[1] OZTEMEL E, GURSEV S. Literature review of Industry 4.0 and related technologies[J]. Journal of intelligent manufacturing, 2020, 31: 127-182.
[2] NIE Y, HAN X, GUO S, et al. Total3dunderstanding: Joint layout, object pose and mesh reconstruction for indoor scenes from a single image[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 55-64.
[3] ZHANG C, CUI Z, ZHANG Y, et al. Holistic 3d scene understanding from a single image with implicit representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 8833-8842.
[4] HE Z, FENG W, ZHAO X, et al. 6D pose estimation of objects: Recent technologies and challenges[J]. Applied Sciences, 2020, 11(1): 228.
[5] WANG K, XIE J, ZHANG G, et al. Sequential 3D human pose and shape estimation from point clouds[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recogni tion. 2020: 7275-7284.
[6] HE Y, SUN W, HUANG H, et al. Pvn3d: A deep point-wise 3d keypoints voting network for 6dof pose estimation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11632-11641.
[7] ZHANG Z. Microsoft kinect sensor and its effect[J]. IEEE multimedia, 2012, 19(2): 4-10.
[8] KEHL W, MANHARDT F, TOMBARI F, et al. Ssd-6d: Making rgb-based 3d detection and 6d pose estimation great again[C]//Proceedings of the IEEE international conference on computer vision. 2017: 1521-1529.
[9] LI Y, WANG G, JI X, et al. Deepim: Deep iterative matching for 6d pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 683-698.
[10] XIANG Y, SCHMIDT T, NARAYANAN V, et al. Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes[A]. 2017.
[11] PENG S, LIU Y, HUANG Q, et al. Pvnet: Pixel-wise voting network for 6dof pose estimation [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019: 4561-4570.
[12] TEKIN B, SINHA S N, FUA P. Real-time seamless single shot 6d object pose prediction[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 292-301.
[13] WANG C, XU D, ZHU Y, et al. Densefusion: 6d object pose estimation by iterative dense fusion[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.2019: 3343-3352.
[14] SUNDERMEYER M, MARTON Z C, DURNER M, et al. Implicit 3d orientation learning for 6d object detection from rgb images[C]//Proceedings of the european conference on computer vision (ECCV). 2018: 699-715.
[15] TIAN M, ANG M H, LEE G H. Shape prior deformation for categorical 6d object pose and size estimation[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16. Springer, 2020: 530-546.
[16] WANG H, SRIDHAR S, HUANG J, et al. Normalized object coordinate space for category-level 6d object pose and size estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2642-2651.
[17] IRSHAD M Z, ZAKHAROV S, AMBRUS R, et al. Shapo: Implicit representations for multi object shape, appearance, and pose optimization[C]//Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II. Springer, 2022: 275-292.
[18] IRSHAD M Z, KOLLAR T, LASKEY M, et al. Centersnap: Single-shot multi-object 3d shape reconstruction and categorical 6d pose and size estimation[C]//2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 10632-10640.
[19] LAN S. Object Detection and Instance Segmentation for Real-World Applications[D]. University of Maryland, College Park, 2022.
[20] ZHOU X, WANG D, KRÄHENBÜHL P. Objects as points[A]. 2019.
[21] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
[22] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: Common objects in context[C]//Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 2014: 740-755.
[23] MA X, ZHOU Y, WANG H, et al. Image as Set of Points[A]. 2023.
[24] HARALICK R M, JOO H, LEE C N, et al. Pose estimation from corresponding point data[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(6): 1426-1446.
[25] BESL P J, MCKAY N D. Method for registration of 3-D shapes[C]//Sensor fusion IV: control paradigms and data structures: volume 1611. Spie, 1992: 586-606.
[26] HINTERSTOISSER S, HOLZER S, CAGNIART C, et al. Multimodal templates for real-time detection of texture-less objects in heavily cluttered scenes[C]//2011 international conference on computer vision. IEEE, 2011: 858-865.
