中文版 | English
题名

硝唑尼特抗乙酰化 KLF5 所致前列腺癌骨 转移的发现与机制研究

其他题名
Nitazoxanide inhibits acetylated KLF5-induced bone metastasis in prostate cancer: from discovery to mechanistic study
姓名
姓名拼音
HUANG Qingqing
学号
11930741
学位类型
博士
学位专业
0710 生物学
学科门类/专业学位类别
07 理学
导师
董金堂
导师单位
人类细胞生物和遗传学系
论文答辩日期
2023-05-15
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

前列腺癌是男性泌尿系统最常见的恶性肿瘤,严重影响患者生命健康。骨转移是前列腺癌致死的重要原因,并且90%的去势抵抗性前列腺癌患者都会发生骨转移。TGF-β是广泛存在的重要细胞因子,在骨组织微环境中尤其丰富,是导致多种肿瘤包括前列腺癌骨转移的重要因素。靶向TGF-β信号是克服骨转移的重要潜在治疗策略。然而,由于TGF-β在多种组织中表达并发挥重要功能,直接靶向TGF-β遇到重重困难。研究表明,骨组织微环境中的TGF-β诱导前列腺癌细胞转录因子KLF5的乙酰化修饰,进而加速前列腺癌骨转移的形成。针对乙酰化KLF5及其通路的干预可能是治疗前列腺癌骨转移的有效策略。在本研究中,我们利用了表达模拟乙酰化KLF5的前列腺癌细胞系(PC-3-KQ),证明该细胞具有更强的侵袭性和骨转移能力,建立了PC-3-KQ三维细胞球侵袭模型,并利用该模型对1987FDA批准上市的药物进行了筛选,发现了多个具有抑制癌细胞侵袭作用的药物。其中的驱虫药硝唑尼特(Nitazoxanide, NTZ)不仅能显著抑制乙酰化KLF5所诱导的细胞球侵袭,而且在表达乙酰化KLF5的细胞作用更明显。在预防和治疗骨转移的小鼠模型中,硝唑尼特展现出了显著的抑制作用,不仅能抑制PC-3-KQ细胞转移到骨,同时也能改善骨骼参数,保护骨组织不受癌细胞侵袭破坏。硝唑尼特还能抑制乙酰化KLF5所诱导的破骨细胞分化并下调MMP-9的表达。我们进一步利用转录组测序分析探索了硝唑尼特抗前列腺癌骨转移的分子基础,发现硝唑尼特能逆转乙酰化KLF5的基因调控功能,包括乙酰化KLF5127个基因的上调和114个基因的下调。一个重要发现是,硝唑尼特能下调乙酰化KLF5诱导的MYBL2表达,而MYBL2低表达与前列腺癌骨转移病人的较好总生存显著相关。进一步实验表明,硝唑尼特能减弱乙酰化KLF5MYBL2基因启动子的结合,减少MYBL2的表达,从而发挥抑制前列腺癌细胞转移的作用。此外,多种生化实验表明,硝唑尼特与KLF5、乙酰化KLF5及去乙酰化KLF5蛋白均有相互结合,而且这种结合能改变KLF5的二级结构。这些研究不仅表明硝唑尼特具有治疗乙酰化KLF5诱导前列腺癌骨转移的潜力,而且对其作用机制提供了线索,为下一步利用硝唑尼特治疗前列腺癌骨转移提供了临床前研究基础和机制方面的依据。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2023-06
参考文献列表

[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249.
[2] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132.
[3] GANDAGLIA G, KARAKIEWICZ P I, BRIGANTI A, et al. Impact of the Site of Metastases on Survival in Patients with Metastatic Prostate Cancer[J]. Eur Urol, 2015, 68(2): 325-334.
[4] BUBENDORF L, SCHöPFER A, WAGNER U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients[J]. Hum Pathol, 2000, 31(5): 578-583.
[5] ITTMANN M. Anatomy and Histology of the Human and Murine Prostate[J]. Cold Spring Harb Perspect Med, 2018, 8(5): a030346.
[6] WANG G, ZHAO D, SPRING D J, et al. Genetics and biology of prostate cancer[J]. Genes Dev, 2018, 32(17-18): 1105-1140.
[7] TIMMS B G. Prostate development: a historical perspective[J]. Differentiation, 2008, 76(6): 565-577.
[8] HAFFNER J, POTIRON E, BOUYé S, et al. Peripheral zone prostate cancers: location and inTRAProstatic patterns of spread at histopathology[J]. Prostate, 2009, 69(3): 276-282.
[9] MCNEAL J E, REDWINE E A, FREIHA F S, et al. Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread[J]. Am J Surg Pathol, 1988, 12(12): 897-906.
[10] CUNHA G R, DONJACOUR A A, COOKE P S, et al. The endocrinology and developmental biology of the prostate[J]. Endocr Rev, 1987, 8(3): 338-362.
[11] BERQUIN I M, MIN Y, WU R, et al. Expression signature of the mouse prostate[J]. J Biol Chem, 2005, 280(43): 36442-36451.
[12] VAN LEENDERS G J, SCHALKEN J A. Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer[J]. Crit Rev Oncol Hematol, 2003, 46 Suppl: S3-10.
