[1] 国务院. 国务院关于印发《中国制造2025》的通知[EB/OL]. (2015-05-19)
[2023-03-15]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm.
[2] 工业和信息化部等十七部门. 工业和信息化部等十七部门关于印发“机器人+”应用行动实施方案的通知[EB/OL]. (2023-01-18)
[2023-03-15]. http://www.gov.cn/zhengce/zhengceku/2023-01/19/content_5738112.htm.
[3] 中国电子学会. 中国机器人产业发展报告(2022 年)[EB/R]. 2022.
[2023-03-15]. http://lib.ia.ac.cn/news/newsdetail/68443.
[4] GASPARETTO A, SCALERA L. From the Unimate to the Delta robot: the early decades of Industrial Robotics[C]//Explorations in the History and Heritage of Machines and Mechanisms: Proceedings of the 2018 HMM IFToMM Symposium on History of Machines and Mechanisms. Springer International Publishing, 2019: 284-295.
[5] RAIBERT M H, BROWN JR H B, CHEPPONIS M. Experiments in balance with a 3D one-legged hopping machine[J]. The International Journal of Robotics Research, 1984, 3(2): 75-92.
[6] HAYS J, HONG D, SANDU C, et al. Design Optimization for Minimizing Actuation Energy of a Dynamic Tripedal Walking Robot: Revisiting the Double Pendulum[C]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2010, 44106: 1465-1473.
[7] DICKINSON M H, FARLEY C T, FULL R J, et al. How animals move: an integrative view[J]. Science, 2000, 288(5463): 100-106.
[8] SHIGEMI S, GOSWAMI A, VADAKKEPAT P. ASIMO and humanoid robot research at Honda[J]. Humanoid Robotics: A reference, 2018: 55-90.
[9] SpotMini[EB/OL].
[2023-03-15]. https://robots.ieee.org/robots/spotmini/.
[10] Unitree Go1[EB/OL].
[2023-03-15]. https://m.unitree.com/go1/.
[11] HUTTER M, GEHRING C, JUD D, et al. Anymal-a highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 38-44.
[12] KATZ B, DI CARLO J, KIM S. Mini cheetah: A platform for pushing the limits of dynamic quadruped control[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6295-6301.
[13] DARPA Robotics Challenge[EB/OL].
[2023-03-15]. https://archive.darpa.mil/roboticschallenge/.
[14] Atlas[EB/OL].
[2023-03-15]. https://www.bostondynamics.com/atlas.
[15] Cassie[EB/OL].
[2023-03-15]. https://robots.ieee.org/robots/cassie/.
[16] SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent ASIMO: System overview and integration[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2002, 3: 2478-2483.
[17] ACKERMAN E, GUIZZO E. What Robotics Experts Think of Tesla’s Optimus Robot[EB/OL]. (2022-10-04)
[2023-03-15]. https://spectrum.ieee.org/robotics-experts-tesla-bot-optimus.
[18] ACKERMAN E. DURUS Brings Human-Like Gait (and Fancy Shoes) to Hyper-Efficient Robots[EB/OL]. (2016-07-12)
[2023-03-15]. https://spectrum.ieee.org/automaton/robotics/humanoids/durus-brings-humanlike-gait-and-fancy-shoes-to-hyperefficient-robots.
[19] RADFORD N A, STRAWSER P, HAMBUCHEN K, et al. Valkyrie: Nasa's first bipedal humanoid robot[J]. Journal of Field Robotics, 2015, 32(3): 397-419.
[20] ENGLSBERGER J, WERNER A, OTT C, et al. Overview of the torque-controllehumanoid robot TORO[C]//2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, 2014: 916-923.
[21] CHIGNOLI M, KIM D, STANGER-JONES E, et al. The MIT humanoid robot:Design,motion planning, and control for acrobatic behaviors[C]. 2020 IEEE-RAS20th International Conference on Humanoid Robots (Humanoids). IEEE, 2021: 1-8.
[22] Digit[EB/OL].
[2023-03-15]. https://robotsguide.com/robots/digit/
[23] ABATE A M. Mechanical design for robot locomotion[J]. 2018.
[24] TESLA. Tesla AI Day 2022[EB/OL]. (2022-10-01)
[2023-03-15]. https://www.youtube. com/watch?v=ODSJsviD_SU.
[25] Yape[EB/OL].
[2023-03-15]. https://yapemobility.it/.
[26] Gita[EB/OL].
[2023-03-15]. https://mygita.com/.
[27] MARS Exploration Rovers[EB/OL].
[2023-03-15].https://mars.nasa.gov/mer/.