[27] HINTERSTOISSER S, LEPETIT V, ILIC S, et al. Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[C]//Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea, November 5-9, 2012, Revised Selected Papers, Part I 11. Springer, 2013: 548-562.
[28] ZHU Y, LI M, YAO W, et al. A Review of 6D Object Pose Estimation[C]//2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC): volume 10. IEEE, 2022: 1647-1655.
[29] DROST B, ULRICH M, NAVAB N, et al. Model globally, match locally: Efficient and robust 3D object recognition[C]//2010 IEEE computer society conference on computer vision and pattern recognition. Ieee, 2010: 998-1005.
[30] CHOI C, CHRISTENSEN H I. 3D pose estimation of daily objects using an RGB-D camera[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 3342-3349.
[31] CHOI C, TREVOR A J, CHRISTENSEN H I. RGB-D edge detection and edge-based registration[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 1568-1575.
[32] VIDAL J, LIN C Y, LLADÓ X, et al. A method for 6D pose estimation of free-form rigid objects using point pair features on range data[J]. Sensors, 2018, 18(8): 2678.
[33] HODAN T, MICHEL F, BRACHMANN E, et al. Bop: Benchmark for 6d object pose estimation[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 19-34.
[34] RUSU R B, BLODOW N, MARTON Z C, et al. Aligning point cloud views using persistent feature histograms[C]//2008 IEEE/RSJ international conference on intelligent robots and systems. IEEE, 2008: 3384-3391.
[35] ALDOMA A, MARTON Z C, TOMBARI F, et al. Tutorial: Point cloud library: Three dimensional object recognition and 6 dof pose estimation[J]. IEEE Robotics & Automation Magazine, 2012, 19(3): 80-91.
[36] ALDOMA A, TOMBARI F, DI STEFANO L, et al. A global hypotheses verification method for 3d object recognition[C]//Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part III 12. Springer, 2012: 511-524.
[37] BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32.
[38] BRACHMANN E, KRULL A, MICHEL F, et al. Learning 6d object pose estimation using 3d object coordinates[C]//Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part II 13. Springer, 2014: 536-551.
[39] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[40] MICHEL F, KIRILLOV A, BRACHMANN E, et al. Global hypothesis generation for 6D object pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 462-471.
[41] PITTERI G, RAMAMONJISOA M, ILIC S, et al. On object symmetries and 6d pose estimation from images[C]//2019 International conference on 3D vision (3DV). IEEE, 2019: 614-622.
[42] LI Z, WANG G, JI X. Cdpn: Coordinates-based disentangled pose network for real-time rgb based 6-dof object pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 7678-7687.
[43] OBERWEGER M, RAD M, LEPETIT V. Making deep heatmaps robust to partial occlusions for 3d object pose estimation[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 119-134.
[44] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: An accurate O(n) solution to the PnPproblem[J]. International journal of computer vision, 2009, 81: 155-166.
[45] RAD M, LEPETIT V. Bb8: A scalable, accurate, robust to partial occlusion method for predicting the 3d poses of challenging objects without using depth[C]//Proceedings of the IEEE international conference on computer vision. 2017: 3828-3836.
[46] O`SHEA K, NASH R. An introduction to convolutional neural networks[A]. 2015.
[47] HU Y, HUGONOT J, FUA P, et al. Segmentation-driven 6d object pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 3385-3394.
[48] JEON M H, KIM A. Prima6d: Rotational primitive reconstruction for enhanced and robust 6d pose estimation[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4955-4962.
[49] HU Y, FUA P, WANG W, et al. Single-stage 6d object pose estimation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 2930-2939.
[50] KENDALL A, GRIMES M, CIPOLLA R. Posenet: A convolutional network for real-time 6-dof camera relocalization[C]//Proceedings of the IEEE international conference on computer vision. 2015: 2938-2946.
[51] LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]//Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer, 2016: 21-37.
[52] DO T T, CAI M, PHAM T, et al. Deep-6dpose: Recovering 6d object pose from a single rgb image[A]. 2018.