[13] SHEN M, ABATE-SHEN C. Molecular genetics of prostate cancer: new prospects for old challenges[J]. Genes & development, 2010, 24(18): 1967-2000.
[14] SHAPPELL S B, THOMAS G V, ROBERTS R L, et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee[J]. Cancer Res, 2004, 64(6): 2270-2305.
[15] WANG G, ZHAO D, SPRING D J, et al. Genetics and biology of prostate cancer[J]. Genes & development, 2018, 32(17-18): 1105-1140.
[16] WANG Z A, MITROFANOVA A, BERGREN S K, et al. Lineage analysis of basal epithelial cells reveals their unexpected plasticity and supports a cell-of-origin model for prostate cancer heterogeneity[J]. Nat Cell Biol, 2013, 15(3): 274-283.
[17] SMITH B A, SOKOLOV A, UZUNANGELOV V, et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes[J]. Proc Natl Acad Sci U S A, 2015, 112(47): E6544-6552.
[18] GLEASON D F, MELLINGER G T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging[J]. J Urol, 1974, 111(1): 58-64.
[19] EPSTEIN J I, EGEVAD L, AMIN M B, et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System[J]. Am J Surg Pathol, 2016, 40(2): 244-252.
[20] HUGGINS C, HODGES C V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941[J]. J Urol, 2002, 168(1): 9-12.
[21] BLUEMN E G, COLEMAN I M, LUCAS J M, et al. Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling[J]. Cancer Cell, 2017, 32(4): 474-489.e476.
[22] CUZICK J, THORAT M A, ANDRIOLE G, et al. Prevention and early detection of prostate cancer[J]. Lancet Oncol, 2014, 15(11): e484-492.
[23] ZHENG Y, LIN S X, WU S, et al. Clinicopathological characteristics of localized prostate cancer in younger men aged ≤ 50 years treated with radical prostatectomy in the PSA era: A systematic review and meta-analysis[J]. Cancer Med, 2020, 9(18): 6473-6484.
[24] SIEGEL R L, MILLER K D, JEMAL A. Cancer Statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30.
[25] MORGENROTH A, CARTELLIERI M, SCHMITZ M, et al. Targeting of tumor cells expressing the prostate stem cell antigen (PSCA) using genetically engineered T-cells[J]. Prostate, 2007, 67(10): 1121-1131.
[26] REBBECK T R. Prostate Cancer Genetics: Variation by Race, Ethnicity, and Geography[J]. Semin Radiat Oncol, 2017, 27(1): 3-10.
[27] ARMENIA J, WANKOWICZ S A M, LIU D, et al. The long tail of oncogenic drivers in prostate cancer[J]. Nat Genet, 2018, 50(5): 645-651.
[28] ROBINSON D, VAN ALLEN E M, WU Y M, et al. Integrative clinical genomics of advanced prostate cancer[J]. Cell, 2015, 161(5): 1215-1228.
[29] NOMBELA P, LOZANO R, AYTES A, et al. BRCA2 and Other DDR Genes in Prostate Cancer[J]. Cancers (Basel), 2019, 11(3): 352.
[30] GRIFFIN J E. Androgen resistance--the clinical and molecular spectrum[J]. N Engl J Med, 1992, 326(9): 611-618.
[31] BLADOU F, VESSELLA R L, BUHLER K R, et al. Cell proliferation and apoptosis during prostatic tumor xenograft involution and regrowth after castration[J]. Int J Cancer, 1996, 67(6): 785-790.
[32] LEONE G, BUTTIGLIERO C, PISANO C, et al. Bipolar androgen therapy in prostate cancer: Current evidences and future perspectives[J]. Crit Rev Oncol Hematol, 2020, 152: 102994.
[33] MACINNIS R J, ENGLISH D R. Body size and composition and prostate cancer risk: systematic review and meta-regression analysis[J]. Cancer Causes Control, 2006, 17(8): 989-1003.
[34] RENEHAN A G, TYSON M, EGGER M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[J]. Lancet, 2008, 371(9612): 569-578.
[35] KETO C J, ARONSON W J, TERRIS M K, et al. Obesity is associated with castration-resistant disease and metastasis in men treated with androgen deprivation therapy after radical prostatectomy: results from the SEARCH database[J]. BJU Int, 2012, 110(4): 492-498.
[36] ALLOTT E H, MASKO E M, FREEDLAND S J. Obesity and prostate cancer: weighing the evidence[J]. Eur Urol, 2013, 63(5): 800-809.
[37] BERGSTRöM A, PISANI P, TENET V, et al. Overweight as an avoidable cause of cancer in Europe[J]. Int J Cancer, 2001, 91(3): 421-430.
[38] ROBERTS D L, DIVE C, RENEHAN A G. Biological mechanisms linking obesity and cancer risk: new perspectives[J]. Annu Rev Med, 2010, 61: 301-316.
[39] PORTER C M, SHRESTHA E, PEIFFER L B, et al. The microbiome in prostate inflammation and prostate cancer[J]. Prostate Cancer Prostatic Dis, 2018, 21(3): 345-354.
[40] FENG Y, JARATLERDSIRI W, PATRICK S M, et al. Metagenomic analysis reveals a rich bacterial content in high-risk prostate tumors from African men[J]. Prostate, 2019, 79(15): 1731-1738.
