[1] KIM J-H, PARK J-W. Intrinsically stretchable organic light-emitting diodes[J]. Science Advances, 2021, 7(9): eabd9715.
[2] LIANG J, LI L, NIU X, et al. Elastomeric polymer light-emitting devices and displays[J]. Nature Photonics, 2013, 7(10): 817-824.
[3] WHITE M S, KALTENBRUNNER M, GŁOWACKI E D, et al. Ultrathin, highly flexible and stretchable PLEDs[J]. Nature Photonics, 2013, 7(10): 811-816.
[4] LARSON C, PEELE B, LI S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074.
[5] ZHANG Z, CUI L, SHI X, et al. Textile display for electronic and brain-interfaced communications[J]. Advanced Materials, 2018, 30(18): 1800323.
[6] ZHANG Z, WANG W, JIANG Y, et al. High-brightness all-polymer stretchable LED with charge-trapping dilution[J]. Nature, 2022, 603(7902): 624-630.
[7] YARI M, MEHR A, ZARE V, et al. Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC (organic Rankine cycle) and Kalina cycle using a low grade heat source[J]. Energy, 2015, 83: 712-722.
[8] RAHIMI M, STRAUB A P, ZHANG F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity[J]. Energy & Environmental Science, 2018, 11(2): 276-285.
[9] CHEN H, GOSWAMI D Y, STEFANAKOS E K. A review of thermodynamic cycles and working fluids for the conversion of low-grade heat[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 3059-3067.
[10] LEE S W, YANG Y, LEE H-W, et al. An electrochemical system for efficiently harvesting low-grade heat energy[J]. Nature Communications, 2014, 5(1): 3942.
[11] YANG Y, LEE S W, GHASEMI H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy[J]. Proceedings of the National Academy of Sciences, 2014, 111(48): 17011-17016.
[12] CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals[J]. Science, 2018, 360(6390): 778-783.
[13] XING Y, LIU R, LIAO J, et al. A device-to-material strategy guiding the “double-high” thermoelectric module[J]. Joule, 2020, 4(11): 2475-2483.
[14] PAN H, LI F, LIU Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design[J]. Science, 2019, 365(6453): 578-582.
[15] LI Y, LOU Q, YANG J, et al. Exceptionally high power factor Ag2Se/Se/polypyrrole composite films for flexible thermoelectric generators[J]. Advanced Functional Materials, 2022, 32(7): 2106902.
[16] PAN Y, AYDEMIR U, GROVOGUI J A, et al. Melt-centrifuged (Bi, Sb)2Te3: engineering microstructure toward high thermoelectric efficiency[J]. Advanced Materials, 2018, 30(34): 1802016.
[17] CHEN J, SHI C, WU L, et al. Environmentally tolerant ionic hydrogel with high power density for low-grade heat harvesting[J]. ACS Applied Materials & Interfaces, 2022, 14(30): 34714-34721.
[18] CHI C, LIU G, AN M, et al. Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation[J]. Nature Communications, 2023, 14(1): 306.
[19] YU B, DUAN J, CONG H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting[J]. Science, 2020, 370(6514): 342-346.
[20] DUPONT M, MACFARLANE D, PRINGLE J. Thermo-electrochemical cells for waste heat harvesting-progress and perspectives[J]. Chemical Communications, 2017, 53(47): 6288-6302.
[21] SAHAMI S, WEAVER M J. Entropic and enthalpic contributions to the solvent dependence of the thermodynamics of transition-metal redox couples: Part II. Couples containing ammine and ethylenediamine ligands[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1981, 122: 171-181.
[22] HE J, AL-MASRI D, MACFARLANE D R, et al. Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting[J]. Faraday Discussions, 2016, 190: 205-218.
[23] TAHERI A, MACFARLANE D R, POZO-GONZALO C, et al. The effect of solvent on the seebeck coefficient and thermocell performance of cobalt bipyridyl and iron ferri/ferrocyanide redox couples[J]. Australian Journal of Chemistry, 2019, 72(9): 709-716.
[24] DUAN J, FENG G, YU B, et al. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest[J]. Nature Communications, 2018, 9(1): 5146.
