中文版 | English
题名

非球面红外透镜的超声辅助直线刃超精密切削技术研究

其他题名
ULTRASONIC-ASSISTED ULTRA-PRECISION TURNING OF INFRARED ASPHERICAL LENSES WITH STRAIGHT-NOSED DIAMOND CUTTING TOOLS
姓名
姓名拼音
SUN Linhe
学号
12032419
学位类型
硕士
学位专业
080101 一般力学与力学基础
学科门类/专业学位类别
08 工学
导师
吴勇波
导师单位
机械与能源工程系
论文答辩日期
2023-05-15
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

红外探测技术能在任何环境下提供可靠、准确的实时检测,尤其在夜间和恶劣天气下比毫米波、激光雷达等更具有优势。其中中远场红外探测器是自动驾驶、无人机、机器人实现全天候服役的核心部件,其推广应用的关键是非球面红外镜的高精度低成本制造。然而目前常用的高精度非球面加工工艺为传统的铣磨和研磨抛光,其加工效率低,加工同一批次产品稳定性也难以控制。超精密切削加工技术具有加工效率高,工艺流程简单,产品一致性远优于传统的加工方式,然而加工过程中金刚石刀具磨损限制了这项技术的广泛应用。因此,面对上述问题,亟需研究一种适合于超精密切削的新的加工方法和加工设备,以探求一种适用于红外光学非球面镜的高精度、低损耗、大批量生产的加工工艺方案。

本课题以红外多晶CVD硒化锌凸非球面为研究对象,以直线刃刀具代替传统的圆弧刃刀具,提出了直线刃滑移的新的加工方法,并在超精密切削中沿直线刃切削刃方向施加了一维超声振动,以实现红外领域内光学非球面镜片低损伤、高效的超精密加工,主要进行了以下工作:

首先,依据超声辅助直线刃切削凸非球面的加工原理,在现有超精密机床上搭建了切削加工实验平台和超声切削装置,并探究了新的加工方法下的刀具路径规划算法,最终在铜上进行了非球面预实验验证了新的加工工艺获得的表面质量更好。

在上述加工方法和实验装置研究的基础上,建立了直线刃和圆弧刃切削非球面的理论模型,研究了不同前角,进给速度,加工工艺下超精密切削硒化锌的加工性能和表面质量,系统地对表面形貌,切屑,切削力及加工中的相变和刀具磨损进行了分析,采用新的工艺加工的硒化锌PV值在0.12 μm左右,表面粗糙度Ra仅有1.2 nm

最终在大进给速度下在直线刃滑移切削方法上施加一维超声振动,探究了有无超声下加工后工件的表面质量和刀具磨损。结果表明,施加超声振动能够在大进给速度下保证表面质量的同时降低刀具磨损。