[53] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015, 28.
[54] CHEN W, JIA X, CHANG H J, et al. G2l-net: Global to local network for real-time 6d pose estimation with embedding vector features[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 4233-4242.
[55] HE Y, HUANG H, FAN H, et al. Ffb6d: A full flow bidirectional fusion network for 6d pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog nition. 2021: 3003-3013.
[56] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shapenet: An information-rich 3d model repository[A]. 2015.
[57] UMEYAMA S. Least-squares estimation of transformation parameters between two point patterns[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991, 13(04): 376-380.
[58] CHEN D, LI J, WANG Z, et al. Learning canonical shape space for category-level 6d object pose and size estimation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 11973-11982.
[59] KINGMA D P, WELLING M. Auto-encoding variational bayes[A]. 2013.
[60] QI C R, SU H, MO K, et al. Pointnet: Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 652-660.
[61] ZOU L, HUANG Z, GU N, et al. 6d-vit: Category-level 6d object pose estimation viatransformer-based instance representation learning[J]. IEEE Transactions on Image Processing, 2022, 31: 6907-6921.
[62] FAN Z, SONG Z, XU J, et al. ACR-Pose: Adversarial canonical representation reconstruction network for category level 6D object pose estimation[A]. 2021.
[63] CHEN K, DOU Q. Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 2773-2782.
[64] CHEN W, JIA X, CHANG H J, et al. Fs-net: Fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 1581-1590.
[65] DI Y, ZHANG R, LOU Z, et al. Gpv-pose: Category-level object pose estimation via geometry guided point-wise voting[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 6781-6791.
[66] YOU Y, SHI R, WANG W, et al. Cppf: Towards robust category-level 9d pose estimation in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni tion. 2022: 6866-6875.
[67] LIN J, WEI Z, LI Z, et al. Dualposenet: Category-level 6d object pose and size estimation using dual pose network with refined learning of pose consistency[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 3560-3569.
[68] CHEN X, WU Q, WANG S. Research on 3D reconstruction based on multiple views[C]//2018 13th International Conference on Computer Science & Education (ICCSE). IEEE, 2018: 1-5.
[69] CHEN Z, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 5939-5948.
[70] KATO H, USHIKU Y, HARADA T. Neural 3d mesh renderer[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3907-3916.
[71] NIEMEYER M, MESCHEDER L, OECHSLE M, et al. Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 3504-3515.
[72] GROUEIX T, FISHER M, KIM V G, et al. A papier-mâché approach to learning 3d surface generation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 216-224.
[73] LI L, KHAN S, BARNES N. Silhouette-assisted 3d object instance reconstruction from a cluttered scene[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019: 0-0.
[74] KULKARNI N, MISRA I, TULSIANI S, et al. 3d-relnet: Joint object and relational network for 3d prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 2212-2221.
[75] STUELPNAGEL J. On the parametrization of the three-dimensional rotation group[J]. SIAM review, 1964, 6(4): 422-430.
[76] WANG X, ZHU Z. Context understanding in computer vision: A survey[J]. Computer Vision and Image Understanding, 2023, 229: 103646.
[77] REN X, MALIK J. Learning a classification model for segmentation[C]//Computer Vision, IEEE International Conference on: volume 2. IEEE Computer Society, 2003: 10-10.
[78] TOUVRON H, BOJANOWSKI P, CARON M, et al. Resmlp: Feedforward networks for image classification with data-efficient training[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
[79] LIU Y, SHAO Z, HOFFMANN N. Global attention mechanism: Retain information to enhance channel-spatial interactions[A]. 2021.
[80] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 3-19.
[81] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2980-2988.
[82] QI C R, YI L, SU H, et al. Pointnet++: Deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30.
[83] MA X, QIN C, YOU H, et al. Rethinking network design and local geometry in point cloud: A simple residual MLP framework[A]. 2022.
[84] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2117-2125.