[25] DUAN J, YU B, HUANG L, et al. Liquid-state thermocells: opportunities and challenges for low-grade heat harvesting[J]. Joule, 2021, 5(4): 768-779.
[26] KANG T J, FANG S, KOZLOV M E, et al. Electrical power from nanotube and graphene electrochemical thermal energy harvesters[J]. Advanced Functional Materials, 2012, 22(3): 477-489.
[27] ROMANO M S, GAMBHIR S, RAZAL J M, et al. Novel carbon materials for thermal energy harvesting[J]. Journal of Thermal Analysis and Calorimetry, 2012, 109(3): 1229-1235.
[28] ABRAHAM T J, TACHIKAWA N, MACFARLANE D R, et al. Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials[J]. Physical Chemistry Chemical Physics, 2014, 16(6): 2527-2532.
[29] ZHANG L, KIM T, LI N, et al. High power density electrochemical thermocells for inexpensively harvesting low-grade thermal energy[J]. Advanced Materials, 2017, 29(12): 1605652.
[30] LAUX E, UHL S, JOURNOT T, et al. Aspects of protonic ionic liquid as electrolyte in thermoelectric generators[J]. Journal of Electronic Materials, 2016, 45: 3383-3389.
[31] HU R, COLA B A, HARAM N, et al. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell[J]. Nano Letters, 2010, 10(3): 838-846.
[32] ROMANO M S, LI N, ANTIOHOS D, et al. Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications[J]. Advanced Materials, 2013, 25(45): 6602-6606.
[33] IM H, KIM T, SONG H, et al. High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes[J]. Nature Communications, 2016, 7(1): 10600.
[34] GUNAWAN A, LI H, LIN C-H, et al. The amplifying effect of natural convection on power generation of thermogalvanic cells[J]. International Journal of Heat and Mass Transfer, 2014, 78: 423-434.
[35] HASAN S W, SAID S M, SABRI M F M, et al. High thermal gradient in thermo-electrochemical cells by insertion of a poly(vinylidene fluoride) membrane[J]. Scientific reports, 2016, 6(1): 1-11.
[36] PU S, LIAO Y, CHEN K, et al. Thermogalvanic hydrogel for synchronous evaporative cooling and low-grade heat energy harvesting[J]. Nano Letters, 2020, 20(5): 3791-3797.
[37] ZANG J, CHEN J, CHEN Z, et al. Printed flexible thermoelectric materials and devices[J]. Journal of Materials Chemistry A, 2021, 9(35): 19439-19464.
[38] ELSHEIKH M H, SHNAWAH D A, SABRI M F M, et al. A review on thermoelectric renewable energy: Principle parameters that affect their performance[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 337-355.
[39] DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
[40] CHEN G, DRESSELHAUS M, DRESSELHAUS G, et al. Recent developments in thermoelectric materials[J]. International Materials Reviews, 2003, 48(1): 45-66.
[41] LIU K, LV J, FAN G, et al. Flexible and robust bacterial cellulose-based ionogels with high thermoelectric properties for low-grade heat harvesting[J]. Advanced Functional Materials, 2022, 32(6): 2107105.
[42] PAI Y H, TANG J, ZHAO Y, et al. Ionic organic thermoelectrics with impressively high thermopower for sensitive heat harvesting scenarios[J]. Advanced Energy Materials, 2023, 13(1): 2202507.
[43] CHENG H, OUYANG J. Soret effect of ionic liquid gels for thermoelectric conversion[J]. The Journal of Physical Chemistry Letters, 2022, 13(46): 10830-10842.
[44] KIM S L, LIN H T, YU C. Thermally chargeable solid-state supercapacitor[J]. Advanced Energy Materials, 2016, 6(18): 1600546.
[45] HAN C-G, QIAN X, LI Q, et al. Giant thermopower of ionic gelatin near room temperature[J]. Science, 2020, 368(6495): 1091-1098.
[46] HAN Y, ZHANG J, HU R, et al. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting[J]. Science Advances, 2022, 8(7): eabl5318.