关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 李淑萍. ZnSe晶体单点金刚石车削加工技术研究[D].昆明理工大学,2017.
[2] ZHANG Q, LI H, MA Y, et al. ZnSe nanostructures: Synthesis, properties and applications [J]. Prog Mater Sci, 2016, 83: 472-535.
[3] LU X, LAI Z, ZHANG R, et al. Ultrabroadband mid-infrared emission from Cr2+-doped infrared transparent chalcogenide glass ceramics embedded with thermally grown ZnS nanorods [J]. J Eur Ceram Soc, 2019, 39(11): 3373-3390.
[4] DAI L, PU C, LI H, et al. Characterization of metallization and amorphization for GaP under different hydrostatic environments in diamond anvil cell up to 40.0 GPa [J]. Rev Sci Instrum, 2019, 90(6): 066103.
[5] Liu L M, LINDAUER G, ALEXANDER W B, et al. Surface preparation of ZnSe by chemical methods[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1995, 13(6): 2238-2244.
[6] ABAKUMOVA E V, ACHASOV M N, KRASNOV A A, et al. The system for delivery of IR laser radiaton into high vacuum[J]. Journal of Instrumentation, 2015, 10(09): T09001.
[7] JUMARE A I, ABOU-EL-HOSSEIN K, ABDULKADIR L. Review of Ultra-High Precision Diamond Turning of Silicon for Infrared Optics [J]. PONTE International Scientific Researchs Journal, 2017, 73(11):138.
[8] MISHRA V, KUMAR N, SHARMA R, et al. Development of Aspheric Lenslet Array by Slow Tool Servo Machining [J]. Materials Today: Proceedings, 2020, 24: 1602-1607.
[9] 马一鸣.超精密切削单晶锗的裂纹萌生与扩展行为研究[D].昆明理工大学,2020.
[10] 李琛.稀土氧化物激光晶体超精密磨削机理及工艺研究[D].哈尔滨工业大学,2019.
[11] 郭健.KDP晶体超精密加工切削力的理论及实验研究[D].哈尔滨工业大学,2007.
[12] ZHANG K, CAI Y, SHIMIZU Y, et al. High-Precision Cutting Edge Radius Measurement of Single Point Diamond Tools Using an Atomic Force Microscope and a Reverse Cutting Edge Artifact [J]. Applied Sciences, 2020, 10(14):4799.
[13] YAN J, TAMAKI J I, SYOJI K, et al. Single-point diamond turning of CaF2 for nanometric surface [J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(9-10): 640-660.
[14] YAN J, SYOJI K, KURIYAGAWA T, et al. Ductile regime turning at large tool feed[J]. Journal of Materials Processing Technology, 2002, 121(2-3): 363-372.
[15] ZHANG J, SUZUKI N, WANG Y, et al. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond[J]. Journal of Materials Processing Technology, 2014, 214(11): 2644-2659.
[16] YANG Z, ZHU L, ZHANG G, et al. Review of ultrasonic vibration-assisted machining in advanced materials[J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594.
[17] BAI W, WANG K, DU D, et al. Design of an ultrasonic elliptical vibration device with two stationary points for ultra-precision cutting[J]. Ultrasonics, 2022, 120: 106662.
[18] CHEN Z, YU Q, SHIMADA K, et al. High-precision and high-efficiency fabrication of blazed grating by ultrasonic-assisted ultraprecision planing [J]. Journal of Materials Processing Technology, 2023, 311: 117802.
[19] NATH C, RAHMAN M. Effect of machining parameters in ultrasonic vibration cutting [J]. International Journal of Machine Tools and Manufacture, 2008, 48(9): 965-974.
[20] BAI W, WANG K, DU D, et al. Design of an ultrasonic elliptical vibration device with two stationary points for ultra-precision cutting [J]. Ultrasonics, 2022, 120: 106662.
[21] BREHL D A, DOW T J P E. Review of vibration-assisted machining [J]. Precision engineering, 2008, 32(3): 153-172.
[22] ZOU P, XU Y, HE Y, et al. Experimental investigation of ultrasonic vibration assisted turning of 304 austenitic stainless steel [J]. Shock and Vibration, 2015, 2015.
[23] FANG F Z, VENKATESH V C, ZHANG G X. Diamond Turning of Soft Semiconductors to Obtain Nanometric Mirror Surfaces [J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(9): 37-41.
[24] HUANG H, LI X, MU D, et al. Science and art of ductile grinding of brittle solids[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103675.
[25] HUANG H, LAWN B R, COOK R F, et al. Critique of materials‐based models of ductile machining in brittle solids [J]. J Am Ceram Soc, 2020, 103(11): 6096-100.
[26] KOPAC J, KRAJNIK P. High-performance grinding—a review[J]. Journal of Materials Processing Technology, 2006, 175(1-3): 278-284.
[27] MAMALIS A G, GRABCHENKO A I, HORVATH M, et al. Ultraprecision metal removal processing of mirror-surfaces [J]. Journal of Materials Processing Technology, 2001, 108(3): 269-277.
[28] GUO Z, LEE T, YUE T M, et al. A study of ultrasonic-aided wire electrical discharge machining[J]. Journal of materials processing technology, 1997, 63(1-3): 823-828.