[41] ABIDI S H, BILWANI F, GHIAS K, et al. Viral etiology of prostate cancer: Genetic alterations and immune response. A literature review[J]. Int J Surg, 2018, 52: 136-140.
[42] BOOPATHI E, BIRBE R, SHOYELE S A, et al. Bone Health Management in the Continuum of Prostate Cancer Disease[J]. Cancers (Basel), 2022, 14(17): 4305.
[43] COLEMAN R E, CROUCHER P I, PADHANI A R, et al. Bone metastases[J]. Nature reviews Disease primers, 2020, 6(1): 83.
[44] SHEN G, DENG H, HU S, et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis[J]. Skeletal Radiol, 2014, 43(11): 1503-1513.
[45] YANG H L, LIU T, WANG X M, et al. Diagnosis of bone metastases: a meta-analysis comparing ¹⁸FDG PET, CT, MRI and bone scintigraphy[J]. Eur Radiol, 2011, 21(12): 2604-2617.
[46] PERERA M, PAPA N, ROBERTS M, et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis[J]. Eur Urol, 2020, 77(4): 403-417.
[47] CALAIS J, CECI F, EIBER M, et al. (18)F-fluciclovine PET-CT and (68)Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial[J]. Lancet Oncol, 2019, 20(9): 1286-1294.
[48] CLéZARDIN P, COLEMAN R, PUPPO M, et al. Bone metastasis: mechanisms, therapies, and biomarkers[J]. Physiol Rev, 2021, 101(3): 797-855.
[49] BRIGANTI A, SUARDI N, GALLINA A, et al. Predicting the risk of bone metastasis in prostate cancer[J]. Cancer Treat Rev, 2014, 40(1): 3-11.
[50] SANDHU S, MOORE C M, CHIONG E, et al. Prostate cancer[J]. Lancet, 2021, 398(10305): 1075-1090.
[51] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[52] GARTRELL B A, SAAD F. Managing bone metastases and reducing skeletal related events in prostate cancer[J]. Nat Rev Clin Oncol, 2014, 11(6): 335-345.
[53] MOLLICA V, RIZZO A, ROSELLINI M, et al. Bone Targeting Agents in Patients with Metastatic Prostate Cancer: State of the Art[J]. Cancers (Basel), 2021, 13(3): 546.
[54] JAKOB T, TESFAMARIAM Y M, MACHEREY S, et al. Bisphosphonates or RANK-ligand-inhibitors for men with prostate cancer and bone metastases: a network meta-analysis[J]. Cochrane Database Syst Rev, 2020, 12(12): Cd013020.
[55] SANTINI D, BERRUTI A, DI MAIO M, et al. Bone health management in the continuum of prostate cancer disease: a review of the evidence with an expert panel opinion[J]. ESMO Open, 2020, 5(2): e000652.
[56] SAAD F, GLEASON D M, MURRAY R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma[J]. Journal of the National Cancer Institute, 2002, 94(19): 1458-1468.
[57] SAYLOR P J, LEE R J, SMITH M R. Emerging therapies to prevent skeletal morbidity in men with prostate cancer[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2011, 29(27): 3705-3714.
[58] SMALL E J, SMITH M R, SEAMAN J J, et al. Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2003, 21(23): 4277-4284.
[59] ERNST D S, TANNOCK I F, WINQUIST E W, et al. Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2003, 21(17): 3335-3342.
[60] FIZAZI K, CARDUCCI M, SMITH M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study[J]. Lancet (London, England), 2011, 377(9768): 813-822.
[61] BAUMAN G, CHARETTE M, REID R, et al. Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review[J]. Radiother Oncol, 2005, 75(3): 258-270.
[62] HENRIKSEN G, FISHER D R, ROESKE J C, et al. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice[J]. J Nucl Med, 2003, 44(2): 252-259.
[63] BRULAND Ø S, NILSSON S, FISHER D R, et al. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities?[J]. Clin Cancer Res, 2006, 12(20 Pt 2): 6250s-6257s.
[64] PARKER C, NILSSON S, HEINRICH D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer[J]. The New England journal of medicine, 2013, 369(3): 213-223.
[65] Decreased fracture rate by mandating bone-protecting agents in the EORTC 1333/PEACE III trial comparing enzalutamide and Ra223 versus enzalutamide alone: An interim safety analysis[J]. Journal of Clinical Oncology, 2019, 37(15_suppl): 5007-5007.
[66] JAMES N, PIRRIE S, POPE A, et al. TRAPEZE: a randomised controlled trial of the clinical effectiveness and cost-effectiveness of chemotherapy with zoledronic acid, strontium-89, or both, in men with bony metastatic castration-refractory prostate cancer[J]. Health Technol Assess, 2016, 20(53): 1-288.
[67] WIRTH M, TAMMELA T, CICALESE V, et al. Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: efficacy and safety results of the Zometa European Study (ZEUS)[J]. European urology, 2015, 67(3): 482-491.
[68] SMITH M R, SAAD F, COLEMAN R, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial[J]. Lancet (London, England), 2012, 379(9810): 39-46.
[69] BEER T M, ARMSTRONG A J, RATHKOPF D E, et al. Enzalutamide in metastatic prostate cancer before chemotherapy[J]. N Engl J Med, 2014, 371(5): 424-433.