[47] AGAR J, MOU C, LIN J L. Single-ion heat of transport in electrolyte solutions: a hydrodynamic theory[J]. The Journal of Physical Chemistry, 1989, 93(5): 2079-2082.
[48] SNOWDON P, TURNER J. The concentration dependence of the Soret effect[J]. Transactions of the Faraday Society, 1960, 56: 1812-1819.
[49] KIM S L, HSU J-H, YU C. Thermoelectric effects in solid-state polyelectrolytes[J]. Organic Electronics, 2018, 54: 231-236.
[50] YOW H, LIN J-L. Thermal diffusion of lanthanide chlorides[J]. Journal of Solution Chemistry, 1983, 12: 487-502.
[51] TAKEYAMA N, NAKASHIMA K. Proportionality of intrinsic heat of transport to standard entropy of hydration for aqueous ions[J]. Journal of Solution Chemistry, 1988, 17: 305-325.
[52] WüRGER A. Transport in charged colloids driven by thermoelectricity[J]. Physical Review Letters, 2008, 101(10): 108302.
[53] MAJEE A, WüRGER A. Collective thermoelectrophoresis of charged colloids[J]. Physical Review E, 2011, 83(6): 061403.
[54] MAJEE A, WüRGER A. Charging of heated colloidal particles using the electrolyte seebeck effect[J]. Physical Review Letters, 2012, 108(11): 118301.
[55] PATHRIA R K. Statistical mechanics[M]. Elsevier, 2016.
[56] HE X, CHENG H, YUE S, et al. Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties[J]. Journal of Materials Chemistry A, 2020, 8(21): 10813-10821.
[57] ZONG Y, LI H, LI X, et al. Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting[J]. Chemical Engineering Journal, 2022, 433: 134550.
[58] WANG H, ZHAO D, KHAN Z U, et al. Ionic thermoelectric figure of merit for charging of supercapacitors[J]. Advanced Electronic Materials, 2017, 3(4): 1700013.
[59] ZHAO D, WüRGER A, CRISPIN X. Ionic thermoelectric materials and devices[J]. Journal of Energy Chemistry, 2021, 61: 88-103.
[60] ZHAO D, SULTANA A, EDBERG J, et al. The role of absorbed water in ionic liquid cellulosic electrolytes for ionic thermoelectrics[J]. Journal of Materials Chemistry C, 2022, 10(7): 2732-2741.
[61] HORIKE S, WEI Q, KIRIHARA K, et al. Outstanding electrode-dependent Seebeck coefficients in ionic hydrogels for thermally chargeable supercapacitor near room temperature[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43674-43683.
[62] WANG J, LI J, ZHOU Y, et al. Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells[J]. Journal of the American Chemical Society, 2021, 143(20): 7759-7768.
[63] WANG W T, CHEN P, CHIANG C H, et al. Synergistic reinforcement of built-in electric fields for highly efficient and stable perovskite photovoltaics[J]. Advanced Functional Materials, 2020, 30(19): 1909755.
[64] LIM H, SHI Y, WANG M, et al. Effects of work function on thermal sensitivity of electrode potential[J]. Applied Physics Letters, 2015, 106(22): 223901.
[65] EUSTACHE E, DOUARD C, RETOUX R, et al. MnO2 thin films on 3D scaffold: microsupercapacitor electrodes competing with “bulk” carbon electrodes[J]. Advanced Energy Materials, 2015, 5(18): 1500680.
[66] EL-KADY M F, IHNS M, LI M, et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage[J]. Proceedings of the National Academy of Sciences, 2015, 112(14): 4233-4238.
[67] FERRIS A, GARBARINO S, GUAY D, et al. 3D RuO2 microsupercapacitors with remarkable areal energy[J]. Advanced Materials, 2015, 27(42): 6625-6629.
[68] LI Y, LI Q, ZHANG X, et al. 3D hierarchical electrodes boosting ultrahigh power output for gelatin-KCl-FeCN4-/3- ionic thermoelectric cells[J]. Advanced Energy Materials, 2022, 12(14): 2103666.