[29] HUANG W, YAN J. Surface formation mechanism in ultraprecision diamond turning of coarse-grained polycrystalline ZnSe [J]. International Journal of Machine Tools and Manufacture, 2020, 153: 103554.
[30] 孙璐莹 沈厂. 超精密机械加工的前景分析[J].通讯世界, 2015, (08): 233.
[31] YIN Z Q, DAI Y F, LI S Y, et al. Fabrication of off-axis aspheric surfaces using a slow tool servo [J]. International Journal of Machine Tools and Manufacture, 2011, 51(5): 404-411.
[32] MUKAIDA M, YAN J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo [J]. International Journal of Machine Tools and Manufacture, 2017, 115: 2-14.
[33] LI C J, LI Y, GAO X, et al. Ultra-precision machining of Fresnel lens mould by single-point diamond turning based on axis B rotation [J]. The International Journal of Advanced Manufacturing Technology, 2014, 77(5-8): 907-913.
[34] CHAUDHARI A, SOH Z Y, WANG H, et al. Rehbinder effect in ultraprecision machining of ductile materials [J]. International Journal of Machine Tools and Manufacture, 2018, 133: 47-60.
[35] YU D P, GAN S W, WONG Y S, et al. Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces [J]. Int J Adv Manuf Tech, 2012, 63(9-12): 1137-1152.
[36] LIU K, LI X P, LIANG S Y. The mechanism of ductile chip formation in cutting of brittle materials [J]. The International Journal of Advanced Manufacturing Technology, 2006, 33(9-10): 875-884.
[37] OHTA T, YAN J, YAJIMA S, et al. High-efficiency machining of single-crystal germanium using large-radius diamond tools[J]. International Journal of Surface Science and Engineering, 2007, 1(4): 374-392.
[38] YAN J, SYOJI, K. AND KURIYAGAWA, T. Fabrication of large-diameter single-crystal silicon aspheric lens by straight-line enveloping diamond-turning method [J]. Journal of the Japan Society for Precision Engineering, 2002, 68: 1561-1565.
[39] YAN J W, TAMAKI J, SYOJI K, et al. D Development of a Novel Ductile-Machining System for Fabricating Axisymmetrical Aspherical Surfaces on Brittle Materials[C] Key Engineering Materials. Trans Tech Publications Ltd, 2003, 238: 43-48.
[40] YAN J, MAEKAWA K, TAMAKI J I, et al. Micro grooving on single-crystal germanium for infrared Fresnel lenses [J]. Journal of Micromechanics and Microengineering, 2005, 15(10): 1925-1931.
[41] JIWANG YANA, KATSUO SYOJIA, TSUNEMOTO KURIYAGAWAA, HIROFUMI SUZUKIB. Ductile regime turning at large tool feed[J]. Journal of Materials Processing Technology, 2002, 121(2-3): 363-372.
[42] 宗锦辉,杨亨勇,余安达,等.超精密加工技术综述[J].中国科技信息,2021.
[43] YANG Z, ZHU L, ZHANG G, et al. Review of ultrasonic vibration-assisted machining in advanced materials [J]. International Journal of Machine Tools and Manufacture, 2020, 156: 103594.
[44] BREHL D E A, DOW T A. Review of vibration-assisted machining [J]. Precision engineering, 2008, 32(3): 153-172.
[45] SON S, LIM H, AHN J. The effect of vibration cutting on minimum cutting thickness [J]. International Journal of Machine Tools and Manufacture, 2006, 46(15): 2066-2072.
[46] JIN M, MURAKAWA M. Development of a practical ultrasonic vibration cutting tool system [J]. Journal of Materials Processing Technology, 2001, 113(1-3): 342-367.
[47] MUHAMMAD R, HUSSAIN M S, MAUROTTO A, et al. Analysis of a free machining α+ β titanium alloy using conventional and ultrasonically assisted turning [J]. Journal of Materials Processing Technology, 2014, 214(4): 906-915.
[48] ZHOU M, EOW Y T, NGOI B K A, et al. Vibration-assisted precision machining of steel with PCD tools [J]. Mater Manuf Process, 2003, 18(5): 825-834.
[49] XIAO M, WANG Q M, SATO K, et al. The effect of tool geometry on regenerative instability in ultrasonic vibration cutting [J]. International Journal of Machine Tools and Manufacture, 2006, 46(5): 492-509.
[50] MORIWAKI T, SHAMOTO E, INOUE K. Ultraprecision ductile cutting of glass by applying ultrasonic vibration [J]. CIRP annals, 1992, 41(1): 141-144.
[51] NATH C, RAHMAN M, NEO K S. Machinability study of tungsten carbide using PCD tools under ultrasonic elliptical vibration cutting [J]. International Journal of Machine Tools and Manufacture, 2009, 49(14): 1089-1095.
[52] KUMABE J, FUCHIZAWA K, SOUTOME T, et al. Ultrasonic superposition vibration cutting of ceramics [J]. Precision Engineering, 1989, 11(2): 71-77.
[53] ZHOU M, WANG X J, NGOI B K A, et al. Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration [J]. Journal of Materials Processing Technology, 2002, 121(2-3): 243-251.