[70] ANTONARAKIS E S, LU C, LUBER B, et al. Clinical Significance of Androgen Receptor Splice Variant-7 mRNA Detection in Circulating Tumor Cells of Men With Metastatic Castration-Resistant Prostate Cancer Treated With First- and Second-Line Abiraterone and Enzalutamide[J]. J Clin Oncol, 2017, 35(19): 2149-2156.
[71] SAXBY H, MIKROPOULOS C, BOUSSIOS S. An Update on the Prognostic and Predictive Serum Biomarkers in Metastatic Prostate Cancer[J]. Diagnostics (Basel), 2020, 10(8): 549.
[72] DIMITROFF C J, DESCHENY L, TRUJILLO N, et al. Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells[J]. Cancer Res, 2005, 65(13): 5750-5760.
[73] CLARKE N W, HART C A, BROWN M D. Molecular mechanisms of metastasis in prostate cancer[J]. Asian J Androl, 2009, 11(1): 57-67.
[74] SMITH B N, ODERO-MARAH V A. The role of Snail in prostate cancer[J]. Cell Adh Migr, 2012, 6(5): 433-441.
[75] PELED A, KLEIN S, BEIDER K, et al. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies[J]. Cytokine, 2018, 109: 11-16.
[76] SUN Y X, FANG M, WANG J, et al. Expression and activation of alpha v beta 3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells[J]. Prostate, 2007, 67(1): 61-73.
[77] HU Y, LI X, ZHANG Q, et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss[J]. 2021, 6(9): 2905-2913.
[78] TAICHMAN R S, COOPER C, KELLER E T, et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone[J]. Cancer Res, 2002, 62(6): 1832-1837.
[79] GREENBAUM A, HSU Y M, DAY R B, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance[J]. Nature, 2013, 495(7440): 227-230.
[80] MCCABE N P, DE S, VASANJI A, et al. Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling[J]. Oncogene, 2007, 26(42): 6238-6243.
[81] HALL C L, DAI J, VAN GOLEN K L, et al. Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone[J]. Cancer Res, 2006, 66(17): 8648-8654.
[82] SOTTNIK J L, DAIGNAULT-NEWTON S, ZHANG X, et al. Integrin alpha2beta 1 (α2β1) promotes prostate cancer skeletal metastasis[J]. Clin Exp Metastasis, 2013, 30(5): 569-578.
[83] CHEN C, ZHANG Q, LIU S, et al. IL-17 and insulin/IGF1 enhance adhesion of prostate cancer cells to vascular endothelial cells through CD44-VCAM-1 interaction[J]. Prostate, 2015, 75(8): 883-895.
[84] LYNCH C C, HIKOSAKA A, ACUFF H B, et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL[J]. Cancer Cell, 2005, 7(5): 485-496.
[85] FURESI G, RAUNER M, HOFBAUER L C. Emerging Players in Prostate Cancer-Bone Niche Communication[J]. Trends Cancer, 2021, 7(2): 112-121.
[86] ZHANG X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer[J]. Cancer Commun (Lond), 2019, 39(1): 76.
[87] JUNG Y, KIM J K, SHIOZAWA Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis[J]. Nat Commun, 2013, 4: 1795.
[88] MISHRA S, TANG Y, WANG L, et al. Blockade of transforming growth factor-beta (TGFβ) signaling inhibits osteoblastic tumorigenesis by a novel human prostate cancer cell line[J]. Prostate, 2011, 71(13): 1441-1454.
[89] SHIOZAWA Y, HAVENS A M, JUNG Y, et al. Annexin II/annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer[J]. J Cell Biochem, 2008, 105(2): 370-380.
[90] JUNG Y, WANG J, SONG J, et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation[J]. Blood, 2007, 110(1): 82-90.
[91] GHAJAR C J N R C. Metastasis prevention by targeting the dormant niche[J]. 2015, 15(4): 238-247.
[92] JUNG Y, WANG J, LEE E, et al. Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow[J]. Mol Cancer Res, 2015, 13(1): 197-207.
[93] TAICHMAN R S, PATEL L R, BEDENIS R, et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation[J]. PloS one, 2013, 8(4): e61873.
[94] SOSA M S, PARIKH F, MAIA A G, et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes[J]. Nat Commun, 2015, 6: 6170.
[95] ARMSTRONG A P, MILLER R E, JONES J C, et al. RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes[J]. Prostate, 2008, 68(1): 92-104.
[96] BERISH R B, ALI A N, TELMER P G, et al. Translational models of prostate cancer bone metastasis[J]. Nat Rev Urol, 2018, 15(7): 403-421.
[97] REN G, ESPOSITO M, KANG Y. Bone metastasis and the metastatic niche[J]. J Mol Med (Berl), 2015, 93(11): 1203-1212.
[98] SOHAIL A, SHERIN L, BUTT S I, et al. Role of key players in paradigm shifts of prostate cancer bone metastasis[J]. Cancer Manag Res, 2018, 10: 1619-1626.
[99] LIN S C, YU-LEE L Y, LIN S H. Osteoblastic Factors in Prostate Cancer Bone Metastasis[J]. Curr Osteoporos Rep, 2018, 16(6): 642-647.
[100] TURNER C J, EDWARDS C M. The Role of the Microenvironment in Prostate Cancer-Associated Bone Disease[J]. Curr Osteoporos Rep, 2016, 14(5): 170-177.