[69] LI L, HAO M, YANG X, et al. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics[J]. Nano Energy, 2020, 72: 104663.
[70] DING T, LIU K, LI J, et al. All-printed porous carbon film for electricity generation from evaporation-driven water flow[J]. Advanced Functional Materials, 2017, 27(22): 1700551.
[71] XUE G, XU Y, DING T, et al. Water-evaporation-induced electricity with nanostructured carbon materials[J]. Nature Nanotechnology, 2017, 12(4): 317-321.
[72] YIN J, LI X, YU J, et al. Generating electricity by moving a droplet of ionic liquid along graphene[J]. Nature Nanotechnology, 2014, 9(5): 378-383.
[73] ZHAO D, WANG H, KHAN Z U, et al. Ionic thermoelectric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1450-1457.
[74] LI T, ZHANG X, LACEY S D, et al. Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting[J]. Nature Materials, 2019, 18(6): 608-613.
[75] CHEN Q, CHEN B, XIAO S, et al. Giant thermopower of hydrogen ion enhanced by a strong hydrogen bond system[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19304-19314.
[76] HE Y, ZHANG Q, CHENG H, et al. Role of ions in hydrogels with an ionic Seebeck coefficient of 52.9 mV·K-1[J]. The Journal of Physical Chemistry Letters, 2022, 13(20): 4621-4627.
[77] ZHAO D, MARTINELLI A, WILLFAHRT A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles[J]. Nature Communications, 2019, 10(1): 1093.
[78] CHENG H, HE X, FAN Z, et al. Flexible quasi-solid state ionogels with remarkable seebeck coefficient and high thermoelectric properties[J]. Advanced Energy Materials, 2019, 9(32): 1901085.
[79] ZHAO W, SUN T, ZHENG Y, et al. Tailoring intermolecular interactions towards high-performance thermoelectric ionogels at low humidity[J]. Advanced Science, 2022, 9(20): 2201075.
[80] FANG Y, CHENG H, HE H, et al. Stretchable and transparent ionogels with high thermoelectric properties[J]. Advanced Functional Materials, 2020, 30(51): 2004699.
[81] LIU S, YANG Y, HUANG H, et al. Giant and bidirectionally tunable thermopower in nonaqueous ionogels enabled by selective ion doping[J]. Science Advances, 2022, 8(1): eabj3019.
[82] LIU S, YANG Y, CHEN S, et al. High p-and n-type thermopowers in stretchable self-healing ionogels[J]. Nano Energy, 2022, 100: 107542.
[83] LIU Z, CHENG H, LE Q, et al. Giant thermoelectric properties of ionogels with cationic doping[J]. Advanced Energy Materials, 2022, 12(22): 2200858.
[84] LIU Z, CHENG H, HE H, et al. Significant enhancement in the thermoelectric properties of ionogels through solid network engineering[J]. Advanced Functional Materials, 2022, 32(7): 2109772.
[85] 周慧通, 方大为, 王波, 等. 冷冻干燥法制备 CS/AMPS/PEGDA 光交联多孔水凝胶及其性能[J]. 材料科学与工程学报, 2015, 33(3): 432-437.
[86] 黄权林, 肖冬冬, 卢慕峻, 等. 冷冻干燥及 DMEM 培养液浸泡对海藻酸水凝胶性能的影响[J]. 现代生物医学进展, 2015(35): 6816-6821.
[87] 黄瑜. 冷冻干燥促成的二缩水甘油醚共价交联透明质酸水凝胶[D]. 海南大学, 2017.
[88] ZHU T, XU Z, HE J, et al. Hot deformation induced bulk nanostructuring of unidirectionally grown p-type (Bi, Sb)2Te3 thermoelectric materials[J]. Journal of Materials Chemistry A, 2013, 1(38): 11589-11594.
[89] PEREZ-TABORDA J A, CABALLERO-CALERO O, VERA-LONDONO L, et al. High thermoelectric zT in n-type silver selenide films at room temperature[J]. Advanced Energy Materials, 2018, 8(8): 1702024.
[90] KIM G-H, SHAO L, ZHANG K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12(8): 719-723.
