[1] 张茂川, 蔚伟, 刘丽丽. 仿人机器人理论研究综述[J]. 机械设计与制造, 2010(4): 3.
[2] 高海峰, 赵卫军, 吴少华. 类人机器人技术研究现状[J]. 机床与液压, 2017, 45(21): 9.
[3] VUKOBRATOVIC M, JURICIC D. Contribution to the synthesis of biped gait[C]//BME-16.1969: 1-6.
[4] KATO I. Hydraulically powered biped walking machine with a high carying capacity[Z]. 1972.
[5] HIRAI K, HIROSE M, HAIKAWA Y, et al. The development of Honda humanoid robot[C]//Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat.No.98CH36146): volume 2. 1998: 1321-1326.
[6] FUJITA M, KUROKI Y, ISHIDA T, et al. Autonomous behavior control architecture of entertainment humanoid robot SDR-4X[C]//Proceedings 2003 IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453): volume 1. 2003: 960-967.
[7] SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent ASIMO: system overviewand integration[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems: volume 3. 2002: 2478-2483.
[8] KANEKO K, KANEHIRO F, KAJITA S, et al. Humanoid robot HRP-2[C]//IEEE InternationalConference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004: volume 2. 2004:1083-1090.
[9] FENG S, WHITMAN E, XINJILEFU X, et al. Optimization based full body control for the atlasrobot[C/OL]//2014 IEEE-RAS International Conference on Humanoid Robots. 2014: 120-127.DOI: 10.1109/HUMANOIDS.2014.7041347.
[10] ZHANG W, HUANG Q, JIA D, et al. Mechanical design of a light weight and high stiffness humanoid arm of BHR-03[C]//2009 IEEE International Conference on Robotics and Biomimetics(ROBIO). 2009: 1681-1686.
[11] 陈翡. HIT-II 型仿人机器人的视觉系统设计及运动规划[D]. 哈尔滨工业大学.
[12] 纪军红. HIT-III 双足步行机器人步态规划研究[D]. 哈尔滨工业大学.
[13] ZHANG R. Design and application of innovation platform of full-size humanoid robots[C/OL]//2017 Chinese Automation Congress (CAC). 2017: 2904-2907. DOI: 10.1109/CAC.2017.8243271.
[14] DING J, HAN L, GE L, et al. Robust locomotion exploiting multiple balance strategies: Anobserver-based cascaded model predictive control approach[J/OL]. IEEE/ASME Transactionson Mechatronics, 2022, 27(4): 2089-2097. DOI: 10.1109/TMECH.2022.3173805.
[15] WANG Z, KOU L, KE W, et al. A spring compensation method for a low-cost biped robotbased on whole body control[J]. Biomimetics, 2023, 8(1): 126.
[16] KAJITA S, TANI K. Study of dynamic biped locomotion on rugged terrain-derivation andapplication of the linear inverted pendulum mode[C]//Proceedings. 1991 IEEE InternationalConference on Robotics and Automation: volume 2. 1991: 1405-1411.
[17] KAJITA S, KANEHIRO F, KANEKO K, et al. Biped walking pattern generation by usingpreview control of zero-moment point[C]//2003 IEEE International Conference on Roboticsand Automation (Cat. No.03CH37422): volume 2. 2003: 1620-1626.
[18] ENGLSBERGER J, OTT C, ALBU-SCHäFFER A. Three-dimensional bipedal walking controlusing divergent component of motion[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2013: 2600-2607.
[19] KAJITA S, BENALLEGUE M, CISNEROS R, et al. Biped walking pattern generation based onspatially quantized dynamics[C]//2017 IEEE-RAS 17th International Conference on HumanoidRobotics (Humanoids). 2017: 599-605.
[20] KAJITA S, BENALLEGUE M, CISNEROS R, et al. Position-based lateral balance control forknee-stretched biped robot[C]//2019 IEEE-RAS 19th International Conference on HumanoidRobots (Humanoids). 2019: 17-24.
[21] ONISHI Y, KAJITA S, IBUKI T, et al. Knee-stretched biped gait generation along spatiallyquantized curves[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2021: 5120-5127.
[22] GUAN K, YAMAMOTO K, NAKAMURA Y. Virtual-mass-ellipsoid inverted pendulum modeland its applications to 3D bipedal locomotion on uneven terrains[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019: 1401-1406.
[23] NISHIWAKI K, KAGAMI S, KUNIYOSHI Y, et al. Online generation of humanoid walkingmotion based on a fast generation method of motion pattern that follows desired ZMP[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems: volume 3. 2002: 2684-2689.
[24] HARADA K, KAJITA S, KANEHIRO F, et al. Real-Time planning of humanoid robot’s gaitfor force-controlled manipulation[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(1):53-62.
[25] MORISAWA M, HARADA K, KAJITA S, et al. Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution[C]//Proceedings 2007IEEE International Conference on Robotics and Automation. 2007: 3989-3994.