[101] LUO Y, CHEN C. The roles and regulation of the KLF5 transcription factor in cancers[J]. Cancer Sci, 2021, 112(6): 2097-2117.
[102] ZHAO D, ZHENG H Q, ZHOU Z, et al. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation[J]. Cancer Res, 2010, 70(11): 4728-4738.
[103] ZHI X, CHEN C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases[J]. Cell Mol Life Sci, 2012, 69(9): 1425-1434.
[104] ZHAO C, LI Y, QIU W, et al. C5a induces A549 cell proliferation of non-small cell lung cancer via GDF15 gene activation mediated by GCN5-dependent KLF5 acetylation[J]. Oncogene, 2018, 37(35): 4821-4837.
[105] LI Y, KONG R, CHEN H, et al. Overexpression of KLF5 is associated with poor survival and G1/S progression in pancreatic cancer[J]. Aging (Albany NY), 2019, 11(14): 5035-5057.
[106] WANG Q Y, PENG L, CHEN Y, et al. Characterization of super-enhancer-associated functional lncRNAs acting as ceRNAs in ESCC[J]. Mol Oncol, 2020, 14(9): 2203-2230.
[107] LIAO Q, CHEN L, ZHANG N, et al. Network analysis of KLF5 targets showing the potential oncogenic role of SNHG12 in colorectal cancer[J]. Cancer Cell Int, 2020, 20: 439.
[108] LIU Z, LIU X, LIU S, et al. Cholesterol promotes the migration and invasion of renal carcinoma cells by regulating the KLF5/miR-27a/FBXW7 pathway[J]. Biochem Biophys Res Commun, 2018, 502(1): 69-75.
[109] SUN L, ZHOU X, LI Y, et al. KLF5 regulates epithelial-mesenchymal transition of liver cancer cells in the context of p53 loss through miR-192 targeting of ZEB2[J]. Cell Adh Migr, 2020, 14(1): 182-194.
[110] ZHENG B, HAN M, SHU Y N, et al. HDAC2 phosphorylation-dependent Klf5 deacetylation and RARα acetylation induced by RAR agonist switch the transcription regulatory programs of p21 in VSMCs[J]. Cell Res, 2011, 21(10): 1487-1508.
[111] WANG C, NIE Z, ZHOU Z, et al. The interplay between TEAD4 and KLF5 promotes breast cancer partially through inhibiting the transcription of p27Kip1[J]. Oncotarget, 2015, 6(19): 17685-17697.
[112] MA J B, BAI J Y, ZHANG H B, et al. KLF5 inhibits STAT3 activity and tumor metastasis in prostate cancer by suppressing IGF1 transcription cooperatively with HDAC1[J]. Cell Death Dis, 2020, 11(6): 466.
[113] MEYER S E, HASENSTEIN J R, BAKTULA A, et al. Kruppel-like factor 5 is not required for K-RasG12D lung tumorigenesis, but represses ABCG2 expression and is associated with better disease-specific survival[J]. Am J Pathol, 2010, 177(3): 1503-1513.
[114] LI J, ZHANG B, LIU M, et al. KLF5 Is Crucial for Androgen-AR Signaling to Transactivate Genes and Promote Cell Proliferation in Prostate Cancer Cells[J]. Cancers (Basel), 2020, 12(3): 748.
[115] CHEN C, BHALALA H, VESSELLA R, et al. KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer[J]. 2003, 55(2): 81-88.
[116] JIA J, ZHANG H B, SHI Q, et al. KLF5 downregulation desensitizes castration-resistant prostate cancer cells to docetaxel by increasing BECN1 expression and inducing cell autophagy[J]. Theranostics, 2019, 9(19): 5464-5477.
[117] CI X, XING C, ZHANG B, et al. KLF5 inhibits angiogenesis in PTEN-deficient prostate cancer by attenuating AKT activation and subsequent HIF1α accumulation[J]. Mol Cancer, 2015, 14: 91.
[118] GUO P, DONG X Y, ZHANG X, et al. Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification[J]. J Biol Chem, 2009, 284(10): 6071-6078.
[119] GUO P, ZHAO K W, DONG X Y, et al. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-beta-mediated induction in epithelial cells[J]. J Biol Chem, 2009, 284(27): 18184-18193.
[120] GUO P, DONG X Y, ZHAO K, et al. Opposing effects of KLF5 on the transcription of MYC in epithelial proliferation in the context of transforming growth factor beta[J]. J Biol Chem, 2009, 284(41): 28243-28252.
[121] LI X, ZHANG B, WU Q, et al. Interruption of KLF5 acetylation converts its function from tumor suppressor to tumor promoter in prostate cancer cells[J]. Int J Cancer, 2015, 136(3): 536-546.
[122] GUO P, XING C, FU X, et al. Ras inhibits TGF-β-induced KLF5 acetylation and transcriptional complex assembly via regulating SMAD2/3 phosphorylation in epithelial cells[J]. J Cell Biochem, 2020, 121(3): 2197-2208.
[123] TRIVEDI T, PAGNOTTI G M, GUISE T A, et al. The Role of TGF-β in Bone Metastases[J]. Biomolecules, 2021, 11(11): 1643.