[91] PARK T, PARK C, KIM B, et al. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips[J]. Energy & Environmental Science, 2013, 6(3): 788-792.
[92] TYRRELL H, TAYLOR D, WILLIAMS C. The ‘Seebeck effect’ in a purely ionic system[J]. Nature, 1956, 177(4510): 668-669.
[93] HE M, QIU F, LIN Z. Towards high-performance polymer-based thermoelectric materials[J]. Energy & Environmental Science, 2013, 6(5): 1352-1361.
[94] CULEBRAS M, GóMEZ C M, CANTARERO A. Review on polymers for thermoelectric applications[J]. Materials, 2014, 7(9): 6701-6732.
[95] MANNING G S. Limiting laws and counterion condensation in polyelectrolyte solutions. 8. Mixtures of counterions, species selectivity, and valence selectivity[J]. The Journal of Physical Chemistry, 1984, 88(26): 6654-6661.
[96] KIM B, HWANG J U, KIM E. Chloride transport in conductive polymer films for an n-type thermoelectric platform[J]. Energy & Environmental Science, 2020, 13(3): 859-867.
[97] KIM B, NA J, LIM H, et al. Robust high thermoelectric harvesting under a self‐humidifying bilayer of metal organic framework and hydrogel layer[J]. Advanced Functional Materials, 2019, 29(7): 1807549.
[98] SAVOIE B M, WEBB M A, MILLER III T F. Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes[J]. The Journal of Physical Chemistry Letters, 2017, 8(3): 641-646.
[99] KUMAR K, RAVI M, PAVANI Y, et al. Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes[J]. Journal of Non-Crystalline Solids, 2012, 358(23): 3205-3211.
[100] WANG R, MU L, BAO Y, et al. Holistically engineered polymer-polymer and polymer-ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings[J]. Advanced Materials, 2020, 32(32): 2002878.
[101] DENG J, YUK H, WU J, et al. Electrical bioadhesive interface for bioelectronics[J]. Nature Materials, 2021, 20(2): 229-236.
[102] LIN S, LIU X, LIU J, et al. Anti-fatigue-fracture hydrogels[J]. Science Advances, 2019, 5(1): eaau8528.
[103] LIU J, LIN S, LIU X, et al. Fatigue-resistant adhesion of hydrogels[J]. Nature Communications, 2020, 11(1): 1071.
[104] RICCIARDI R, AURIEMMA F, DE ROSA C, et al. X-ray diffraction analysis of poly (vinyl alcohol) hydrogels, obtained by freezing and thawing techniques[J]. Macromolecules, 2004, 37(5): 1921-1927.
[105] MEHRA N, LI Y, ZHU J. Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers[J]. The Journal of Physical Chemistry C, 2018, 122(19): 10327-10333.
[106] STAROSZCZYK H, SZTUKA K, WOLSKA J, et al. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 117: 707-712.
[107] DARABI M A, KHOSROZADEH A, WANG Y, et al. An alkaline based method for generating crystalline, strong, and shape memory polyvinyl alcohol biomaterials[J]. Advanced Science, 2020, 7(21): 1902740.
[108] ZHOU J, LIN S, ZENG H, et al. Dynamic intermolecular interactions through hydrogen bonding of water promote heat conduction in hydrogels[J]. Materials Horizons, 2020, 7(11): 2936-2943.
[109] BONETTI M, NAKAMAE S, ROGER M, et al. Huge Seebeck coefficients in nonaqueous electrolytes[J]. The Journal of Chemical Physics, 2011, 134(11): 114513.
[110] KöHLER W, MOROZOV K I. The soret effect in liquid mixtures-a review[J]. Journal of Non-Equilibrium Thermodynamics, 2016, 41(3): 151-197.
[111] ROWE D M. Thermoelectrics handbook: macro to nano[M]. CRC Press, 2018.
[112] AMOLI V, KIM J S, JEE E, et al. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin[J]. Nature Communications, 2019, 10(1): 4019.
[113] AIL U, JAFARI M J, WANG H, et al. Thermoelectric properties of polymeric mixed conductors[J]. Advanced Functional Materials, 2016, 26(34): 6288-6296.
