中文版 | English
题名

轮式双足机器人的设计与控制

其他题名
DESIGN AND CONTROL OF THE WHEELED-BIPEDAL ROBOT
姓名
姓名拼音
YANG Zeyi
学号
12032733
学位类型
硕士
学位专业
0801Z1 智能制造与机器人
学科门类/专业学位类别
08 工学
导师
张巍
导师单位
系统设计与智能制造学院
论文答辩日期
2023-05-17
论文提交日期
2023-06-26
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

随着技术的成熟,移动机器人已逐渐应用于各个行业,发挥着越来越重要的作用。但人类生活场景复杂多变,主流的轮式机器人只能在平坦路面运行,难以适应崎岖复杂地形,而纯足式机器人虽然可以适应不同地形,但能耗大、效率低、速度慢也是目前的主要弊端。为了解决上述问题,提高移动机器人多场景的适应性和通用性,本文设计了一种采用并联机构的多模式轮足混合机器人,并完成了机器人软硬件系统的构建和真机运行测试。该机器人为轮式双足构型,每条腿有三个自由度,分别平行分布在膝关节、髋关节和驱动轮轴处。机器人设计采用轻量化、模块化和质量集中的理念,因此双腿采用五连杆机构,可在膝关节处产生更高功率输出的同时创造更优的整体质量分布结构。机器人软件系统采用基于Linux实时系统的处理器绑定和多线程技术,稳定实现了2 kHz硬件通信频率的并行架构。控制方法上,机器人采用分层控制策略,底层控制器采用简化物理模型和LQR方法,实现了移动、转向和平衡控制,以及对期望状态轨迹的跟踪;上层规划器利用物理约束对机器人状态进行规划,以产生合理可控的运动轨迹。机器人的上身姿态控制则采用添加重力补偿的力位混合控制器,并通过实时的动力学模型更新与平衡控制器耦合。机器人在功能上具有四轮模式和轮式双足模式,并且本文基于该两种模式提出了一种平滑模式切换策略,并在真机上进行了验证。最终,该机器人完成了基础功能的真机运行实验,证明了该轮式双足机器人系统设计的可行性和控制算法的合理性。

其他摘要

With the advancement of technology, mobile robots have become increasingly important in various industries. However, human environments are complex and variable, making it difficult for conventional wheeled robots to navigate rugged terrain. Conversely, although purely legged robots are adaptable to various terrains, they are limited by high energy consumption, low efficiency and slow speed. To address these issues and improve the adaptability and versatility of mobile robots, this paper proposes a multi-mode wheeled-legged robot with a parallel mechanism. The robot has a wheeled-bipedal configuration with three degrees of freedom in each leg, distributed in parallel at the knee joint, hip joint and wheel axis. Design focused on lightweight, modular, and weight concentration concepts, resulting in a five-link mechanism for both legs with a higher power output at the knee joint and better weight distribution. The robot uses a real-time Linux system with processor binding and multi-threading techniques to stabilize the parallel software architecture with 2 kHz hardware communication frequency. The robot uses a hierarchical control strategy, with the lower controllers for motion, steering, balance and following desired state trajectories based on a simplified physical model and the LQR method. The upper planner uses physical constraints to plan the robot state to produce a controllable motion trajectory. In addition, a hybrid force-position controller with additional gravity compensation is used to adjust upper body pose, which couples with the balance controller through updating real-time dynamic model. The robot can be operated in both the four-wheeled mode and the wheeled-bipedal mode, and a smooth mode switching strategy is proposed and validated on a real robot. Finally, the feasibility of design and rationality of the control algorithm was verified through real-world operation and demonstration of all basic functions of the robot.