[124] JUáREZ P, GUISE T A. TGF-β in cancer and bone: implications for treatment of bone metastases[J]. Bone, 2011, 48(1): 23-29.
[125] PENG D, FU M, WANG M, et al. Targeting TGF-β signal transduction for fibrosis and cancer therapy[J]. Mol Cancer, 2022, 21(1): 104.
[126] HUANG C Y, CHUNG C L, HU T H, et al. Recent progress in TGF-β inhibitors for cancer therapy[J]. Biomed Pharmacother, 2021, 134: 111046.
[127] COLAK S, TEN DIJKE P. Targeting TGF-β Signaling in Cancer[J]. Trends Cancer, 2017, 3(1): 56-71.
[128] ZHANG B, LI Y, WU Q, et al. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer[J]. 2021, 12(1): 1714.
[129] LI Y, ZHANG B, XIANG L, et al. TGF-β causes Docetaxel resistance in Prostate Cancer via the induction of Bcl-2 by acetylated KLF5 and Protein Stabilization[J]. Theranostics, 2020, 10(17): 7656-7670.
[130] SU M, ZHANG Q, BAI X, et al. Availability, cost, and prescription patterns of antihypertensive medications in primary health care in China: a nationwide cross-sectional survey[J]. Lancet, 2017, 390(10112): 2559-2568.
[131] NOSENGO N. Can you teach old drugs new tricks?[J]. Nature, 2016, 534(7607): 314-316.
[132] PAUL S M, MYTELKA D S, DUNWIDDIE C T, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge[J]. Nat Rev Drug Discov, 2010, 9(3): 203-214.
[133] SLEIRE L, FøRDE H E, NETLAND I A, et al. Drug repurposing in cancer[J]. Pharmacol Res, 2017, 124: 74-91.
[134] VERBAANDERD C, MEHEUS L, HUYS I, et al. Repurposing Drugs in Oncology: Next Steps[J]. 2017, 3(8): 543-546.
[135] AMINZADEH-GOHARI S, WEBER D, VIDALI S, et al. From old to new - Repurposing drugs to target mitochondrial energy metabolism in cancer[J]. 2020, 98: 211-223.
[136] CORSELLO S M, BITTKER J A, LIU Z, et al. The Drug Repurposing Hub: a next-generation drug library and information resource[J]. Nat Med, 2017, 23(4): 405-408.
[137] ZHANG Z, ZHOU L, XIE N, et al. Overcoming cancer therapeutic bottleneck by drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 113.
[138] KIRTONIA A, GALA K, FERNANDES S, et al. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics[J]. 2021, 68: 258-278.
[139] SPRATT D, ZHANG C, ZUMSTEG Z, et al. Metformin and prostate cancer: reduced development of castration-resistant disease and prostate cancer mortality[J]. 2013, 63(4): 709-716.
[140] RICHARDS K A, LIOU J-I, CRYNS V L, et al. Metformin use is associated with improved survival for patients with advanced prostate cancer on androgen deprivation therapy[J]. The Journal of urology, 2018, 200(6): 1256-1263.
[141] LIU Q, TONG D, LIU G, et al. Metformin Inhibits Prostate Cancer Progression by Targeting Tumor-Associated Inflammatory Infiltration[J]. 2018, 24(22): 5622-5634.
[142] PARVATHANENI V, KULKARNI N S, MUTH A, et al. Drug repurposing: a promising tool to accelerate the drug discovery process[J]. Drug Discov Today, 2019, 24(10): 2076-2085.
[143] 韩苏军, 张思维, 陈万青, et al. 中国前列腺癌发病现状和流行趋势分析[J]. 2013, 18(004): 330-334.
[144] DINATALE A, FATATIS A. The Bone Microenvironment in Prostate Cancer Metastasis[J]. Adv Exp Med Biol, 2019, 1210: 171-184.
[145] KIRBY M, HIRST C, CRAWFORD E J I J O C P. Characterising the castration-resistant prostate cancer population: a systematic review[J]. 2011, 65(11): 1180-1192.
[146] HIMELSTEIN A L, FOSTER J C, KHATCHERESSIAN J L, et al. Effect of Longer-Interval vs Standard Dosing of Zoledronic Acid on Skeletal Events in Patients With Bone Metastases: A Randomized Clinical Trial[J]. Jama, 2017, 317(1): 48-58.
[147] SMITH M R, SAAD F, OUDARD S, et al. Denosumab and bone metastasis-free survival in men with nonmetastatic castration-resistant prostate cancer: exploratory analyses by baseline prostate-specific antigen doubling time[J]. 2013, 31(30): 3800.
[148] LIU R, SHI P, ZHOU Z, et al. Krüpple-like factor 5 is essential for mammary gland development and tumorigenesis[J]. J Pathol, 2018, 246(4): 497-507.
[149] XING C, FU X, SUN X, et al. Different expression patterns and functions of acetylated and unacetylated Klf5 in the proliferation and differentiation of prostatic epithelial cells[J]. PloS one, 2013, 8(6): e65538.
[150] ZHAO T, LIU C, CHEN L. Roles of Klf5 Acetylation in the Self-Renewal and the Differentiation of Mouse Embryonic Stem Cells[J]. PloS one, 2015, 10(9): e0138168.