[26] SAMADI F, MOGHADAM-FARD H. Pattern generation for humanoid robot with natural ZMPtrajectory[C]//2014 Second RSI/ISM International Conference on Robotics and Mechatronics(ICRoM). 2014: 570-575.
[27] GARTON H, BUGMANN G, CULVERHOUSE P, et al. Humanoid robot gait generator: Footsteps calculation for trajectory following[C]//Advances in Autonomous Robotics Systems: 15thAnnual Conference, TAROS 2014, Birmingham, UK, September 1-3, 2014. Proceedings 15.Springer, 2014: 251-262.
[28] IMANISHI K, SUGIHARA T. Autonomous biped stepping control based on the LIPM potential[C]//2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids). 2018:280-283.
[29] 吴立勤, 吴家麒, 柯显信. 两足机器人步行运动参数对单足支撑期 ZMP 点影响的研究[J].光学精密工程, 2001, 9(6): 548-552.
[30] 赵建东. 仿人机器人行走误差自调整模糊控制研究[D]. 清华大学, 2004.
[31] 秦爱中. 基于 ZMP 的双足步行机器人步态规划研究[D]. 西安: 西北大学, 2005.
[32] 俞志伟. 双足机器人拟人步态规划与稳定性研究[D]. 哈尔滨工程大学, 2008.
[33] 赵宸, 陈殿生. 双足机器人 NAO 爬楼步态规划[J]. 机器人技术与应用, 2013(4): 31-36.
[34] 张志宏. 双足机器人快速在线步态切换及其实验[D]. 浙江大学, 2017.
[35] FU C, CHEN K. Gait synthesis and sensory control of stair climbing for a humanoid robot[J].IEEE Transactions on Industrial Electronics, 2008, 55(5): 2111-2120.
[36] KAJITA S, ASANO F, MORISWA M, et al. Vertical vibration suppression for a position controlled biped robot[C]//2013 IEEE International Conference on Robotics and Automation. 2013:1637-1642.
[37] POULAKAKIS I, GRIZZLE J W. The spring loaded inverted pendulum as the hybrid zerodynamics of an asymmetric hopper[J]. IEEE Transactions on Automatic Control, 2009, 54(8):1779-1793.
[38] KHATIB O, SENTIS L, PARK J, et al. Whole-body dynamic behavior and control of humanlike robots[J]. International Journal of Humanoid Robotics, 2004, 1(01): 29-43.
[39] XIE Z, BERSETH G, CLARY P, et al. Feedback control for cassie with deep reinforcement learning[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). IEEE, 2018: 1241-1246.
[40] HAMED K A, AMES A D. Nonholonomic hybrid zero dynamics for the stabilization of periodicorbits: Application to underactuated robotic walking[J]. IEEE Transactions on Control SystemsTechnology, 2019, 28(6): 2689-2696.
[41] YANG L, LI Z, ZENG J, et al. Bayesian optimization meets hybrid zero dynamics: Safe parameter learning for bipedal locomotion control[C]//2022 International Conference on Roboticsand Automation (ICRA). IEEE, 2022: 10456-10462.
[42] LU Y, GAO J, SHI X, et al. Whole-body control based on landing estimation for fixedperiod bipedal walking on stepping stones[C]//2020 3rd International Conference on Controland Robots (ICCR). IEEE, 2020: 140-149.
[43] FICHT G, BEHNKE S. Fast whole-body motion control of humanoid robots with inertia constraints[C]//2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE,2020: 6597-6603.
[44] FERIGO D, CAMORIANO R, VICECONTE P M, et al. On the emergence of whole-bodystrategies from humanoid robot push-recovery learning[J]. IEEE Robotics and AutomationLetters, 2021, 6(4): 8561-8568.
[45] XI A, CHEN C. Walking control of a biped robot on static and rotating platforms based onhybrid reinforcement learning[J]. IEEE Access, 2020, 8: 148411-148424.
[46] TAO C, XUE J, ZHANG Z, et al. Parallel deep reinforcement learning method for gait controlof biped robot[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(6):2802-2806
[47] CARON S, KHEDDAR A, TEMPIER O. Stair climbing stabilization of the HRP-4 humanoidrobot using whole-body admittance control[C]//2019 International Conference on Robotics andAutomation (ICRA). 2019: 277-283.
[48] JUNG J, KIM D, PARK J. Operational space control framework for torque controlled humanoidrobots with joint elasticity[C]//2019 IEEE/RSJ International Conference on Intelligent Robotsand Systems (IROS). 2019: 3063-3069.
[49] MAEZAWA N, NARUKAWA T, YAMAMOTO H. Torso and swing-leg control for a planarbiped walker with hip series elastic actuators[C]//2019 12th Asian Control Conference (ASCC).2019: 679-684.
[50] DANESHMAND E, KHADIV M, GRIMMINGER F, et al. Variable horizon MPC With swingfoot dynamics for bipedal walking control[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2349-2356.