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2020
学位授予年份
2023-06
参考文献列表

[1] 国务院. 国务院关于印发《中国制造2025》的通知[EB/OL]. (2015-05-19)
[2023-03-15]. http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm.
[2] 工业和信息化部等十七部门. 工业和信息化部等十七部门关于印发“机器人+”应用行动实施方案的通知[EB/OL]. (2023-01-18)
[2023-03-15]. http://www.gov.cn/zhengce/zhengceku/2023-01/19/content_5738112.htm.
[3] 中国电子学会. 中国机器人产业发展报告(2022 年)[EB/R]. 2022.
[2023-03-15]. http://lib.ia.ac.cn/news/newsdetail/68443.
[4] GASPARETTO A, SCALERA L. From the Unimate to the Delta robot: the early decades of Industrial Robotics[C]//Explorations in the History and Heritage of Machines and Mechanisms: Proceedings of the 2018 HMM IFToMM Symposium on History of Machines and Mechanisms. Springer International Publishing, 2019: 284-295.
[5] RAIBERT M H, BROWN JR H B, CHEPPONIS M. Experiments in balance with a 3D one-legged hopping machine[J]. The International Journal of Robotics Research, 1984, 3(2): 75-92.
[6] HAYS J, HONG D, SANDU C, et al. Design Optimization for Minimizing Actuation Energy of a Dynamic Tripedal Walking Robot: Revisiting the Double Pendulum[C]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2010, 44106: 1465-1473.
[7] DICKINSON M H, FARLEY C T, FULL R J, et al. How animals move: an integrative view[J]. Science, 2000, 288(5463): 100-106.
[8] SHIGEMI S, GOSWAMI A, VADAKKEPAT P. ASIMO and humanoid robot research at Honda[J]. Humanoid Robotics: A reference, 2018: 55-90.
[9] SpotMini[EB/OL].
[2023-03-15]. https://robots.ieee.org/robots/spotmini/.
[10] Unitree Go1[EB/OL].
[2023-03-15]. https://m.unitree.com/go1/.
[11] HUTTER M, GEHRING C, JUD D, et al. Anymal-a highly mobile and dynamic quadrupedal robot[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 38-44.
[12] KATZ B, DI CARLO J, KIM S. Mini cheetah: A platform for pushing the limits of dynamic quadruped control[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6295-6301.
[13] DARPA Robotics Challenge[EB/OL].
[2023-03-15]. https://archive.darpa.mil/roboticschallenge/.
[14] Atlas[EB/OL].
[2023-03-15]. https://www.bostondynamics.com/atlas.
[15] Cassie[EB/OL].
[2023-03-15]. https://robots.ieee.org/robots/cassie/.
[16] SAKAGAMI Y, WATANABE R, AOYAMA C, et al. The intelligent ASIMO: System overview and integration[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2002, 3: 2478-2483.
[17] ACKERMAN E, GUIZZO E. What Robotics Experts Think of Tesla’s Optimus Robot[EB/OL]. (2022-10-04)
[2023-03-15]. https://spectrum.ieee.org/robotics-experts-tesla-bot-optimus.
[18] ACKERMAN E. DURUS Brings Human-Like Gait (and Fancy Shoes) to Hyper-Efficient Robots[EB/OL]. (2016-07-12)
[2023-03-15]. https://spectrum.ieee.org/automaton/robotics/humanoids/durus-brings-humanlike-gait-and-fancy-shoes-to-hyperefficient-robots.
[19] RADFORD N A, STRAWSER P, HAMBUCHEN K, et al. Valkyrie: Nasa's first bipedal humanoid robot[J]. Journal of Field Robotics, 2015, 32(3): 397-419.
[20] ENGLSBERGER J, WERNER A, OTT C, et al. Overview of the torque-controllehumanoid robot TORO[C]//2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, 2014: 916-923.
[21] CHIGNOLI M, KIM D, STANGER-JONES E, et al. The MIT humanoid robot:Design,motion planning, and control for acrobatic behaviors[C]. 2020 IEEE-RAS20th International Conference on Humanoid Robots (Humanoids). IEEE, 2021: 1-8.
[22] Digit[EB/OL].
[2023-03-15]. https://robotsguide.com/robots/digit/
[23] ABATE A M. Mechanical design for robot locomotion[J]. 2018.
[24] TESLA. Tesla AI Day 2022[EB/OL]. (2022-10-01)
[2023-03-15]. https://www.youtube. com/watch?v=ODSJsviD_SU.
[25] Yape[EB/OL].
[2023-03-15]. https://yapemobility.it/.
[26] Gita[EB/OL].
[2023-03-15]. https://mygita.com/.
[27] MARS Exploration Rovers[EB/OL].
[2023-03-15].https://mars.nasa.gov/mer/.
[28] Swiss-Mile[EB/OL].
[2023-03-15]. https://www.swiss-mile.com/#projects
[29] KASHIRI N, BACCELLIERE L, MURATORE L, et al. Centauro: A hybrid locomotionand high power resilient manipulation platform[J]. IEEE Robotics and AutomationLetters, 2019, 4(2): 1595-1602.
[30] Handle[EB/OL].
[2023-03-15]. https://robots.ieee.org/robots/handle/.