[151] AKHURST R J, HATA A. Targeting the TGFβ signalling pathway in disease[J]. Nat Rev Drug Discov, 2012, 11(10): 790-811.
[152] LIU S, REN J, TEN DIJKE P. Targeting TGFβ signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 8.
[153] MORRIS J C, TAN A R, OLENCKI T E, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma[J]. PloS one, 2014, 9(3): e90353.
[154] ANDERTON M J, MELLOR H R, BELL A, et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors[J]. Toxicol Pathol, 2011, 39(6): 916-924.
[155] YANG H, CHEN X, LI K, et al. Repurposing old drugs as new inhibitors of the ubiquitin-proteasome pathway for cancer treatment[J]. 2021, 68: 105-122.
[156] CUKIERMAN E, PANKOV R, STEVENS D, et al. Taking cell-matrix adhesions to the third dimension[J]. 2001, 294(5547): 1708-1712.
[157] XU X, FARACH-CARSON M C, JIA X. Three-dimensional in vitro tumor models for cancer research and drug evaluation[J]. Biotechnol Adv, 2014, 32(7): 1256-1268.
[158] UNGER C, KRAMER N, WALZL A, et al. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development[J]. Adv Drug Deliv Rev, 2014, 79-80: 50-67.
[159] LEE J, SHIN D, ROH J L. Development of an in vitro cell-sheet cancer model for chemotherapeutic screening[J]. Theranostics, 2018, 8(14): 3964-3973.
[160] DOMíNGUEZ-ASENJO B, GUTIéRREZ-CORBO C, ÁLVAREZ-BARDóN M, et al. Ex Vivo Phenotypic Screening of Two Small Repurposing Drug Collections Identifies Nifuratel as a Potential New Treatment against Visceral and Cutaneous Leishmaniasis[J]. ACS Infect Dis, 2021, 7(8): 2390-2401.
[161] MENDLING W, MAILLAND F. Microbiological and pharmaco-toxicological profile of nifuratel and its favourable risk/benefit ratio for the treatment of vulvo-vaginal infections. A review[J]. Arzneimittelforschung, 2002, 52(1): 8-13.
[162] DI SANTO N, EHRISMAN J. A functional perspective of nitazoxanide as a potential anticancer drug[J]. Mutat Res, 2014, 768: 16-21.
[163] SIMMONS J K, HILDRETH B E, 3RD, SUPSAVHAD W, et al. Animal Models of Bone Metastasis[J]. Vet Pathol, 2015, 52(5): 827-841.
[164] DAI J, HENSEL J, WANG N, et al. Mouse models for studying prostate cancer bone metastasis[J]. Bonekey Rep, 2016, 5: 777.
[165] SHIOZAWA Y, PEDERSEN E A, HAVENS A M, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow[J]. J Clin Invest, 2011, 121(4): 1298-1312.
[166] KUCHIMARU T, KATAOKA N, NAKAGAWA K, et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries[J]. Nat Commun, 2018, 9(1): 2981.
[167] WHITE C A, JR. Nitazoxanide: a new broad spectrum antiparasitic agent[J]. Expert Rev Anti Infect Ther, 2004, 2(1): 43-49.
[168] ROSSIGNOL J F. Nitazoxanide: a first-in-class broad-spectrum antiviral agent[J]. Antiviral Res, 2014, 110: 94-103.
[169] ELAZAR M, LIU M, MCKENNA S A, et al. The anti-hepatitis C agent nitazoxanide induces phosphorylation of eukaryotic initiation factor 2alpha via protein kinase activated by double-stranded RNA activation[J]. Gastroenterology, 2009, 137(5): 1827-1835.
[170] ABD EL-FADEAL N M, NAFIE M S, M K E-K, et al. Antitumor Activity of Nitazoxanide against Colon Cancers: Molecular Docking and Experimental Studies Based on Wnt/β-Catenin Signaling Inhibition[J]. Int J Mol Sci, 2021, 22(10): 5213.
[171] RIPANI P, DELP J, BODE K, et al. Thiazolides promote G1 cell cycle arrest in colorectal cancer cells by targeting the mitochondrial respiratory chain[J]. Oncogene, 2020, 39(11): 2345-2357.
[172] DI SANTO N, EHRISMAN J. Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose?[J]. Cancers (Basel), 2013, 5(3): 1163-1176.
[173] SENKOWSKI W, ZHANG X, OLOFSSON M H, et al. Three-Dimensional Cell Culture-Based Screening Identifies the Anthelmintic Drug Nitazoxanide as a Candidate for Treatment of Colorectal Cancer[J]. Mol Cancer Ther, 2015, 14(6): 1504-1516.
[174] EK F, BLOM K, SELVIN T, et al. Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma[J]. Sci Rep, 2022, 12(1): 8943.
[175] WANG X, SHEN C, LIU Z, et al. Nitazoxanide, an antiprotozoal drug, inhibits late-stage autophagy and promotes ING1-induced cell cycle arrest in glioblastoma[J]. Cell Death Dis, 2018, 9(10): 1032.
[176] MACEDO F, LADEIRA K, PINHO F, et al. Bone Metastases: An Overview[J]. Oncol Rev, 2017, 11(1): 321.