[114] CHASTAIN J, KING JR R C. Handbook of X-ray photoelectron spectroscopy[J]. Perkin-Elmer Corporation, 1992, 40: 221.
[115] YANG J, SARGENT E, KELLEY S, et al. A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis[J]. Nature Materials, 2009, 8(8): 683-689.
[116] HUANG W, CHIEN P-H, MCMILLEN K, et al. Experimental and theoretical evidence for hydrogen doping in polymer solution-processed indium gallium oxide[J]. Proceedings of the National Academy of Sciences, 2020, 117(31): 18231-18239.
[117] GUTMANN V. Empirical approach to molecular interactions[J]. Coordination Chemistry Reviews, 1975, 15(2-3): 207-237.
[118] CAO L, LI D, HU E, et al. Solvation structure design for aqueous Zn metal batteries[J]. Journal of the American Chemical Society, 2020, 142(51): 21404-21409.
[119] ZHANG Q, MA Y, LU Y, et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries[J]. Nature Communications, 2020, 11(1): 4463.
[120] LI Y, YUE X, HUANG G, et al. Li+ selectivity of carboxylate graphene nanopores inspired by electric field and nanoconfinement[J]. Small, 2021, 17(48): 2006704.
[121] LI Y-Y, WANG M, WANG C-C, et al. Distinctive hydration dynamics around highly coordinated Cu2+/Zn2+-chloride complexes: a molecular dynamics simulation study[J]. Journal of Molecular Liquids, 2020, 314: 113619.
[122] OGAWA Y, HIDAKA H, KIMURA S, et al. Formation and stability of cellulose-copper-NaOH crystalline complex[J]. Cellulose, 2014, 21: 999-1006.
[123] YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598(7882): 590-596.
[124] KE H, YANG L-P, XIE M, et al. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes[J]. Nature Chemistry, 2019, 11(5): 470-477.
[125] QIN H, ZHANG Y, JIANG J, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269.
[126] KONG W, WANG C, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30(39): 1801934.
[127] WAIZUMI K, MASUDA H, EINAGA H, et al. Intrinsic structures of [CuCl4]2- and [CuBr4]2- anions by Ab initio density functional calculations[J]. Chemistry Letters, 1993, 22(7): 1145-1148.
[128] TOBIAS D J, HEMMINGER J C. Getting specific about specific ion effects[J]. Science, 2008, 319(5867): 1197-1198.
[129] WEBB P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions[J]. European Journal of Applied Physiology and Occupational Physiology, 1992, 64: 471-476.
[130] KORE R, BERTON P, KELLEY S P, et al. Group IIIA halometallate ionic liquids: Speciation and applications in catalysis[J]. ACS Catalysis, 2017, 7(10): 7014-7028.
[131] GONZALEZ-IZQUIERDO P, FABELO O, BEOBIDE G, et al. Magnetic structure, single-crystal to single-crystal transition, and thermal expansion study of the (Edimim)[FeCl4] halometalate compound[J]. Inorganic Chemistry, 2018, 57(4): 1787-1795.
[132] ZüRNER P, SCHMIDT H, BETTE S, et al. Ionic liquid, glass or crystalline solid? Structures and thermal behaviour of (C4 mim)2CuCl3[J]. Dalton Transactions, 2016, 45(8): 3327-3333.
[133] CHEN G, ZHANG J, CHENG X, et al. Metal ionic liquids for the rapid chemical fixation of CO2 under ambient conditions[J]. ChemCatChem, 2020, 12(7): 1963-1967.
[134] LI L, LI W, WANG X, et al. Ultra-tough and recyclable ionogels constructed by coordinated supramolecular solvents[J]. Angewandte Chemie International Edition, 2022, 61(50): e202212512.
[135] 邓彪. 柔性可穿戴热电器件的电极设计与性能研究[D]. 哈尔滨工业大学, 2020.
[136] 舒悦. 离子-聚合物相互作用对离子塞贝克系数的影响研究[D]. 重庆大学, 2021.
[137] 张澎祥. 基于热电效应的柔性电子皮肤温觉仿生设计[D]. 哈尔滨工业大学, 2020.