[31] KANG X U, SHOUKUN W, JUNZHENG W, et al. High-adaption locomotion with stable robot body for planetary exploration robot carrying potential instrumentson unstructured terrain[J]. Chinese Journal of Aeronautics, 2021, 34(5): 652-665.
[32] KLEMM V, MORRA A, SALZMANN C, et al. Ascento: A two-wheeled jumpingrobot[C]. 2019 International Conference on Robotics and Automation (ICRA).IEEE, 2019: 7515-7521.
[33] ZHAO L, YU Z, CHEN X, et al. System design and balance control of a novelelectrically-driven wheel-legged humanoid robot[C]//2021 IEEE InternationalConference on Unmanned Systems (ICUS). IEEE, 2021: 742-747.
[34] LI X, ZHOU H, ZHANG S, et al. WLR-II, a hose-less hydraulic wheel-legged robot[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4339-4346.
[35] CHEN H, WANG B, HONG Z, et al. Underactuated motion planning and controlfor jumping with wheeled-bipedal robots[J]. IEEE Robotics and AutomationLetters, 2020, 6(2): 747-754.
[36] WANG S, CUI L, ZHANG J, et al. Balance control of a novel wheel-legged robot:Design and experiments[C]//2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021: 6782-6788.
[37] Diablo Robot[EB/OL].
[2023-03-15]. https://shop.directdrive.com/
[38] KLEMM V, MORRA A, GULICH L, et al. LQR-assisted whole-body controlof a wheeled bipedal robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3745-3752.
[39] Ascento Pro[EB/OL].
[2023-03-15]. https://www.ascento.ch/index.html
[40] ZHANG C, LIU T, SONG S, et al. System design and balance control of a bipedal leg-wheeled robot[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019: 1869-1874.
[41] LIU T, ZHANG C, SONG S, et al. Dynamic height balance control for bipedalwheeled robot based on ROS-Gazebo[C]//2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019: 1875-1880.
[42] ZHANG C, LIU T, SONG S, et al. Dynamic wheeled motion control of wheel-bipedtransformable robots[J]. Biomimetic Intelligence and Robotics, 2022, 2(2): 100027.
[43] LIU T, ZHANG C, WANG J, et al. Towards terrain adaptablity: In situ transformation of wheel-biped robots[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3819-3826.
[44] LI X, ZHOU H, FENG H, et al. Design and experiments of a novel hydraulicwheel-legged robot (WLR)[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 3292-3297.
[45] ZHOU H, LI X, FENG H, et al. Model decoupling and control of the wheeledhumanoid robot moving in sagittal plane[C]//2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids). IEEE, 2019: 1-6.
[46] ZHAO L, YU Z, CHEN X, et al. System design and balance control of a novelelectrically-driven wheel-legged humanoid robot[C]//2021 IEEE InternationalConference on Unmanned Systems (ICUS). IEEE, 2021: 742-747.
[47] CHEN S, ROGERS J, ZHANG B, et al. Feedback control for autonomous ridingof hovershoes by a cassie bipedal robot[C]. 2019 IEEE-RAS 19th InternationalConference on Humanoid Robots (Humanoids). IEEE, 2019: 1-8.
[48] CUI L, WANG S, ZHANG J, et al. Learning-based balance control of wheel-leggedrobots[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 7667-7674.
[49] HUANG J, GUAN Z H, MATSUNO T, et al. Sliding-mode velocity control ofmobile-wheeled inverted-pendulum systems[J]. IEEE Transactions on Robotics,2010, 26(4): 750-758.
[50] XIN S, VIJAYAKUMAR S. Online dynamic motion planning and control forwheeled biped robots[C]//2020 IEEE/RSJ International Conference on IntelligentRobots and Systems (IROS). IEEE, 2020: 3892-3899.
[51] KWAKERNAAK H, SIVAN R. Linear optimal control systems[M]. New York:Wiley-interscience, 1969.
[52] KUČERA V. A review of the matrix Riccati equation[J]. Kybernetika, 1973, 9(1): (42)-61.
[53] ARIMOTO S. Optimal feedback control minimizing the effects of noise disturbances[J].Transactions of the Society of Instrument and Control Engineers, 1966, 2(1): 1-7.

所在学位评定分委会
力学
国内图书分类号
TP242
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/543989
专题工学院_机械与能源工程系
推荐引用方式
GB/T 7714
杨泽一. 轮式双足机器人的设计与控制[D]. 深圳. 南方科技大学,2023.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12032733-杨泽一-机械与能源工程(16022KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[杨泽一]的文章
百度学术
百度学术中相似的文章
[杨泽一]的文章
必应学术
必应学术中相似的文章
[杨泽一]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。