Langmuir, 2019, 35(15): 5294-5304.
[48] REICHHARDT C, WONG C, PASSOS DA SILVA D, et al. CdrA interactions within the Pseudomonas aeruginosa biofilm matrix safeguard it from proteolysis and promote cellular packing [J]. Mbio, 2018, 9(5): e01376-01318.
[49] MURRAY J L, CONNELL J L, STACY A, et al. Mechanisms of synergy in polymicrobial infections [J]. Journal of Microbiology, 2014, 52: 188-199.
[50] PETERS B M, JABRA-RIZK M A, O'MAY G A, et al. Polymicrobial interactions: impact on pathogenesis and human disease [J]. Clinical Microbiology Reviews, 2012, 25(1): 193-213.
[51] CHEW S C, YAM J K H, MATYSIK A, et al. Matrix polysaccharides and SiaD diguanylate cyclase alter community structure and competitiveness of Pseudomonas aeruginosa during dual-species biofilm development with Staphylococcus aureus [J]. Mbio, 2018, 9(6): e00585-00518.
[52] DELEON S, CLINTON A, FOWLER H, et al. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model [J]. Infection and Immunity, 2014, 82(11): 4718-4728.
[53] TRIZNA E Y, YARULLINA M N, BAIDAMSHINA D R, et al. Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus—Pseudomonas aeruginosa dual-species biofilm [J]. Scientific Reports, 2020, 10(1): 1-18.
[54] SCOFFIELD J A, DUAN D, ZHU F, et al. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation [J]. PLoS Pathogens, 2017, 13(4): e1006300.
[55] FILKINS L, HAMPTON T, GIFFORD A, et al. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability [J].Journal of Bacteriology, 2012, 194(17): 4709-4717.
[56] STONER S N, BATY J J, SCOFFIELD J A. Pseudomonas aeruginosa polysaccharide Psl supports airway microbial community development [J]. International Society for Microbial Ecology Journal, 2022, 16(7): 1730-1739.
[57] MUSHER D M, THORNER A R. Community-acquired pneumonia [J]. New England Journal of Medicine, 2014, 371(17): 1619-1628.
[58] DENT L L, MARSHALL D R, PRATAP S, et al. Multidrug resistant Acinetobacter baumannii: a descriptive study in a city hospital [J]. BMC Infectious Diseases, 2010, 10: 1-7.
[59] GOSPODAREK E, BOGIEL T, ZALAS-WIĘCEK P. Communication between microorganisms as a basis for production of virulence factors [J]. Polish Journal of Microbiology, 2009, 58(3): 191.
[60] NIU C, CLEMMER K M, BONOMO R A, et al. Isolation and characterization of an autoinducer synthase from Acinetobacter baumannii [J]. Journal of Bacteriology, 2008, 190(9): 3386-3392.
[61] BHARGAVA N, SHARMA P, CAPALASH N. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa [J]. Biofouling, 2012, 28(8): 813-822.
[62] MCGUIGAN L, CALLAGHAN M. The evolving dynamics of the microbial community in the cystic fibrosis lung [J]. Environmental Microbiology, 2015, 17(1): 16-28.
[63] HENDRICKS M R, LASHUA L P, FISCHER D K, et al. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity [J]. Proceedings of the National Academy of Sciences, 2016, 113(6): 1642-1647.
[64] LANSBURY L, LIM B, BASKARAN V, et al. Co-infections in people with COVID- 19: a systematic review and meta-analysis [J]. Journal of Infection, 2020, 81(2): 266- 275.
[65] QU J, CAI Z, LIU Y, et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer [J]. Frontiers in Cellular and Infection Microbiology, 2021: 129.
[66] PELEG A Y, SEIFERT H, PATERSON D L. Acinetobacter baumannii: emergence of a successful pathogen [J]. Clinical Microbiology Reviews, 2008, 21(3): 538-582.
[67] ROLAIN J M, DIENE S M, KEMPF M, et al. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France [J]. Antimicrobial Agents and Chemotherapy, 2013, 57(1): 592-596.
[68] MAGILL S S, EDWARDS J R, BAMBERG W, et al. Multistate point-prevalence survey of health care–associated infections [J]. New England Journal of Medicine,2014, 370(13): 1198-1208.
[69] LOB S H, HOBAN D J, SAHM D F, et al. Regional differences and trends in antimicrobial susceptibility of Acinetobacter baumannii [J]. International Journal of Antimicrobial Agents, 2016, 47(4): 317-323.
[70] GIAMMANCO A, CALÀ C, FASCIANA T, et al. Global assessment of the activity of tigecycline against multidrug-resistant Gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial [J]. Msphere, 2017, 2(1): e00310-00316.