[51] 刘津甦. 复杂环境中的人形机器人行走规划[D]. 中国科学技术大学, 2010.
[52] 李德东. 非平整路面仿人机器人自主行走的研究与实现[D]. 东北大学, 2017.
[53] 许宪东. 复杂室内环境下仿人机器人定位与运动规划研究[D]. 哈尔滨工业大学, 2018.
[54] 易江, 朱秋国, 吴俊, 等. 基于最优控制的仿人机器人行走振动抑制[J]. 机器人, 2018(2):129-135.
[55] 吴晓光, 刘绍维, 杨磊, 等. 基于深度强化学习的双足机器人斜坡步态控制方法[J]. 自动化学报, 2021, 47(8): 1976-1987.
[56] 袁海辉, 葛一敏, 甘春标. 不确定性扰动下双足机器人动态步行的自适应鲁棒控制[J]. 浙江大学学报: 工学版, 2019, 53(11): 2049-2057.
[57] 王珊, 周亚丽, 张奇志. 带躯干变刚度双足机器人的周期行走控制[J]. 工程力学, 2019, 36(12): 235-246.
[58] QIN G, JI A, CHENG Y, et al. Position error compensation of the multi-purpose overload robotin nuclear power plants[J]. Nuclear Engineering and Technology, 2021, 53(8): 2708-2715.
[59] XU Y, PAUL R P. On position compensation and force control stability of a robot with a compliant wrist[C]//Proceedings. 1988 IEEE International Conference on Robotics and Automation.IEEE, 1988: 1173-1178.
[60] WANG J, ZHANG H, FUHLBRIGGE T. Improving machining accuracy with robot deformation compensation[C]//2009 IEEE/RSJ International Conference on Intelligent Robots andSystems. IEEE, 2009: 3826-3831.
[61] XUE R, REN B, YAN Z, et al. A cable-pulley system modeling based position compensationcontrol for a laparoscope surgical robot[J]. Mechanism and machine theory, 2017, 118: 283-299.
[62] LISCHINSKY P, CANUDAS-DE WIT C, MOREL G. Friction compensation for an industrialhydraulic robot[J]. IEEE Control Systems Magazine, 1999, 19(1): 25-32.
[63] LIU M, LI J, SUN H, et al. Study on the modeling and compensation method of pose erroranalysis for the fracture reduction robot[J]. Micromachines, 2022, 13(8): 1186.
[64] NGUYEN H N, LE P N, KANG H J. A new calibration method for enhancing robot positionaccuracy by combining a robot model–based identification approach and an artificial neuralnetwork–based error compensation technique[J]. Advances in Mechanical Engineering, 2019,11(1): 1687814018822935.
[65] FINES J M, AGAH A. Machine tool positioning error compensation using artificial neuralnetworks[J]. Engineering Applications of Artificial Intelligence, 2008, 21(7): 1013-1026.
[66] BO L, WEI T, ZHANG C, et al. Positioning error compensation of an industrial robot usingneural networks and experimental study[J]. Chinese Journal of Aeronautics, 2022, 35(2): 346-360.
[67] WEN S, ZHA Y, YU H, et al. Fuzzy neural network algorithm based on the delay compensation force/position control structure of a redundant actuation parallel robot[C]//2019 WRCSymposium on Advanced Robotics and Automation (WRC SARA). IEEE, 2019: 142-147.
[68] YE C, YANG J, DING H. High-accuracy prediction and compensation of industrial robot stiffness deformation[J]. International Journal of Mechanical Sciences, 2022, 233: 107638.
[69] KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of BasicEngineering, 1960, 82D: 35-45.
[70] POLLARD N S, REITSMA P. Animation of humanlike characters: dynamic motion filteringwith a physically plausible contact model[J]. yale workshop on adaptive and learning systems,2001.
[71] KUINDERSMA S, DEITS R, FALLON M, et al. Optimization-based locomotion planning,estimation, and control design for the atlas humanoid robot[J]. Autonomous robots, 2016, 40:429-455.
[72] SCHEINBERG K, BENNETT K P, PARRADO-HERNÁNDEZ E. An efficient implementationof an active set method for SVMs.[J]. Journal of Machine Learning Research, 2006, 7(10).
[73] PóLIK I, TERLAKY T. Interior point methods for nonlinear optimization[J]. Lecture Notes inMathematics -Springer-verlag-, 2010.
[74] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via thealternating direction method of multipliers[J]. Foundations and Trends in Machine Learning,2010, 3(1): 1-122.
[75] KUINDERSMA S, PERMENTER F N, TEDRAKE R. An efficiently solvable quadratic program for stabilizing dynamic locomotion[C]//2014 IEEE International Conference on Roboticsand Automation (ICRA). 2014.
[76] KIRKPATRICK S, GELATT C D, VECCHI A. Optimization by simulated annealing[J]. Science, 1983.
修改评论