[177] HALABI S, KELLY W K, MA H, et al. Meta-Analysis Evaluating the Impact of Site of Metastasis on Overall Survival in Men With Castration-Resistant Prostate Cancer[J]. J Clin Oncol, 2016, 34(14): 1652-1659.
[178] LUND L, BORRE M, JACOBSEN J, et al. Impact of comorbidity on survival of Danish prostate cancer patients, 1995-2006: a population-based cohort study[J]. Urology, 2008, 72(6): 1258-1262.
[179] CROUCHER P I, MCDONALD M M, MARTIN T J. Bone metastasis: the importance of the neighbourhood[J]. Nat Rev Cancer, 2016, 16(6): 373-386.
[180] EL-AMM J, ARAGON-CHING J B. Targeting Bone Metastases in Metastatic Castration-Resistant Prostate Cancer[J]. Clin Med Insights Oncol, 2016, 10(Suppl 1): 11-19.
[181] BIENZ M, SAAD F. Management of bone metastases in prostate cancer: a review[J]. Curr Opin Support Palliat Care, 2015, 9(3): 261-267.
[182] STURGE J, CALEY M P, WAXMAN J. Bone metastasis in prostate cancer: emerging therapeutic strategies[J]. Nat Rev Clin Oncol, 2011, 8(6): 357-368.
[183] HOFBAUER L C, BOZEC A, RAUNER M, et al. Novel approaches to target the microenvironment of bone metastasis[J]. Nat Rev Clin Oncol, 2021, 18(8): 488-505.
[184] ELL B, KANG Y. SnapShot: Bone Metastasis[J]. Cell, 2012, 151(3): 690-690.e691.
[185] KELLER E T, BROWN J. Prostate cancer bone metastases promote both osteolytic and osteoblastic activity[J]. J Cell Biochem, 2004, 91(4): 718-729.
[186] ZHANG B, LI Y, WU Q, et al. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer[J]. Nat Commun, 2021, 12(1): 1714.
[187] LI C H, Lü Z R, ZHAO Z D, et al. Nitazoxanide, an Antiprotozoal Drug, Reduces Bone Loss in Ovariectomized Mice by Inhibition of RANKL-Induced Osteoclastogenesis[J]. Front Pharmacol, 2021, 12: 781640.
[188] MUSA J, AYNAUD M M, MIRABEAU O, et al. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis[J]. Cell Death Dis, 2017, 8(6): e2895.
[189] BAYLEY R, WARD C, GARCIA P. MYBL2 amplification in breast cancer: Molecular mechanisms and therapeutic potential[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188407.
[190] CHEN X, LU Y, YU H, et al. Pan-cancer analysis indicates that MYBL2 is associated with the prognosis and immunotherapy of multiple cancers as an oncogene[J]. Cell Cycle, 2021, 20(21): 2291-2308.
[191] LIU W, SHEN D, JU L, et al. MYBL2 promotes proliferation and metastasis of bladder cancer through transactivation of CDCA3[J]. Oncogene, 2022, 41(41): 4606-4617.
[192] WEI M, YANG R, YE M, et al. MYBL2 accelerates epithelial-mesenchymal transition and hepatoblastoma metastasis via the Smad/SNAI1 pathway[J]. Am J Cancer Res, 2022, 12(5): 1960-1981.
[193] BAR-SHIRA A, PINTHUS J H, ROZOVSKY U, et al. Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft[J]. Cancer Res, 2002, 62(23): 6803-6807.
[194] LI Q, WANG M, HU Y, et al. MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer[J]. Theranostics, 2021, 11(12): 5794-5812.
[195] LV X R, ZHENG B, LI S Y, et al. Synthetic retinoid Am80 up-regulates apelin expression by promoting interaction of RARα with KLF5 and Sp1 in vascular smooth muscle cells[J]. Biochem J, 2013, 456(1): 35-46.
[196] FASANO M, CURRY S, TERRENO E, et al. The extraordinary ligand binding properties of human serum albumin[J]. IUBMB Life, 2005, 57(12): 787-796.
[197] OTAGIRI M. A molecular functional study on the interactions of drugs with plasma proteins[J]. Drug Metab Pharmacokinet, 2005, 20(5): 309-323.
[198] ZHIVKOVA Z D. Studies on drug-human serum albumin binding: the current state of the matter[J]. Curr Pharm Des, 2015, 21(14): 1817-1830.
[199] VUIGNIER K, SCHAPPLER J, VEUTHEY J L, et al. Drug-protein binding: a critical review of analytical tools[J]. Anal Bioanal Chem, 2010, 398(1): 53-66.
[200] BAKAR K A, FEROZ S R. A critical view on the analysis of fluorescence quenching data for determining ligand-protein binding affinity[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 223: 117337.
[201] YAO H, WYNENDAELE E, XU X, et al. Circular dichroism in functional quality evaluation of medicines[J]. J Pharm Biomed Anal, 2018, 147: 50-64.

所在学位评定分委会
生物学
国内图书分类号
R73-37
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543973
专题南方科技大学医学院
推荐引用方式
GB/T 7714
黄青青. 硝唑尼特抗乙酰化 KLF5 所致前列腺癌骨 转移的发现与机制研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930741-黄青青-南方科技大学医(6132KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[黄青青]的文章
百度学术
百度学术中相似的文章
[黄青青]的文章
必应学术
必应学术中相似的文章
[黄青青]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。