[71] LEE C R, LEE J H, PARK M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options [J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 55.
[72] KYRIAKIDIS I, PALABOUGIOUKI M, VASILEIOU E, et al. Candidemia complicating biliary atresia in an infant with hemoglobinopathy [J]. Turkish Archives of Pediatrics, 2019, 54(2): 129.
[73] BLAIR J M, WEBBER M A, BAYLAY A J, et al. Molecular mechanisms of antibiotic resistance [J]. Nature Reviews Microbiology, 2015, 13(1): 42-51.
[74] POIREL L, CORVEC S, RAPOPORT M, et al. Identification of the novel narrow- spectrum β-lactamase SCO-1 in Acinetobacter spp. from Argentina [J]. Antimicrobial Agents and Chemotherapy, 2007, 51(6): 2179-2184.
[75] CORNAGLIA G, GIAMARELLOU H, ROSSOLINI G M. Metallo-β-lactamases: a last frontier for β-lactams? [J]. The Lancet Infectious Diseases, 2011, 11(5): 381-393.
[76] HAMIDIAN M, HALL R M. Tn 6168, a transposon carrying an ISAba1-activated ampC gene and conferring cephalosporin resistance in Acinetobacter baumannii [J]. Journal of Antimicrobial Chemotherapy, 2014, 69(1): 77-80.
[77] LOPES B, AMYES S. Role of IS Aba1 and IS Aba125 in governing the expression of bla ADC in clinically relevant Acinetobacter baumannii strains resistant to cephalosporins [J]. Journal of Medical Microbiology, 2012, 61(8): 1103-1108.
[78] ANTUNES N T, FISHER J F. Acquired class D β-lactamases [J]. Antibiotics, 2014, 3(3): 398-434.
[79] AYOUB MOUBARECK C, HAMMOUDI HALAT D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen [J]. Antibiotics, 2020, 9(3): 119.
[80] VRANCIANU C O, GHEORGHE I, CZOBOR I B, et al. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii [J]. Microorganisms, 2020, 8(6): 935.
[81] GREENE C, VADLAMUDI G, NEWTON D, et al. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii [J]. American Journal of Infection Control, 2016, 44(5): e65-e71.
[82] TOMARAS A P, FLAGLER M J, DORSEY C W, et al. Characterization of a two- component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology [J]. Microbiology, 2008, 154(11): 3398-3409.
[83] TOMARAS A P, DORSEY C W, EDELMANN R E, et al. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system [J]. Microbiology, 2003, 149(12): 3473-3484.
[84] CUCARELLA C, SOLANO C, VALLE J, et al. Bap, a Staphylococcus aureus surface protein involved in biofilm formation [J]. Journal of Bacteriology, 2001, 183(9): 2888- 2896.
[85] HARDING C M, PULIDO M R, DI VENANZIO G, et al. Pathogenic Acinetobacter species have a functional type I secretion system and contact-dependent inhibition systems [J]. Journal of Biological Chemistry, 2017, 292(22): 9075-9087.
[86] LEE K W K, PERIASAMY S, MUKHERJEE M, et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm [J]. International Society for Microbial Ecology Journal, 2014, 8(4): 894-907.
[87] STACY A, MCNALLY L, DARCH S E, et al. The biogeography of polymicrobial infection [J]. Nature Reviews Microbiology, 2016, 14(2): 93-105.
[88] BIEDENBACH D J, GIAO P T, VAN P H, et al. Antimicrobial-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from patients with hospital-acquired or ventilator-associated pneumonia in Vietnam [J]. Clinical Therapeutics, 2016, 38(9): 2098-2105.
[89] SPROSTON N R, ASHWORTH J J. Role of C-reactive protein at sites of inflammation and infection [J]. Frontiers in Immunology, 2018, 9: 754.
[90] 王璨. 降钙素原对尿源性脓毒血症的早期预测价值研究 [D]; 重庆医科大学, 2022.
[91] RYBTKE M T, BORLEE B R, MURAKAMI K, et al. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa [J]. Applied and Environmental Microbiology, 2012, 78(15): 5060-5069.

所在学位评定分委会
生物学
国内图书分类号
Q939.93
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543970
专题南方科技大学医学院
推荐引用方式
GB/T 7714
王菁. Psl多糖介导铜绿假单胞菌和鲍曼不动杆菌的互作机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032623-王菁-南方科技大学医学(8477KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[王菁]的文章
百度学术
百度学术中相似的文章
[王菁]的文章
必应学术
必应学术中相似的文章
[王菁]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。