[54] BABITSKY V I, KALASHNIKOV A N, MEADOWS A, et al. Ultrasonically assisted turning of aviation materials [J]. Journal of materials processing technology, 2003, 132(1-3): 157-167.
[55] JUNG S, PRABHU M, LEE H. Peening the tip of a notch using ultrasonic cavitation [J]. Ultrasonics, 2018, 82: 322-336.
[56] SHAMOTO E, MORIWAKI T J C A. Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting [J]. CIRP annals, 1999, 48(1): 441-444.
[57] MORIWAKI T S E. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration. [J]. CIRP Ann Manuf Technol 1991, 40(1): 559-562.
[58] SHAMOTO E, MA C X, MORIWAKI T. Ultraprecision ductile cutting of glass by applying ultrasonic elliptical vibration cutting [J]. Precision Engineering, Nanotechnology, Vol 1, Proceedings, 1999: 408-411.
[59] ZHANG X, ARIF M, LIU K, et al. A model to predict the critical undeformed chip thickness in vibration-assisted machining of brittle materials [J]. International Journal of Machine Tools and Manufacture, 2013, 69: 57-66.
[60] ZHANG X, TNAY G L, LIU K, et al. Effect of apex offset inconsistency on hole straightness deviation in deep hole gun drilling of Inconel 718 [J]. International Journal of Machine Tools and Manufacture, 2018, 125: 123-132.
[61] WANG J J, ZHANG J F, FENG P F, et al. Damage formation and suppression in rotary ultrasonic machining of hard and brittle materials: A critical review [J]. Ceram Int, 2018, 44(2): 1227-1239.
[62] 周京博.非回转对称微结构表面超精车削轨迹生成及形状误差评价[D].哈尔滨工业大学,2013.
[63] GENG R, YANG X, XIE Q, et al. Ultra-precision diamond turning of ZnSe ceramics: Surface integrity and ductile regime machining mechanism [J]. Infrared Physics & Technology, 2021, 115: 103706.
[64] XIAO H, LIANG R, SPIRES O, et al. Evaluation of surface and subsurface damages for diamond turning of ZnSe crystal [J]. Opt Express, 2019, 27(20): 28364-28382.
[65] ZHOU M, ZHENG G, CHEN S. Identification and looping tool path generation for removing residual areas left by pocket roughing [J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(1-4): 765-778.
[66] WANG F, LI Y, ZHANG B, et al. Influence of process parameters on material removal during surface milling of curved carbon fiber-reinforced plastic (CFRP) components: evaluated by a novel residual height calculation method [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(11-12): 3405-3415.
[67] YU S, YAO P, XU J, et al. Profile error compensation in ultra-precision grinding of aspherical-cylindrical lens array based on the real-time profile of wheel and normal residual error [J]. Journal of Materials Processing Technology, 2023: 117849.
[68] ZHOU M, NGOI B K A. Factors affecting form accuracy in diamond turning of optical components [J]. Journal of Materials Processing Technology, 2003, 138(1-3): 586-590.
[69] MIR A, LUO X, SUN J. The investigation of influence of tool wear on ductile to brittle transition in single point diamond turning of silicon [J]. Wear, 2016, 364: 233-243.
[70] CHEN W, LU L, YANG K, et al. An experimental and theoretical investigation into multimode machine tool vibration with surface generation in flycutting [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 230(2): 381-396.
[71] PU C, DAI L D, LI H P, et al. Pressure-induced phase transitions of ZnSe under different pressure environments [J]. Aip Adv, 2019, 9(2):025004..
[72] ONO S. Phase transition in ZnSe at high pressures and high temperatures[J]. Journal of Physics and Chemistry of Solids, 2020, 141: 109409.
[73] YAO L D, WANG F F, SHEN X, et al. Structural stability and Raman scattering of ZnSe nanoribbons under high pressure [J]. Journal of Alloys and Compounds, 2009, 480(2): 798-801.
[74] NING S, FENG G, ZHANG H, et al. Fabrication, structure and optical application of Fe2+:ZnSe nanocrystalline film [J]. Optical Materials, 2019, 89: 473-490.
[75] GAVRUSHCHUK E M. Polycrystalline zinc selenide for IR optical applications [J]. Inorganic Materials, 2003, 39(9): 883-899.
[76] GAARD A, HALLBACK N, KRAKHMALEV P, et al. Temperature effects on adhesive wear in dry sliding contacts [J]. Wear, 2010, 268(7-8): 968-975.

所在学位评定分委会
力学
国内图书分类号
TH161
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543978
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
孙林河. 非球面红外透镜的超声辅助直线刃超精密切削技术研究[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032419-孙林河-机械与能源工程(7688KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[孙林河]的文章
百度学术
百度学术中相似的文章
[孙林河]的文章
必应学术
必应学术中相似的文章
[孙林河]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。