[28] Swiss-Mile[EB/OL].
[2023-03-15]. https://www.swiss-mile.com/#projects
[29] KASHIRI N, BACCELLIERE L, MURATORE L, et al. Centauro: A hybrid locomotionand high power resilient manipulation platform[J]. IEEE Robotics and AutomationLetters, 2019, 4(2): 1595-1602.
[30] Handle[EB/OL].
[2023-03-15]. https://robots.ieee.org/robots/handle/.
[31] KANG X U, SHOUKUN W, JUNZHENG W, et al. High-adaption locomotion with stable robot body for planetary exploration robot carrying potential instrumentson unstructured terrain[J]. Chinese Journal of Aeronautics, 2021, 34(5): 652-665.
[32] KLEMM V, MORRA A, SALZMANN C, et al. Ascento: A two-wheeled jumpingrobot[C]. 2019 International Conference on Robotics and Automation (ICRA).IEEE, 2019: 7515-7521.
[33] ZHAO L, YU Z, CHEN X, et al. System design and balance control of a novelelectrically-driven wheel-legged humanoid robot[C]//2021 IEEE InternationalConference on Unmanned Systems (ICUS). IEEE, 2021: 742-747.
[34] LI X, ZHOU H, ZHANG S, et al. WLR-II, a hose-less hydraulic wheel-legged robot[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4339-4346.
[35] CHEN H, WANG B, HONG Z, et al. Underactuated motion planning and controlfor jumping with wheeled-bipedal robots[J]. IEEE Robotics and AutomationLetters, 2020, 6(2): 747-754.
[36] WANG S, CUI L, ZHANG J, et al. Balance control of a novel wheel-legged robot:Design and experiments[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 6782-6788.
[37] Diablo Robot[EB/OL].
[2023-03-15]. https://shop.directdrive.com/
[38] KLEMM V, MORRA A, GULICH L, et al. LQR-assisted whole-body controlof a wheeled bipedal robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3745-3752.
[39] Ascento Pro[EB/OL].
[2023-03-15]. https://www.ascento.ch/index.html
[40] ZHANG C, LIU T, SONG S, et al. System design and balance control of a bipedal leg-wheeled robot[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019: 1869-1874.
[41] LIU T, ZHANG C, SONG S, et al. Dynamic height balance control for bipedalwheeled robot based on ROS-Gazebo[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019: 1875-1880.
[42] ZHANG C, LIU T, SONG S, et al. Dynamic wheeled motion control of wheel-bipedtransformable robots[J]. Biomimetic Intelligence and Robotics, 2022, 2(2): 100027.
[43] LIU T, ZHANG C, WANG J, et al. Towards terrain adaptablity: In situ transformation of wheel-biped robots[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3819-3826.
[44] LI X, ZHOU H, FENG H, et al. Design and experiments of a novel hydraulicwheel-legged robot (WLR)[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 3292-3297.
[45] ZHOU H, LI X, FENG H, et al. Model decoupling and control of the wheeledhumanoid robot moving in sagittal plane[C]//2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). IEEE, 2019: 1-6.
[46] ZHAO L, YU Z, CHEN X, et al. System design and balance control of a novelelectrically-driven wheel-legged humanoid robot[C]//2021 IEEE InternationalConference on Unmanned Systems (ICUS). IEEE, 2021: 742-747.
[47] CHEN S, ROGERS J, ZHANG B, et al. Feedback control for autonomous ridingof hovershoes by a cassie bipedal robot[C]. 2019 IEEE-RAS 19th InternationalConference on Humanoid Robots (Humanoids). IEEE, 2019: 1-8.
[48] CUI L, WANG S, ZHANG J, et al. Learning-based balance control of wheel-leggedrobots[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7667-7674.
[49] HUANG J, GUAN Z H, MATSUNO T, et al. Sliding-mode velocity control ofmobile-wheeled inverted-pendulum systems[J]. IEEE Transactions on Robotics,2010, 26(4): 750-758.
[50] XIN S, VIJAYAKUMAR S. Online dynamic motion planning and control forwheeled biped robots[C]//2020 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS). IEEE, 2020: 3892-3899.
[51] KWAKERNAAK H, SIVAN R. Linear optimal control systems[M]. New York:Wiley-interscience, 1969.
[52] KUČERA V. A review of the matrix Riccati equation[J]. Kybernetika, 1973, 9(1): (42)-61.
[53] ARIMOTO S. Optimal feedback control minimizing the effects of noise disturbances[J].Transactions of the Society of Instrument and Control Engineers, 1966, 2(1): 1-7.
修改评论