[138] WU M, ZHANG X, ZHAO Y, et al. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan[J]. Nature Nanotechnology, 2022, 17(6): 629-636.
[139] LIM S-M, YOO H, OH M-A, et al. Ion-to-ion amplification through an open-junction ionic diode[J]. Proceedings of the National Academy of Sciences, 2019, 116(28): 13807-13815.
[140] DUAN J, XIE W, YANG P, et al. Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries[J]. Nano Energy, 2018, 48: 569-574.
[141] ZHANG Y, LIN S, QIAO J, et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution[J]. Chemical Engineering Journal, 2018, 353: 225-236.
[142] ZHENG K, TONG Y, ZHANG S, et al. Flexible bicolorimetric polyacrylamide/chitosan hydrogels for smart real-time monitoring and promotion of wound healing[J]. Advanced Functional Materials, 2021, 31(34): 2102599.
[143] WANG L, WU Q, ZHAO B, et al. Multi-functionalized carbon aerogels derived from chitosan[J]. Journal of Colloid and Interface Science, 2022, 605: 790-802.
[144] 李晓磊, 郭纪彤, 王宁馨, 等. 温敏性壳聚糖水凝胶的制备及性能研究[J]. 化学工程与装备, 2022
[145] 生卫北, 熊奡, 刘苏, 等. 磷酸肌酸改性壳聚糖水凝胶干预大鼠骨髓源性巨噬细胞极化和炎症因子的表达[J]. 中国组织工程研究, 2022, 26(31): 5040.
[146] 陈嘉琛, 王翔. 壳聚糖水凝胶微球悬浮液模拟全血的流变学性质[J]. 医用生物力学, 2021
[147] LI Y, MA J, JIN D, et al. Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid[J]. Applied Catalysis B: Environmental, 2021, 291: 120123.
[148] ZHANG Z, WANG X, LIU T, et al. Al3+ coordinated chitosan hydrogel with ultrahigh water absorbency and environmental response[J]. Materials & Design, 2022, 214: 110390.
[149] 蒋旭. 聚乙烯醇化学水凝胶中不同状态水含量的分子动力学研究[D]. 华南理工大学, 2017.
[150] WIGGINS P M. High and low density water in gels[J]. Progress in Polymer Science, 1995, 20(6): 1121-1163.
[151] HOFFMAN A S. Hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews, 2012, 64: 18-23.
[152] FAYER M D. Dynamics of water interacting with interfaces, molecules, and ions[J]. Accounts of Chemical Research, 2012, 45(1): 3-14.
[153] WANG L, ZHANG X, XIA Y, et al. Cooking-inspired versatile design of an ultrastrong and tough polysaccharide hydrogel through programmed supramolecular interactions[J]. Advanced Materials, 2019, 31(41): 1902381.
[154] MREDHA M T I, GUO Y Z, NONOYAMA T, et al. A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures[J]. Advanced Materials, 2018, 30(9): 1704937.
[155] TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials, 2021, 33(28): 2000682.
[156] HUA M, WU S, MA Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847): 594-599.
[157] XU L, GAO S, GUO Q, et al. A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels[J]. Advanced Materials, 2020, 32(52): 2004579.
[158] SATO K, NAKAJIMA T, HISAMATSU T, et al. Phase-separation-induced anomalous stiffening, toughening, and self-healing of polyacrylamide gels[J]. Advanced Materials, 2015, 27(43): 6990-6998.
[159] GUO H, NAKAJIMA T, HOURDET D, et al. Hydrophobic hydrogels with fruit-like structure and functions[J]. Advanced Materials, 2019, 31(25): 1900702.
[160] SPILLER K L, LAURENCIN S J, LOWMAN A M. Characterization of the behavior of porous hydrogels in model osmotically-conditioned articular cartilage systems[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2009, 90(2): 752-759.
[161] CHANG H, MENG L, SHAO C, et al. Physically cross-linked silk hydrogels with high solid content and excellent mechanical properties via a reverse dialysis concentrated procedure[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13324-13332.
修改评论