[85] JIANG X, LI D, CHEN H, et al. Uni6d: A unified cnn framework without projection breakdown for 6d pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 11174-11184.
[86] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[A]. 2020.
[87] XIANG Y, MOTTAGHI R, SAVARESE S. Beyond pascal: A benchmark for 3d object detection in the wild[C]//IEEE winter conference on applications of computer vision. IEEE, 2014: 75-82.
[88] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. pmlr, 2015: 448-456.
[89] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
[90] HAN J, MORAGA C. The influence of the sigmoid function parameters on the speed of back propagation learning[C]//From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks Malaga-Torremolinos, Spain, June 7–9, 1995 Proceedings 3. Springer, 1995: 195-201.
[91] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[A]. 2015.
[92] KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019: 6399-6408.
[93] GIRSHICK R. Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448.
[94] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[A]. 2017.
[95] REDDI S J, KALE S, KUMAR S. On the convergence of adam and beyond[A]. 2019.
[96] PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[J]. Advances in neural information processing systems, 2019, 32.
[97] CHEN X, DONG Z, SONG J, et al. Category level object pose estimation via neural analysis-by synthesis[C]//Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16. Springer, 2020: 139-156.
[98] LEE T, LEE B U, KIM M, et al. Category-level metric scale object shape and pose estimation[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 8575-8582.
[99] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE.[J]. Journal of machine learning research, 2008, 9(11).
[100] SUN X, ZHU X, WANG P, et al. A review of robot control with visual servoing[C]//2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE, 2018: 116-121.
[101] WU J, JIN Z, LIU A, et al. A survey of learning-based control of robotic visual servoing systems[J]. Journal of the Franklin Institute, 2022, 359(1): 556-577.
[102] 海康机器人股份有限公司. MV-CS050-10GM-PRO 工业相机技术规格书[M]. 杭州: 杭州海康机器人股份有限公司, 2021: 3.
[103] INSTRUMENTS T. DLP471NE 0.47 全高清 DMD 数据表 (Rev. B)[M]. Dallas: Texas Instruments, 2022: 11.
[104] 遨博机器人有限公司. AUBO-i16 协作机器人产品规格说明书[M]. 浙江: 浙江遨博机器人有限公司, 2021: 2.
[105] BRADSKI G. The openCV library.[J]. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 2000, 25(11): 120-123.
[106] GUENNEBAUD G, JACOB B, et al. Eigen[J]. URl: http://eigen. tuxfamily. org, 2010, 3.
[107] AGARWAL S, MIERLE K, et al. Ceres solver[Z]. 2012.
[108] RUSU R B, COUSINS S. 3d is here: Point cloud library (pcl)[C]//2011 IEEE international conference on robotics and automation. IEEE, 2011: 1-4.
[109] BLANCHETTE J, SUMMERFIELD M. C++ GUI programming with Qt 4[M]. Prentice Hall Professional, 2006.
[110] STANHOPE S A, ABNEY M. GLOGS: a fast and powerful method for GWAS of binary traits with risk covariates in related populations[J]. Bioinformatics, 2012, 28(11): 1553-1554.
[111] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. IEEE Journal on Robotics and Automation, 1987, 3(4): 323-344.
[112] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(11): 1330-1334.
[113] HU Z Y, WU F C. A review on some active vision based camera calibration techniques[J]. CHINESE JOURNAL OF COMPUTERS-CHINESE EDITION-, 2002, 25(11): 1149-1156.
[114] ALVAREZ S, LLORCA D F, SOTELO M. Hierarchical camera auto-calibration for traffic surveillance systems[J]. Expert Systems with Applications, 2014, 41(4): 1532-1542.
[115] ZELLER C, FAUGERAS O. Camera self-calibration from video sequences: the Kruppa equations revisited[D]. INRIA, 1996.
[116] SHAH M. Solving the robot-world/hand-eye calibration problem using the Kronecker product[J]. Journal of Mechanisms and Robotics, 2013, 5(3): 031007.
修改评论